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Abstract—This letter proposes a novel video-based, contrastive
regression architecture, Contra-Sformer, for automated surgical
skill assessment in robot-assisted surgery. The proposed framework
is structured to capture the differences in the surgical perfor-
mance, between a test video and a reference video which repre-
sents optimal surgical execution. A feature extractor combining
a spatial component (ResNet-18), supervised on frame-level with
gesture labels, and a temporal component (TCN), generates spatio-
temporal feature matrices of the test and reference videos. These
are then fed into an action-aware Transformer with multi-head
attention that produces inter-video contrastive features at frame
level, representative of the skill similarity/deviation between the
two videos. Moments of sub-optimal performance can be identified
and temporally localized in the obtained feature vectors, which
are ultimately used to regress the manually assigned skill scores.
Validated on the JIGSAWS dataset, Contra-Sformer achieves com-
petitive performance (Spearman 0.65–0.89), with a normalized
mean absolute error between 5.8%-13.4% on all tasks and across
validation setups.

Index Terms—Computer vision for medical robotics, deep
learning methods, surgical skill assessment, contrastive re-
gression.

I. INTRODUCTION

ROBOT-ASSISTED minimally invasive surgery (RMIS)
is firmly established in clinical practice, offering en-

hanced visualization and manipulability compared to standard
laparoscopy [1]. Operative performance assessment is a funda-
mental element of surgical education and practice, and similar to
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other surgical specialties, significant efforts have been devoted
towards standardized objective skill assessment systems for
RMIS [2]. Global rating scales (GRS) such as the Objective
Structured Assessment of Technical Skills (OSATS) are estab-
lished assessment tools. The OSATS comprise a list of core
procedural components (e.g., handling of instruments, and re-
spect for tissue), assessed and scored on a Likert-style (typically
5-point) scale. Summing the individual GRS components pro-
duces an overall performance score (7-35 for OSATS [3]). Each
component is assigned a score based on performance character-
istics. For example, “time and motion” is scored with 5 when
there is economy of movement, maximum efficiency and opti-
mal outcome [3]. Nevertheless, RMIS evaluation with GRS is
time-consuming, laborious and inherently subjective as different
evaluators may assess GRS items differently. To address these
limitations, several works have developed computational meth-
ods that evaluate surgical execution by processing intraoperative
information (e.g., surgical video and robot kinematics) [4].

Automated surgical skill assessment in RMIS can have a
profound impact, streamlining the evaluation process, overcom-
ing the need for manual assessment, and eliminating subjectiv-
ity [5]. Modeling optimal surgical execution can also introduce
performance awareness in the design of actuation and control
policies towards automation of surgical tasks where robotic
systems mimic the performance of expert surgeons [1], [4]. The
release of the JHU-ISI Gesture and Skill Assessment Working
Set (JIGSAWS) [6] containing synchronized kinematics and
video captured using the da Vinci Surgical System, alongside
atomic gestures and Global Rating Scale (GRS) score annota-
tions (range of 6-30), provided the first structured benchmark
to support activity in this space. Several methods for GRS
estimation have been developed and validated on JIGSAWS.

Initial works utilized kinematic data to regress the GRS score
by exploring different types of holistic features [5], and temporal
convolutional neural networks (TCNs) [7]. Reported outcomes
indicate that modeling surgical skills to regress GRS scores only
using kinematic cues is challenging (Spearman’s coefficient:
0.38-0.73). Furthermore, kinematic data are rarely available in
real-world RMIS practice. More recent works propose video- or
hybrid-based methods, leveraging spatial and temporal feature
encoders to extract discriminative features or by using multi-task
architectures [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18]. Tang et al. propose an uncertainty-aware score distribution
method based on 3D Convolutional Neural Networks (CNNs),
where a distribution of different scores, instead of a single
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one, acts as the supervisory signal [17]. This method achieves
good performance on JIGSAWS and other datasets (AQA-7
and MTL-AQA). Employing surgical gesture information (e.g.,
pushing needle through the tissue, orienting needle) can be
beneficial for capturing the subtle differences across time, dur-
ing execution by different surgeons [8]. Wang et al. propose
a multi-task learning framework, with primary task the GRS
score prediction, and auxiliary tasks of gesture recognition and
expertise classification [8]. Li et al. developed ViSA, reporting
state-of-the-art performance on JIGSAWS. To model tool-tissue
interaction, ViSA clusters local semantic features, produced by a
3D CNN, to generate abstract features for each group (e.g., tools,
tissue and background). These are fed to Bidirectional LSTMs
and regress the GRS score [14]. Multimodal methods combining
video and kinematics have also been proposed [2], [19], [20].
Liu et al. propose a unified multi-path framework for surgical
skill assessment, with each path focusing on modeling a different
aspect of skill (e.g., semantic visual features, tools, events) [2].
Video features (extracted by ResNet-101), kinematic data, and
gesture probabilities (obtained from an MS-TCN) are used. The
model is supervised with regression loss and a self-supervised
contrastive loss, achieving promising performance (see Table I).

Previous works attempt to directly regress the skill score for
the target surgical video from its extracted feature vectors [8],
[9], [10], [14], [16], [17], [18]. However, the manual GRS scores
in JIGSAWS have considerable variation (6-30), while the ac-
companying videos have mostly similar appearance and context.
Thus, it is challenging for deep models to robustly learn to
distinguish between these scores, using only the total score value
for supervision. We argue that the inherent dimensionality reduc-
tion of the regression task makes it very challenging to structure a
model to learn representations that capture the subtle differences
observed across the videos. Recently, the contrastive regression
mechanism showed promise in a similar task of action quality
assessment (AQA) [15]. Instead of learning representations that
describe the skill score of a specific video, contrastive regression
encourages the features to encode the difference among different
videos.

In this letter, we propose a novel Contrastive Regression
Transformer model, Contra-Sformer, for surgical skill assess-
ment (formulated as a GRS regression task). Contra-Sformer
focuses specifically on structuring features to express the level
of similarity that each surgical execution (i.e., test video) exhibits
when compared to a reference one. Unlike [15], where the
reference video is randomly selected according to the coarse
category of the input test video, we set the reference video as
the one with the highest assessment score for this particular
surgical task. This is motivated by the current surgical training
paradigm: an expert surgeon assesses a surgical execution by
comparing it to an ideal execution, and deducing points when
perceiving deviations. Therefore, keeping the eye on the best
and using it as reference, our model learns how the perfor-
mance in the input video spatio-temporally deviates from the
reference. In Contra-Sformer, the regression model is optimized
for estimating the difference in the GRS score between the two
executions. We argue that by following this contrastive approach
we obtain more discriminative and robust features, that are able

to better generalize to the varied GRS scores among the different
operators. Spatio-temporal feature extraction is implemented
with a ResNet-18 and an enhanced TCN architecture. To capture
similarities/deviations, we take advantage of the self-attention
mechanism and use a multi-head attention block. With this
modeling, we aim to encourage the generation of rich intra-
video, action and skill-related features, as well as multi-aspect
(tool usage, respect for tissue), inter-video features modeled by
multi-head attention. Different to [15] where the two signals
(i.e. reference, test) are combined with simple concatenation,
we introduce multi-head attention to model similarity/deviation
between videos. Also, in our work the action knowledge is
implicitly embedded in the model by fine-tuning the feature
extractor on atomic gestures. That allows the generation of
gesture-related features, which help assess skill. This approach is
different than others that use multi-task [2], [8] or segment-aware
architectures [18] to encode action knowledge.

We evaluate the Contra-Sformer with Spearman’s correlation
coefficient (SCC) and Mean Absolute Error (MAE) on three
tasks and three cross-validation schemes on JIGSAWS. We also
validate the learned features for their ability to represent skill
similarity/deviation with ground truth error labels as defined
in [21]. Our method achieves competitive performance com-
pared to the state-of-the-art with a 5.8%–13.4% normalized
MAE, outperforming current methods on the knot-tying and su-
turing tasks. Our main contributions are summarized as follows:

1) Propose a novel contrastive regression framework for sur-
gical skill assessment, integrating surgical domain knowl-
edge by contrasting test inputs with a reference, selected
as the optimal execution (highest GRS score).

2) Derive frame-level spatio-temporal features embedding
action/gesture information, combining ResNet-18 outputs
with a new temporal convolution network (TCN).

3) Propose multi-head attention to model the similar-
ity/deviation between the input test and reference video.
We show that moments of skill deviation/similarity
can be identified from the derived spatio-temporal
features.

4) Perform detailed analysis on the prediction error and
introduce the MAE to complement SCC for evaluating
regression performance of GRS score prediction in JIG-
SAWS.

II. METHODS

The overview of the proposed framework is illustrated in
Fig. 1. Contra-Sformer takes a pair of video frames x,xref as in-
put, and outputs the GRS score ŝ that corresponds to the video x.
Input and reference videos are encoded into compact high-level
spatio-temporal feature matrices through a stack of a ResNet-18
trained on surgical gestures (e.g., orienting needle, see [6]) and
our enhanced TCN. To capture the difference between input and
reference signals, we employ a multi-head attention block to
take advantage of the self-attention mechanism and model the
contrastive relation. The output of the multi-head attention block
is then average pooled across the temporal dimension followed
by a fully connected layer to regress the relative score. Finally,
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Fig. 1. Overview of our proposed framework Contra-Sformer. Input: RGB video frames for videos x, xref . Output: GRS score ŝ of the video x. Input and
reference videos are fed into a stack of a ResNet-18 fined-tuned on surgical gestures and our TCN. Then, the relation between the two signals is modeled and
computed by a multi-head attention block. The output of the multi-head attention block is then pooled across the temporal dimension followed by a fully connected
layer to regress the relative score Δs. This is then added to the reference score sref , to predict the final score ŝ of the input video x.

the reference score is added to the relative score to predict the
final score of the input video.

A. Contrastive Regression From the Best

Typically, the task of estimating the GRS score (a real number)
from an input video is formulated as a regression problem. Let x
be the input video, then the corresponding regressed GRS score
is expressed as ŝ = hw(x), where hw is the mapping between x
and ŝ, parameterized by w .

In this work, we model the regression task based on the
similarity/deviation between test inputs and the reference. We
hypothesize that this allows us to structure a modelhw that is able
to capture and express the subtle differences across the videos
and lead to an accurate estimation. Following [15], we develop
a contrastive regression framework that estimates the relative
score between an input test video and a reference video instead
of regressing to the absolute score of the input. The problem is
now expressed as:

ŝ = hw(x,xref ) + sref (1)

where xref is a reference video, and sref is its corresponding
GRS score label. Equation (1) can also be viewed as ŝ = Δs+
sref , where Δs ≡ hw(x,xref ).

We set the reference video as the execution with the highest
available GRS score in the dataset (for each task). The same
reference video (per task) and its GRS score is used for training
and validation, and is excluded from both training and validation
sets. Unlike the suturing task, in both the knot tying and the
needle passing tasks in JIGSAWS, there are no executions with
perfect GRS scores. We therefore use the highest available ones
as the reference. Upon visual inspection, all reference videos
are free of major mistakes (e.g., dropping the needle), that may
affect the modeling of the similarity/deviation between input
and reference.

B. Spatio-Temporal Feature Extraction

As shown in Fig. 1, Contra-Sformer first extracts spatio-
temporal features of the input, x, and the reference video,

xref . Let xt ∈ RC×H×W denote the t-th frame for a video
with T frames in total, and yt ∈ RN denotes the corresponding
one-hot encoded surgical gesture label of that frame. We employ
the ResNet-18 [22] model to extract high-level spatial features
from every frame xt and optimize it as a frame-wise classifier
using cross-entropy loss. We then take the outputs of the last
average pooling layer as our spatial feature vector (ft ∈ R512).
For every input video, we obtain the feature matrix f ∈ R512×T ,
representing spatial information in each frame. The spatial fea-
ture encoder is trained with per-frame gesture labels, leading
to the generation of features that capture local deviations at
frame level, with respect to the sequence and duration of the
gestures that constitute each task. On the other hand, training
under GRS label supervision will provide features expressing
the similarity/deviation between the two videos at a global level.

To encode time cues within the videos, a TCN is employed.
We differentiate from relevant works [2], [8] that use the
multi-stage TCN (MS-TCN) [23], by introducing a customized
TCN architecture, to improve temporal information modeling
specifically for our contrastive regression task. We use stan-
dard 1D convolutions (four layers with output dimensions of
{64, 32, 16, 16}; kernel size = 25; and stride = 1), instead of
1D dilated convolutions, followed by 1D max pooling (kernel
size = 3, stride = 3) and batch normalization layers to com-
press the temporal information (see Fig. 2). Pooling layers are
important for regressing the skill score, as they aggregate tem-
poral information to represent groups of actions that constitute
different aspects of skills. Formally, we input the feature matrix
f (0) ∈ RF (0)×T (0)

to the TCN, where F (0) = 512 and T (0) is
the initial temporal resolution. At each layer l, the following
operations take place,

f (l) = BN
{

MaxPool
{

ReLU
(
W(l) ∗ f (l−1) + b(l)

)}}
(2)

where ∗ denotes the convolution operator, and W(l) and b(l)

denote parameters and the bias term. The final output is a feature
matrix f (4) ∈ R16×T (4)

.
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Fig. 2. Spatio-temporal feature extraction from the video frames is done by a ResNet-18 fined-tuned on surgical gesture labels, followed by our TCN for encoding

time cues within the videos. The output is a high-level feature matrix f (4) ∈ RF (4)×T (4)
.

C. Relation Modeling Via Action-Aware Transformer

Regressing the relative score between the current input video
and the reference requires capturing the latent relations between
them. One straightforward way is to concatenate their feature
vectors and use it for regression [15]. However, simple concate-
nation does not encourage the generation of features represent-
ing the differences between the two videos. Instead, we propose
to explicitly model the relation between the two executions by
computing the similarity function (i.e., dot product) between
their corresponding high-level feature vectors.

GRS evaluates various aspects (i.e., tissue handling, instru-
ment movement) of surgical execution. Therefore, we imple-
ment the relation modeling block with a multi-head atten-
tion (8 heads, hidden dimensionality of 16 and no dropout)
Transformer [24] block (see Fig. 1), to evaluate the similar-
ity/deviation of the two feature sequences at different scales.
Practically, this module compares the similarity/deviation of
patterns indicative of high GRS score, present in the reference,
with the patterns observed in the test video. Given the feature
matrices f = f (4) and fref = f

(4)
ref , from the input and reference

branches respectively, f are set as the queries q and fref as the
keys k and values v. Their relation is modeled as:

fattn = Concat (h1, . . . ,hn)W
O + f (3)

hi = softmax

(
(fWq

i ) · (frefWk
i )

T

√
dk

)
· (frefWv

i ) (4)

where, hi denotes the head i for i = 1, . . ., n, dk is the hid-
den dimensionality for queries and keys, and Wq

i ,W
k
i ,W

v
i ∈

RT (4)×T (4)
, and WO are learnable parameters. A skip connec-

tion, adding the output of that block to the queries, is introduced
to maintain as much information as possible from the current
input execution.

The feature matrix fattn ∈ RF (4)×T (4)
is then averaged across

the temporal dimension followed by a fully connected layer to
compute the relative score Δs ∈ R. The relative score is then
added to the reference score, as shown in Eq. (1), to predict the
final GRS score ŝ for the input video.

D. Training Procedure

Contra-Sformer is trained end-to-end using a combination of
the Mean Squared Error (MSE) and Mean Absolute Error (MAE)
as the loss function, with proven effectiveness in similar quality

assessment tasks [25]. It is defined as:

L = αMSE(ŝ, s) + (1− α)MAE(ŝ, s), (5)

where α is the hyper-parameter to balance the loss.
To optimize memory and computational time, training takes

place in a two-step process. First, the feature encoder (ResNet-
18) is trained using gesture labels and fixed using the weights
corresponding to the minimum cross-entropy loss. Aggregating
the individual feature vectors ft ∈ R512 from every frame t, a
high-level representation of the video f ∈ R512×T is formed.
These feature matrices for both input and reference video are
used as inputs to the TCN, which is trained jointly with the rest
of the network in an end-to-end manner. Also, the whole video
sequences of the executions, instead of frame clips, are used
as inputs to maximize the information we provide the network
with.

III. EXPERIMENTAL VALIDATION

A. Dataset and Evaluation Protocol

We develop and evaluate Contra-Sformer on the JIGSAWS
dataset [6]. JIGSAWS is a benchmark dataset for surgical skill
assessment and consists of three fundamental surgical tasks:
suturing (SU), needle passing (NP), and knot tying (KT), all
performed in a simulated environment using dry lab bench-top
models and the da Vinci API. Each task is executed five times
(trials) by the eight participating surgeons (2 experts, 2 interme-
diate, and 4 novices) while synchronized video and kinematic
data are recorded. There are 39 videos for suturing, 28 for needle
passing, and 36 for knot tying. Ground truth GRS scores (ranging
from 6 to 30) provide the skill annotations and frame-level
surgical gesture labels are provided for all tasks.

Cross-validation schemes for evaluating our method include
the Leave-One-Supertrial-Out (LOSO) and Leave-One-User-
Out (LOUO) setups as set forth in the JIGSAWS literature [6],
as well as a random 4-Fold scheme used by [2], [15], [17]. In
LOUO, all trials by a single surgeon are left out as the test set
and the remaining are for training. In LOSO, the i-th trial of
each surgeon is left out as the test set. LOUO evaluates model
generalization to different surgeons, while LOSO to different
trials performed by the same surgeon. The SCC is adopted as
the main evaluation metric, comparing the rank of the predicted
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TABLE I
COMPARISON TO THE STATE-OF-THE-ART METHODS ON JIGSAWS UNDER SPEARMAN’S CORRELATION COEFFICIENT AND MEAN ABSOLUTE ERROR ON THREE

CROSS-VALIDATION SCHEMES AND ALL TASKS. K: KINEMATIC DATA, V: VIDEO DATA; *UTILIZATION OF SURGICAL GESTURE LABELS. CONTRA-SFORMER IS

TRAINED AND EVALUATED IN ONE VIDEO LESS (REFERENCE) THAN THE METHODS PRESENTED

scores with the ground truth. SCC is defined as:

ρ =

∑
i (pi − p) (qi − q)√∑

i (pi − p̄)2
∑

i (qi − q̄)2
(6)

where p and q represent the ranking for each sample of two
series respectively. We report SCC values averaged on all folds
for each cross-validation scheme, and compute the average SCC
across tasks using Fisher’s z-value [2]. Since not all methods
report average results using Fisher’s z-value, we calculate these
(Table I) based on the SCC values on individual tasks. Although
useful as a metric, SCC alone cannot fully evaluate regression
accuracy. Thus, we also report the Mean Absolute Error (MAE).
Results in Table I are averaged on multiple runs with 5 different
random seeds.

B. Implementation Details

We initialize the ResNet-18 on Image-Net and train it with
lr = 5e−6 for 60 epochs. Video frames are resized to 240 ×
240 and center cropped at 224 × 224. Random Horizontal Flip
with p = 0.1 and Random Rotation of ±5 deg are used for KT
and NP. To reduce redundancy and computational load, videos
are downsampled to 5 Hz. The rest of the framework is trained
with the Adam optimizer for 300 epochs with lr = 5e−4 for SU
and KT and, 600 epochs with lr = 5e−5 for NP. For KT we use
batch size = 16, and for SU and NP, we use full-batch training
(i.e., batch size = # training samples). After experimentation,
two values are considered for the hyperparameter α in (5), 0.5
for KT and NP, and 0.65 for SU. The videos were zero-padded to

have equal length, according to the longest video in the dataset.
Videos with the highest GRS scores in each task are used as
reference: C004 for SU (GRS:30), E003 for KT (GRS:22) and
F004 for NP (GRS:24). Following the literature, design choices
and hyperparameter tuning is done experimentally on the aver-
aged cross-validation test data. Contra-Sformer is implemented
with PyTorch and trained on an NVIDIA RTX A6000 GPU.

C. Comparison With the State-of-The-Art

SCC results, alongside a comparison with state-of-the-art
methods (for GRS score regression in JIGSAWS), for each task
and all three cross-validation schemes are listed in Table I. Over-
all, Contra-Sformer achieves competitive performance, out-
performing the state-of-the-art on KT 4-Fold and SU LOSO,
achieving SCC of 0.87 and 0.86 respectively. Contra-Sformer,
along with the highest-performing video-based methods ViSA
and C3D-MTL-VF, surpass MultiPath-VTPE [2] that utilizes
both video and kinematic information in almost all tasks and
schemes. Core+Gart does not report LOSO and LOUO results
and was evaluated only on a random 4-Fold scheme. Since
a full comparison is not possible, comparing on the random
4-Fold setup, Contra-Sformer performs better on KT, while
CoRe+GART performs better on the other tasks.

From the SCC values in Table I Contra-Sformer has com-
parable performance with the state-of-the-art methods, ViSA
and C3D-MTL-VF, with ViSA showing better performance in
LOUO, considered the most challenging setup [14]. However,
SCC has limitations as a metric for regression accuracy (see
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Section III.D), especially in small evaluation sets and does not
provide any information on the prediction error. Therefore, we
evaluate our method using the MAE metric in addition to SCC
and compare it with ViSA in Table I (see details in Section III.D).

D. Performance Metrics Analysis

SCC is the widely used evaluation metric in the JIGSAWS
GRS score regression task. Although its efficiency is unques-
tioned, it only evaluates the rank of the predicted scores, without
any information on the actual prediction error. Subsequently, a
high SCC is not necessarily accompanied by a small prediction
error, particularly in small test sets. For example, in a validation
set with 2 videos with ground truth of 22 and 15 and predictions
of 16 and 8 respectively, SCC would result in “1,” while the
prediction is actually poor.

To this end, we report MAE per task and cross-validation
scheme (averaged on all folds and runs) together with the stan-
dard deviation (SD) of MAE values computed on the different
folds for 5 different runs. We believe that such error analysis
(on the prediction error) should complement the SCC in the
evaluation of methods for GRS score estimation in the JIGSAWS
dataset.

Results are presented in Table I. The MAE range is 1.39–3.21
and considering the range (6-30) of the GRS scores, corre-
sponds to 5.8%–13.4% Normalized MAE (NMAE), calculated
by NMAE = MAE

range(GRS) · 100%. The slightly increased SD
on LOUO is attributed to the unbalanced dataset (see III.A),
where in some folds the training set contains only one user of
the same expertise level. Also, LOUO has the smallest validation
set (2-5 videos) and thus is more prone to show higher SD. Also,
observing MAE and the SCC values from Table I, it is clear that
a high SCC does not always correspond to a low prediction error
and vice versa. Overall Contra-Sformer has small prediction
errors (MAE: 1.39-2.10) in all GRS score ranges in KT. The
error slightly increases in high GRS score ranges in SU (MAE:
2.39-3.85), and NP (MAE: 3.15-3.21). This is attributed to the
small number of samples with high GRS scores in SU, and the
small NP dataset.

Contra-Sformer outperforms ViSA, on all evaluation schemes
of the KT task, by 18.98%, 30.85%, and 19.23% on LOSO,
LOUO, and 4-Fold respectively. Contra-Sformer also achieves
better LOUO performance in the SU, which is promising and
indicates good generalization to unseen surgeons. ViSA has
better performance in NP. Contra-Sformer performance in NP is
mostly attributed to the smaller size of the NP dataset, compared
to SU and KT (28, 39, and 36 respectively).

E. Ablation Studies

We validate: 1) the key design components of Contra-Sformer,
and 2) the selection of the reference video, with ablation experi-
ments on the most challenging (SU) of the three JIGSAWS tasks.
We use the same set of hyperparameters as the ones used for
our main experiment, since the performance overall remained
consistent with different hyperparameters.

1) Contra-Sformer Design Components: The effectiveness
of key design components in Contra-Sformer is studied with

TABLE II
SCC RESULTS ON SU TASK IN ABLATION EXPERIMENTS

the following configurations: (i) We replace our TCN with the
MS-TCN [23], using 10 layers and 64 feature maps, follow-
ing [8]. As the original MS-TCN has been implemented for
gesture recognition, we adapt it for the skill assessment task.
Thus, we use two stages, as we observed degradation in the
performance with more. The number of feature maps in the last
convolutional layer is set to 16 in order to match the hidden
dimensionality of the multi-head attention block; (ii) To test
the benefit of contrastive regression, we regress the final GRS
score directly from the input video without contrasting it with
the reference. After the TCN stage, we use temporal average
pooling followed by a fully connected layer to predict the final
score; (iii) To validate the similarity/deviation modeling with
the multi-head attention block, we combine the feature matrices
of the input and the reference with simple concatenation (as
in [15]); (iv) To further test the ability of our TCN to model
temporal cues, we replace it with a 1D point-wise convolution
layer and a max pooling layer to reduce feature and temporal
dimensions. Results from the ablation studies are presented in
Table II.

The performance in LOSO and 4-Fold is comparable for
the MS-TCN and our TCN. However, in LOUO, the accuracy
doubled when using our TCN. The results from ablation (ii) also
show the benefit of contrastive regression, as regressing the score
directly from an input video significantly reduces performance,
with the decrease being more prominent in the LOUO setup.
That is expected as no inter-video features are generated to
model the subtle variations across different executions. Simple
concatenation (ablation (iii)) does not allow the generation of
rich inter-video features leading to reduced performance in all
setups. This highlights the success of the multi-head attention
block in modeling the similarity between input and reference
execution, which contributes to the score prediction. Ablation
(iv) shows lower performance when our TCN is replaced by
a simpler 1D convolution module, proving the ability of our
TCN to model temporal cues effectively. Also, the comparison
between ablation (i) and (iv), suggests that temporal pooling
layers are important for performance improvement in skill score
estimation tasks, as they help in summarizing temporal infor-
mation that could potentially represent groups of actions that
constitute different aspects of skills. Comparing ablation (ii)
and (iii) suggests that contrastive regression is beneficial only
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Fig. 3. Deviation of a test video with respect to the gold-standard reference video. High deviation corresponds to low similarity. Error annotations: (1) Out
of view, (2) Erroneous gesture G2 (positioning the tip of the needle), (3) Erroneous gesture G3 (pushing needle through the tissue), (4) Erroneous gesture G4
(transferring needle from left to right), (5) Multiple attempts, (6) Erroneous gesture G6 (pulling suture with left hand), (7) Wrong positioning, (8) Not moving
along the curve; (a) Annotations (i) and (ii) show instances of poor suture thread handling and multiple attempts to tie the knot (00min16 s) and grasp the thread
(00min38 s). (b) Example where the test video’s GRS score is very close to the highest. Multiple attempts to grab the suture (00min08 s) and difficulty in securing
the knot (00min15 s). (c) The generation of this plot is shown in the supplementary material video. (d) NP execution. (e) SU execution. (f) Example with high
prediction error.

when the two signals (input test and reference) are fused in a
more sophisticated method (e.g., multi-head attention) instead
of concatenation. Overall, the ablation studies justify the Contra-
Sformer architecture, as it improves performance in LOUO, the
most challenging evaluation scheme [14].

2) Selection of Reference Video: To highlight the importance
of selecting the trial with the highest GRS score as reference,
we compare performance using different references. Table II
lists results from two experiments: one with an intermediate
score (I003, GRS = 17), and one with the lowest score (D004,
GRS = 8) in SU as references.

Performance under LOUO decreases significantly (almost by
half) with the intermediate and lowest scores as reference, while
a smaller drop also occurs in LOSO. Evidently, Contra-Sformer
can regress to values higher/lower than the reference video
(Δs can be positive or negative depending on the reference
score), with close performance in LOSO and 4-Fold, but
robust GRS estimation across all schemes is only achieved
when the highest GRS score is used as the reference. The
underlying reason is that in JIGSAWS tasks, the sequence and
execution of the surgical gestures comprising the task and the
overall result should look fairly similar (high similarity/small
deviation) across executions with high scores. Lower GRS
scores are attributed to sub-optimal performance of surgical
gestures. Our results also show that it is more efficient for the
network to learn similarities/deviations of an input test video
with the highest/lowest GRS score rather than a case with an
intermediate score. Finally, although the best performance is
achieved with the highest reference score, GRS scores close to
the reference, tend to be underestimated in the SU task.

F. Visualizing the Deviation

To provide further insight into the contrastive regression
mechanism and quantitatively validate the feature-generation
approach, we extract and visualize as timeseries the attention
weights of the contrastive inter-video features (main features
contributing to the regression task) generated from the multi-
head attention block. Weights are averaged across all heads
resulting in a T (4) × T (4) attention weight matrix that cor-
responds to the temporal dimensions of the current and refer-
ence videos. We average the weights across the second dimen-
sion (which corresponds to the reference video), and obtain a

T (4) × 1 array, which is then re-scaled (with nearest-neighbor
interpolation) to match the initial temporal resolution of the
execution. From this, we obtain averaged attention weights for
each time point (i.e., frame) in the current video. The weights
represent skill-similarity between the two videos, thus inverse
weights represent skill-deviation (high value corresponds to high
deviation). In Fig. 3 we plot the deviation of the input with
respect to the reference for two cases from each task.

In [21], procedural and executional error annotations are
provided at gesture level, for SU and NP in JIGSAWS. Pro-
cedural errors are defined as any deviation from an ideal se-
quence of surgical gestures, and executional errors are defined
as poor/failed manipulation of gestures within the task (e.g.,
needle drop, multiple attempts). Procedural errors are anno-
tated as unnecessary/problematic gestures and executional errors
with the description of the error characterising the gesture. In
Fig. 3(c)–(f), red areas represent gesture errors. Almost all high
deviation moments (peaks) in Fig. 3(c)–(e), are located inside
error areas, indicating that features learned by Contra-Sformer
can successfully capture sub-optimal execution, contributing
to distinguishing the relative performance of the test video.
Fig. 3(f) shows a less accurate example (prediction error of
7.81). For KT, we annotated the instances in the input video
where sub-optimal actions clearly occur (these can be visually
verified).

IV. CONCLUSION

A novel contrastive regression Transformer framework,
Contra-Sformer, for automated skill assessment in RMIS is
proposed. Instead of directly regressing the GRS score, we for-
mulate the regression task based on the skill-similarity/deviation
of the test videos compared to a gold-standard reference, selected
as the execution with the highest GRS score per task. A feature
extractor block integrating ResNet-18 and an enhanced TCN,
generates spatio-temporal features, encompassing fine-grained
action/gesture information. The similarity between the two fea-
ture matrices is modeled with self-attention using a multi-head
attention block.

We validate Contra-Sformer on JIGSAWS and report compet-
itive results on all three surgical tasks and experimental setups.
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Our method outperforms the state-of-the-art on LOSO and 4-
Fold experiments on the SCC metric and achieves normalized
mean absolute error between 5.8%–13.4% across tasks and
experimental setups. Contra-Sformer can also capture the differ-
ences between test and reference video in delicate and complex
surgical gestures (i.e., SU task) and thanks to the contrastive
regression mechanism estimates the GRS score with small pre-
diction error. Ablation studies highlight the benefits and justify
our contrastive regression approach and Contra-Sformer archi-
tecture (TCN, multi-head attention block). When optimized,
Contra-Sformer generates features that faithfully represent the
similarity/deviation between the two executions and encode
information indicative of sub-optimal execution/errors, without
requiring explicit error annotations. This is validated against
manual error annotations from [21], and can be exploited for pro-
viding targeted feedback and real-time assessment to trainees.

Conceptually, Contra-Sformer is directly applicable to real
surgical data (after re-training and hyperparameter search), with
skill score and surgical gesture annotations available (similar to
JIGSAWS). Since real surgical data consist of scenes with blood
and tissue that can be deforming in time, different anatomies
and light conditions across different executions, as well as
non-constant field of view (as the surgical camera moves),
appropriate data augmentations (e.g. cropping, scaling, flipping
and color/contrast transformations), should be considered. Ad-
ditionally, surgical procedures consist of sequences of different
phases (e.g., dissection phase, suturing phase, anastomosis),
further divided into individual tasks. It is expected that focused
Contra-Sformer models would be developed for each phase/task
separately. Contra-Sformer represents a novel approach for au-
tomated surgical skill assessment by constructing a score regres-
sion task on the basis of the comparison (similarity/deviation)
between a test execution against a gold-standard one. This
formulation offers the advantage of generating both intra-video
features, that can vary across different surgical datasets, and
inter-video features (input test and reference video) to support
the regression task.
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