Joint Semantic Segmentation and Boundary Detection using Iterative Pyramid Contexts

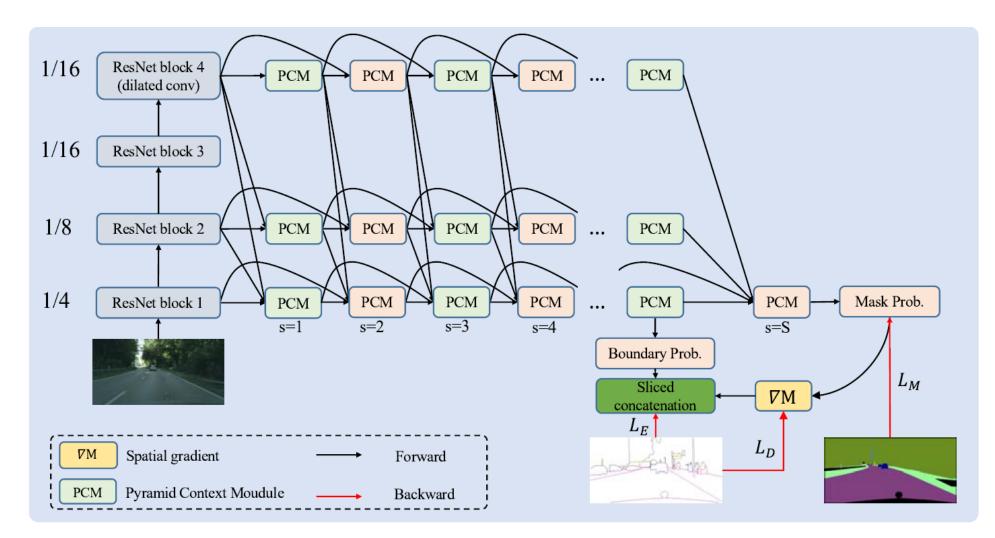
Mingmin Zhen1Jinglu Wang2Lei Zhou1Shiwei Li3Tianwei Shen1Jiaxiang Shang1Tian Fang3Long Quan11Hong Kong University of Science and Technology2Microsoft Research Asia3Everest Innovation Technology{mzhen, lzhouai, tshenaa, jshang, quan}@cse.ust.hkJinglu.Wang@microsoft.com{sli, fangtian}@altizure.com

Motivation

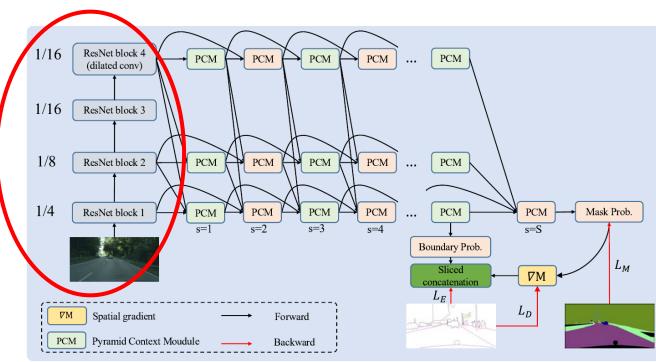
- As a dual problem of semantic segmentation, which means that the boundary always surrounds the mask, the goal of semantic boundary detection is to identify image pixels that belong to object(class) boundaries.
- In general, estimating the semantic label at image boundaries is challenging as it could be ambiguous between two sides.
- For semantic boundary detection, one challenging issue is to suppress the non-semantic edges, which are ambiguous to distinguish from semantic edges.



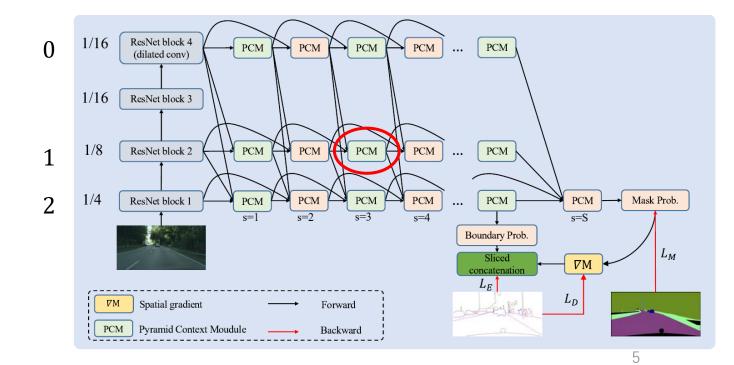
PCM: capture the pyramid context from *multiscale* feature maps.



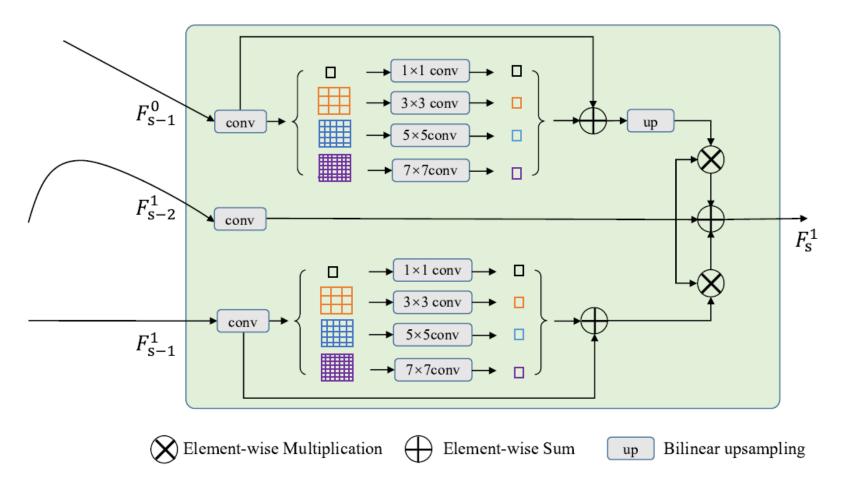
Backbone: ResNet with dilated strategy.



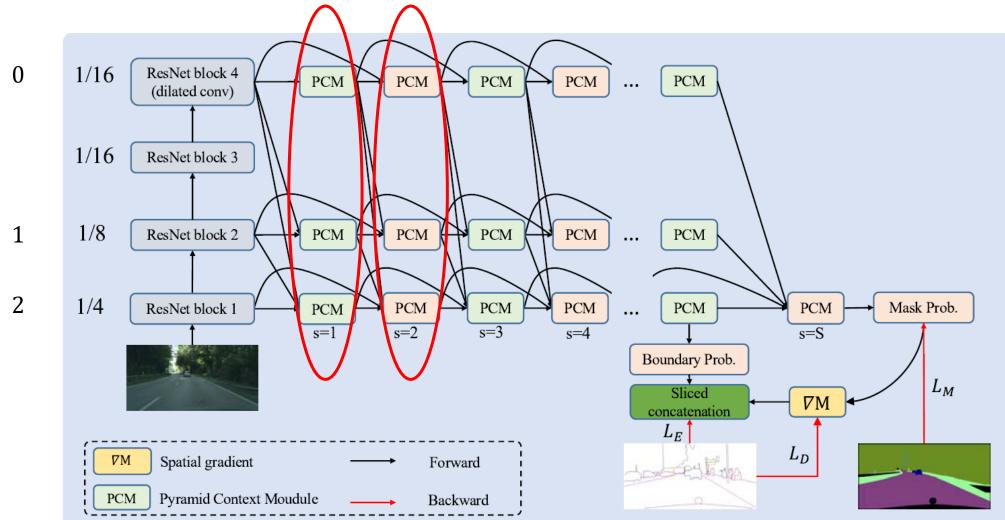
PCM: capture the pyramid context from *multiscale* feature maps.



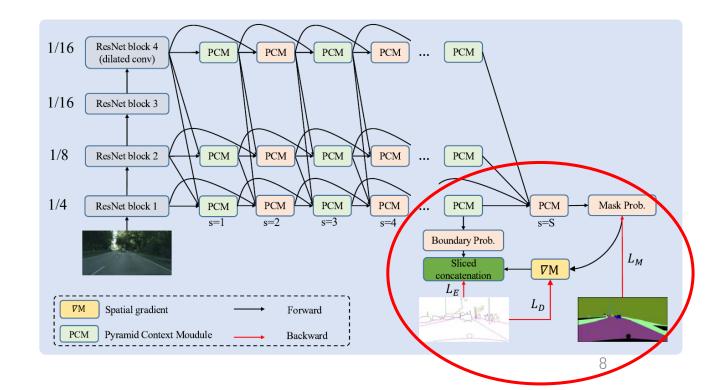
$$P_{G \times G}^{t'}(x,y) = \frac{1}{|S(x,y)|} \sum_{(h,w) \in S(x,y)} F(h,w)$$



Iterative???

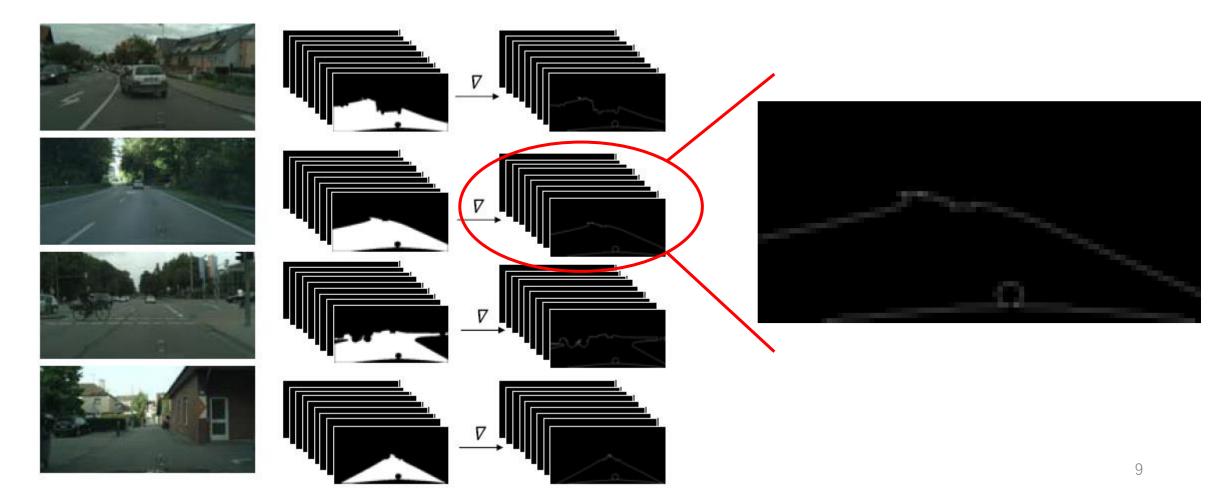


Loss Function: $L_{total} = L_M + \lambda_1 L_D + \lambda_2 L_E$



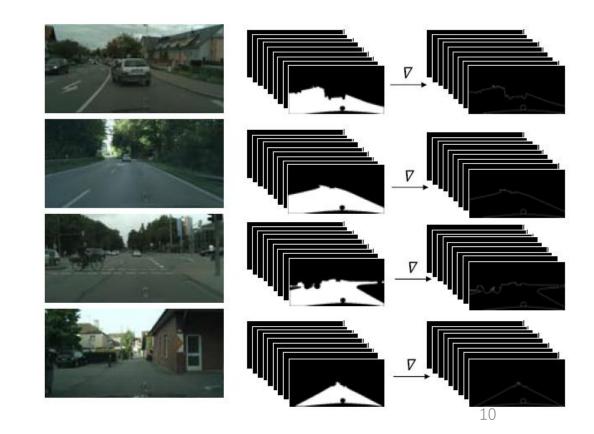
Spatial Gradient ∇*M*:

$\nabla M = |M(x, y) - pool_k(M(x, y))|$



$$L_D = \sum_{i} |\nabla M_i - B_i^{gt}|$$

 B_i^{gt} is the semantic boundary ground truth derived from semantic segmentation mask ground truth.

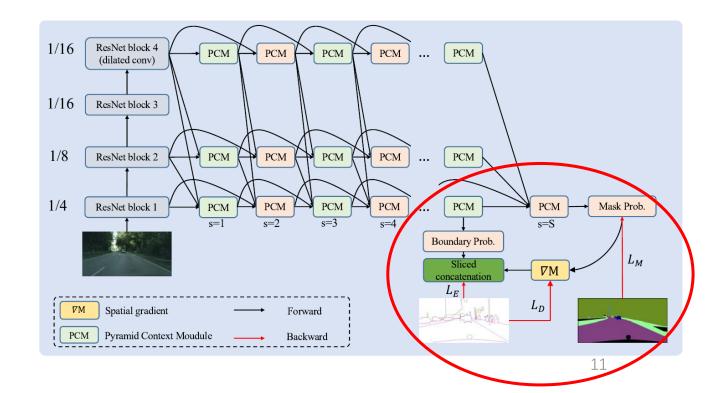


 ∇M Fusion:

Sliced concatenation:

$$B = \{B_1, B_2, \dots, B_k\}$$
$$\nabla M = \{\nabla M_1, \nabla M_2, \dots, \nabla M_k\}$$

$$[B_1, \nabla M_1, B_2, \nabla M_2, \dots, B_k, \nabla M_k]$$



Cityscapes dataset contains 2975 training, 500 validation and 1525 test images. Each images has a high resolution of 2048×1024 pixels with 19 semantic classes.

_	Duality loss	∇M	PCM	mIoU	MF (ODS) / AP
-	-	-	_	78.14	73.61 / 72.81
	\checkmark	-	-	79.58	74.24 / 73.57
	\checkmark	\checkmark	-	79.81	74.45 / 74.20
	\checkmark	\checkmark	$\{1\}$	79.92	74.65 / 74.29
	\checkmark	\checkmark	$\{1, 3\}$	80.20	74.80 / 74.54
	\checkmark	\checkmark	$\{1,3,5,7\}$	80.43	75.54 / 75.14

Table 1. Ablation experiments for duality loss, ∇M fusion and pyramid context module (PCM). We set S to 8 in the experiments.

S	mIoU	MF (ODS) / AP
1	77.65	-
1	-	72.62 / 71.56
2	78.77	73.44 / 72.53
3	79.44	74.55 / 73.78
4	79.80	74.56 / 73.80
5	79.88	74.61 / 73.91
6	80.25	74.94 / 74.31
7	80.36	75.10/74.38
8	80.43	75.54 / 75.14

Table 2. Ablation experiments of iterative pyramid context module for semantic segmentation and semantic boundary. The iterative steps S is set from 1 to 8. For S = 1, only one task is trained and evaluated.

	Method	Backbone	mIoU
	DeeplabV2 [27]	ResNet101	70.4
	Piecewise [33]	ResNet101	71.6
	PSPNet [23]	ResNet101	78.8
	DeeplabV3+ [19]	ResNet101	78.8
	InPlaceABN [30]	WideResNet38	79.4
	GSCNN [5]	ResNet101	80.8
I.	DANet [32]	ResNet101	81.5
	RPCNet (SS + Flip)	ResNet101	81.8
	RPCNet (MS + Flip)	ResNet101	82.1
			1

.

Table 3. Performance comparison between different strategies on Cityscape val set. "SS": single scale test. "MS": multi-scale test.

Method	Backbone data	road	s.walk	build.	wall	fence	pole	t-light	t-sign	veg	terrain	sky	person	rider	car	truck	bus	train	motor	bike	mean
DeeplabV2 [27]	ResNet101	97.9	81.3	90.3	48.8	47.4	49.6	57.9	67.3	91.9	69.4	94.2	79.8	59.8	93.7	56.5	67.5	57.5	57.7	68.8	70.4
RefineNet [20]	ResNet101	98.2	83.3	91.3	47.8	50.4	56.1	66.9	71.3	92.3	70.3	94.8	80.9	63.3	94.5	64.6	76.1	64.3	62.2	70.0	73.6
PSPNet [23]	ResNet101	98.6	86.2	92.9	50.8	58.8	64.0	75.6	79.0	93.4	72.3	95.4	86.5	71.3	95.9	68.2	79.5	73.8	69.5	77.2	78.4
AAF [34]	ResNet101	98.5	85.6	93.0	53.8	58.9	65.9	75.0	78.4	93.7	72.4	95.6	86.4	70.5	95.9	73.9	82.7	76.9	68.7	76.4	79.1
DenseASPP [35]	DenseNet161	98.7	87.1	93.4	60.7	62.7	65.6	74.6	78.5	93.6	72.5	95.4	86.2	71.9	96.0	78.0	90.3	80.7	69.7	76.8	80.6
PSANet [24]	ResNet101	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	80.1
SeENet [36]	ResNet101	98.7	87.3	93.7	57.1	61.8	70.5	77.6	80.9	94.0	73.5	95.9	87.5	71.6	96.3	76.4	88.0	79.9	73.0	78.5	81.2
ANNNet [37]	ResNet101	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	81.3
CCNet [28]	ResNet101	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	81.4
BFP [6]	ResNet101	98.7	87.0	93.5	59.8	63.4	68.9	76.8	80.9	93.7	72.8	95.5	87.0	72.1	96.0	77.6	89.0	86.9	69.2	77.6	81.4
DANet [32]	ResNet101	98.6	87.1	93.5	56.1	63.3	69.7	77.3	81.3	93.9	72.9	95.7	87.3	72.9	96.2	76.8	89.4	86.5	72.2	78.2	81.5
Ours	ResNet101	98.7	86.7	93.9	62.4	62.8	70.5	77.5	81.1	94.0	72.3	95.9	87.8	74.1	96.3	76.5	88.0	85.2	71.0	78.6	81.8

Table 4. Comparison vs state-of-the-art methods without coarse data training on the Cityscapes test set.

Metric	Method	Test NMS	road	s.walk	build.	wall	fence	pole	t-light	t-sign	veg	terrain	sky	person	rider	car	truck	bus	train	motor	bike	mean
	CASENet [3]		87.06	75.95	75.74	46.87	47.74	73.23	72.70	75.65	80.42	57.77	86.69	81.02	67.93	89.10	45.92	68.05	49.63	54.21	73.74	68.92
	CASENet* [4]		87.23	76.08	75.73	47.86	47.57	73.67	71.77	75.19	80.58	58.39	86.78	81.00	68.18	89.31	48.99	67.82	50.84	55.30	74.16	69.29
MF (ODS)	CASENet* [4]	\checkmark	88.13	76.53	76.75	48.70	48.60	74.21	74.54	76.38	81.32	58.98	87.26	81.90	69.05	90.27	50.93	68.41	52.11	56.23	75.66	70.31
	STEAL [4]		88.08	77.62	77.08	50.02	49.62	75.48	74.01	76.66	81.51	59.41	87.24	81.90	69.87	89.50	52.15	67.80	53.60	55.93	75.17	70.67
	STEAL [4]	\checkmark	88.94	78.21	77.75	50.59	50.39	75.54	76.31	77.45	82.28	60.19	87.99	82.48	70.18	90.40	53.31	68.50	53.39	56.99	76.14	71.42
	Ours	\checkmark	90.86	82.32	82.11	57.15	58.97	84.48	83.34	82.26	84.88	64.22	89.87	86.28	78.47	92.61	67.75	82.79	68.48	69.20	80.09	78.22
	CASENet [3]		54.58	65.44	67.75	37.97	39.93	57.28	64.65	69.38	71.27	50.28	73.99	72.56	59.92	66.84	35.91	56.04	41.19	46.88	63.54	57.65
	CASENet* [4]		68.38	69.61	70.28	40.00	39.26	61.74	62.74	73.02	72.77	50.91	80.72	76.06	60.49	79.43	40.86	62.27	42.87	48.84	64.42	61.30
AP	CASENet* [4]	\checkmark	88.83	73.94	76.86	42.06	41.75	69.81	74.50	76.98	79.67	56.48	87.73	83.21	68.10	91.20	44.17	66.69	44.77	52.04	75.65	68.13
	STEAL [4]		89.54	75.72	74.95	42.72	41.53	65.86	67.55	75.84	77.85	52.72	82.70	79.89	62.59	91.07	45.26	67.73	47.08	50.91	70.78	66.44
	STEAL [4]	\checkmark	90.86	78.94	77.36	43.01	42.33	71.13	75.57	77.60	81.60	56.98	87.30	83.21	66.79	91.59	45.33	66.64	46.25	52.07	74.41	68.89
	Ours	✓	91.27	83.87	84.00	53.18	54.96	84.55	85.48	84.66	86.15	61.18	90.7 2	88.95	79.95	94.40	68.11	85.47	68.53	69.44	82.17	78.79

Table 5. Quantitative results on the val set on the Cityscapes dataset. We use ResNet101 pretrained on ImageNet as backbone. CASENet* is the reimplementation of CASENet in [4]. Scores are measured by %.



Figure 5. Some visualization comparison examples for semantic boundary detection with or without ∇M fusion (**best viewed in color**).

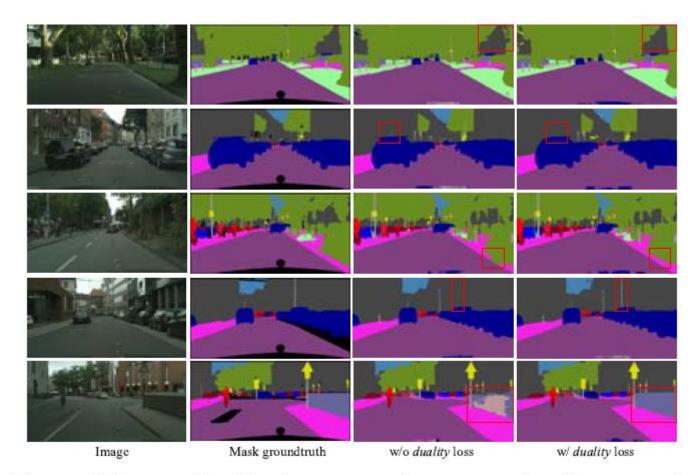


Figure 6. Some visualization comparison examples for semantic segmentation with or without duality loss used (**best viewed in color**).

Conclusion

- Good multi-task framework to joint dual problems.
- Can be applied to other tasks.