3D Human Skeleton Data Compression

for Action

Recognition

Sheng Li, Tingting Jiang®, Yonghong Tian, Tiejun Huang
NELVT, Department of Computer Science, Peking University, China

Abstract—Skeleton-based action recognition continues to open
up new application scenarios with the popularity of acquisition
devices. This also leads to a rapid increase in the amount
of human skeleton data. Currently, there is no skeleton data
compression algorithm for the task of action recognition. In
order to solve this problem, we propose the first skeleton data
compression algorithm, which can compress the skeleton data
stream to a small bandwidth while keeping the accuracy of
action recognition as high as possible. The proposed compression
algorithm is called Motion-based Joints Selection (MJS). It
performs compression based on the amount of movement of
different joints. In addition, we also explored the combination of
MJS and existing lossless compression methods, and found the
most suitable one. In the end, we verify that our compression
method MJS can achieve promising results on the large dataset
NTU-RGB+D.

Index Terms—Human Skeleton Data, Data Compression, Ac-
tion Recognition

I. INTRODUCTION

Human pose, also known as skeleton, can be used as a kind
of data modality for action recognition. Skeleton-based action
analysis is more efficient and less noisy than video-based
action analysis. In general, the ‘skeleton data’ mentioned is
a skeleton sequence. As shown in Figure 1 (a), skeleton data
is essentially a matrix with size of Tvme x Joint.

Advances in acquisition technology have greatly widened
the use of 3D skeleton-based action recognition. Such as,
sports guidance, autopilot, mobile robots, HCI (Human-
Computer Interaction) and surveillance. With the popularity
of depth cameras, the acquisition of human skeleton data
is becoming more and more convenient. Sensors such as
Microsoft Kinect [1] and Intel RealSense [2] have entered
the daily lives of many people. And some long distance
depth cameras are being installed in smart cars and security
systems. This has led to a very rapid increase in the amount
of human skeleton data. On the other hand, with the popu-
larity of network infrastructure and the development of cloud
computing. The demand for skeleton data transmission is also
increasing. Especially in the Internet of Things era, sensors
are only responsible for data collection and transmission, and
the analysis is done by the cloud. For example, in a crowded
large event with 10,000 people, 5 cameras may produce 50,000
samples of skeleton sequences. If each sample has 25 joint

* Corresponding author. This work was partially supported by National Ba-
sic Research Program of China (973 Program) under contract 2015CB351803
and the Natural Science Foundation of China under contracts 61572042,
61527804. We acknowledge the high-performance computing platform of
Peking University for providing computational resources.

Skeleton
Data

Original o
[Skeleton L ¢
Data I S |

H

Compression
Module

Action
Recognition
Model

keleton
Datain
Storage

Time

Output

(1
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| . |
| Time |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| !

(a) (b)

Fig. 1. (a) shows the form of skeleton data in the real world and in computer
memory. In (b), the compression module is our proposed compression
algorithm. It shows the stage where the compression algorithm (compression
module) works.

points of 25 frames per second, the amount of data generated
is up to 3000 Mbit/sec. Through this example, it can be seen
that in a crowded scene, skeleton data may put great pressure
on network transmission. Therefore, we have to consider the
compression problem of the skeleton data. This is what we
are trying to solve.

Skeleton data has certain similarities with point cloud data,
both of which are floating point numbers and exist in three-
dimensional space. It must be said that compared to the
skeleton data, the amount of data in the point cloud is much
more. So the compression requirements of point cloud data
have appeared since a long time ago. Unfortunately, although
the point cloud compression algorithm has been greatly devel-
oped, it is not suitable for skeleton data compression. Because
the point cloud compression algorithm is designed for dense
points. For example, the B-spline [3] method can represent
a type of methods, which keep more points in the location
with greater curvature to preserve detail. For human skeleton
data with sparse joint points, this method is not applicable.
On the other hand, the purpose of our compression is not to
reconstruct data, but to satisfy action recognition.

To the best of our knowledge, there is currently no skeleton
data compression algorithm dedicated for action recognition.
There is not even a general compression algorithm designed
for human skeleton data. For skeleton action recognition,
not every joint point is critical to the discrimination. This

Time

Calculating
Motion Score

Joint

D 1

oogC
I:I O

Skeleton Data

.+
o* D !

(a)

~
o
~

IZI
I:]

Topl Top2
0-0-0
Sort
&
|:| Select
IZ]
Motiongcore:‘ . .
(e (d)

Fig. 2. The key steps of the MJS algorithm. (a) is the original skeleton data. In the step (b), the motion flow of the skeleton data is calculated, and the
motion intensity of each joint is calculated, that is, Motion Score. (c) is the Motion Score for each joint point. In the step (d), the top K joints are selected

according to the score, and their joint ID numbers are recorded.

is similar to human perception of action. When we judge a
person’s action, it is not necessary to see all the joints of this
person. For example, for the action of clapping, as long as
we see the trajectory of the joints (hands), we can make a
judgment. At this point we don’t care where the joint of the
head is. Psychological experiments [4] have also confirmed
this. Many methods of skeleton-based action recognition take
advantage of this and introduce many techniques such as
attention mechanism [5, 6] and part-aware mechanism [7] to
exploit them. We are applying such a ‘selection mechanism’
to the compression of skeleton data in action recognition.
We propose a novel and efficient skeleton data compression
algorithm for action recognition which is called Motion-based
Joints Selection (MJS). The method is based on a selection
strategy. In addition, we have designed a dedicated serializa-
tion method to ensure that the processed data can be well
combined with the lossless compression algorithms. The stage
of the compression process in the skeleton action recognition
is shown in Figure 1 (b). By the way, our approach is also
compatible with existing skeleton action recognition models.
We evaluated our approach with multiple metrics on the large
dataset NTU-RGB+D [7] and it performs very well.

The rest of the paper is organized as follows. In Section II,
we introduce the proposed method. In Section III, experimen-
tal results of our method is described in detail. In Section IV,
we draw a conclusion and clarify the future work.

II. METHOD

This section contains two parts. The first part is the method
we propose, and the second part is the combination of our
method and lossless compression algorithms.

A. Motion-based Joints Selection

The skeleton data of a person at time step t can be denoted
as X, = {X}, X2, ..., X/, .., X/} where X] refers to the
coordinate value of the joint j at time ¢ and .J is the number of
joints. For a complete skeleton sequence, it can be formulated
as X = {X1, Xo, ..., Xy, ..., X7} € RTXCXJ where T is the
number of frames in the sequence and C is the dimensionality
of the coordinate space. For 3D skeleton data, C' = 3.

Figure 2 (a) is the skeleton data after omitting the channel
dimension. In general, joints with a large amplitude of motion
have a great impact on the discrimination of action. Our
compression algorithm takes advantage of this. This is Motion-
based Joints Selection (MJS). The first step is the calculation
of the motion of each joint. The skeleton motion is defined as
the temporal difference of each joint between two consecutive
frames as M; in Eq. (1).

My = X1 — Xy

= {Xt+1 thvXt+1 XtJ}

The motion of a skeleton data sequence can be written
as M, and M is {My, Ms,...., Mp_1}. Obviously, M €
R(T=DxCxJ Next, as shown in Figure 2 (b), we need to
calculate a motion score for each joint. For the score of joint
J we can record it as .S;. Its calculation is as in Eq. (2).

6]

2
X2, X7 —

C T-1

Si=Y_> Ml)

c=1 t=1

S represents the intensity of the motion amplitude of the joint
j. Finally, as shown in Figure 2 (d), the S; of all joint points
are sorted, and the top K joints with the largest S; value are
selected. These are the joints we want to keep. By adjusting
the value of K, we can easily control the compression ratio.
It should be noted that during the transmission, we need to
transmit the ID numbers corresponding to the K joints which
are used to distinguish different joints. This is crucial for the
‘recovery’ after the transmission.

After transmitting the compressed data, it cannot be directly
sent into the model but requires simple ‘recovery’. That is, the
K joint points that have been transmitted need to be placed at
the original position according to their ID numbers, and the
remaining (J — K) joint points are directly filled with 0. At
this point, the skeleton data with a lot of 0 can be directly
sent to the action recognition model to complete the analysis.
It should be noted that when training the model, it is necessary
to use the data compressed by the MJS algorithm. This will
ensure that the algorithm works best.

Top3

No.61 [2,3,0,4,1]
No.56 [2,0,3,1,4]
No.79 [3,2,1,4,0]
No.13 [0,3,2,4,1]
No.93 [3,4,0,1,2]
No.52 [2,1,4,3,0]
No.89 [3,0,4,2,1]
No.80 [3,2,0,1,4]
No.41 [1,3,4,2,0]
No.77 [3,1,4,2,0]
No.73 [3,1,2,4,0]
No.108 [4,3,2,1,0]
No.109 [4,3,2,0,1]
No.105 [4,2,3,0,1]
No.118 [4,0,1,3,2]
No.59 [2,0,4,1,3]
No.31 [1,2,0,4,3]
No.7 [0,2,1,4,3]
No.53 [2,1,4,0,3]
No.47 [1,4,0,2,3]
No.101 [4,1,0,2,3]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 B

Fig. 3. Compression ratio in different serialization modes. The horizontal axis
represents the compression ratio, and the vertical axis represents the different
dimensional order, where 0, 1, 2, 3, and 4 represent the dimensions of N, C,
T, J, and P, respectively.

B. Combination with lossless compression algorithms

After the skeleton data was compressesed by MIS algo-
rithm, we can continue to use the general lossless compression
algorithm to further improve the compression ratio. For expla-
nation, we extend the definition of X in the previous section.
The deep learning method has already dominated the skeleton-
based action recognition. There are numerous methods based
on RNN, CNN, and GNN in recent years. No matter which
deep learning model is adopted , when the model is used
to infer the action class of their samples, the data stream
can be regarded as a 5-dimensional tensor expanded from
3-dimensional X just mentioned in Section II-A. Here we
can record it as X’ € RN*XTXCxJxP For the extra two
dimensions, NV is the size of the batch size and P is the number
of people included in the sample.

Lossless compression algorithms have been developed over
forty years. DEFLATE (RFC1951) [8] has become one of the
most important algorithms and is widely used in applications
such as PNG, ZIP, GZIP, etc. Here, we combine MJS with the
DEFLATE algorithm. Serialization is the process of converting
a data object into a stream that can be transferred or stored.
Before the data is compressed by the DEFLATE algorithm,
it must be serialized. For a tensor form of data, by adjusting
the order of the dimensions, there are a variety of serialization
methods, such as X’ here. However, due to the limited size
of the sliding window in the DEFLATE algorithm, even if the
same raw data is used, there may be a significant difference
in compression effect due to the use of different serialization
methods. For the 5-dimensional X, even if serialized by
sequential scanning, there are 5!=120 ways. Through testing
on the NTU-RGB+D dataset, we found the best among the 120
ways. That is to serialize according to the dimensional order
of T —J — N — P — C. The results of all combinations are
shown in Figure 3. It can be seen that serialization according
to different dimensional order, the final compression ratio of
the DEFLATE algorithm is significantly different. The com-
pression ratio spans from 64.5% to 93.2%. The serialization
methods which rank the 7" dimension at the first one have a

very good compression ratio, which is also very reasonable.
Because if you put two adjacent frames together, for example
X inpe andXi ;. ., the probability that the two values
are exactly the same will be much higher. This is easier to

compress by the DEFLATE algorithm.

III. EXPERIMENT AND ANALYSIS

In this section, we will introduce the experiment, including
the two main parts of the experimental settings and experi-
mental results analysis.

A. Experimental Settings

To evaluate the effectiveness of the proposed method, we
performed experiments on the skeleton-based action recogni-
tion dataset. Because our compression algorithm is used for
action recognition, the change of final accuracy rate is a mea-
sure of the pros and cons of the algorithm, while the general
compression algorithm needs to pay attention to the error rate
after data recovery. The NTU-RGB+D [7] is currently the
most widely used skeleton-based action recognition dataset.
We choose cross-view (CV) protocol as the final evaluation
protocol here. Under this protocol, the training data comes
from cameras at view 2 and 3, while the data from cameras
with view 1 is used for testing.

For the convenience of description, A; and A, are intro-
duced here to indicate the action recognition accuracy and the
accuracy after MJS compression (the DEFLATE algorithm is
lossless and does not affect the accuracy). Dy, D5, and Ds
represent the amount of original data, the amount of data after
lossy compression (methods such as MJS), and the amount of
data after further lossless compression algorithm (DEFLATE).
a = A /A; indicates the retention of the accuracy after com-
pression. 81 = Do/D1, 2 = Ds/D; respectively represent
the ratio of the current data size to the original data size.

HCN [9] model is considered as the baseline for skeleton-
based action recognition which is a state-of-the-art CNN-
based model. It makes full use of CNN’s global modeling
ability in the channel dimension, and strengthens the model’s
global modeling ability for joint points by replacing the joint
dimension and the channel dimension. Although the model is
not open source, we have reimplemented it. And under the
CV protocol, the accuracy of the HCN model reached 91.1%
which is A; defined above.

B. Experiment analysis

One advantage of the MJS method is that the compression
ratio is very easy to control. Figure 4 shows the results of
our experiments in a comprehensive way. 100% represents the
original amount of data, where the yellow and blue rectangles
represent the 1 — B and (7 — s, respectively. The green
rectangle is the amount of data remained in the end that is S,.
For that dark blue curve, the vertical axis refers to the value
of . The horizontal axis refers to the number of joint points
retained in the MJS algorithm. This clearly shows the effect of
the MJS and DEFLATE algorithms on the compression ratio.
It can be found that when 11 joints are retained, « is 91.2% ,

MJS
0.6
mmmm DEFLATE
04 —ACC
02 I
,
3 7 11 15 19 25

Number of Joints Retained

Fig. 4. The relationship between the number of joints retained, the compres-
sion ratio, and the recognition accuracy. The yellow part is the amount of data
that is reduced by the MJS algorithm (1 — 7). The blue part is the amount
of data that is reduced by the DEFLATE algorithm (81 — 32). The green part
is left after two compressions(/32). The dark blue curve indicates the value of
«. The smaller the compression amplitude, the higher a.

but at this time the amount of data is reduced by 73.5%. It is
worth noting that when using the MJS algorithm to preserve
15 joint points, the accuracy of the model even exceeds the
state when it is not compressed. We think that this is mainly
because the compression process of the MJS algorithm can
reduce the noise of the data to a certain extent, which leads
to the performance improvement.

100
90
80
70

60

o (%)

——— MJS+DEFLACT
MIS
40 BIM
AE

50

30

20

2.00% 7.00% 12.00% 17.00%

Compression Ratio

22.00% 27.00% 32.00%

Fig. 5. The curves drawn by the values of « are different under several meth-
ods. In the case of the same compression ratio, the red one MIS+DEFLATE
has the highest a. For each method, as the compression ratio increases, the
value of « increases.

We also did a comparative experiment with other methods.
We have chosen the two basic methods for compression,
which are Autoencoder (AE) [10] and bidirectional linear
interpolation method (BIM) [11]. It can be seen from Figure
5 that the MIS+DEFLATE method has better final accuracy (
«) than these two at the same compression ratio. Even if the
MIJS algorithm is used alone, it still performs very well.

At the same time, we also compared the gain of DEFLATE
based on different methods. The comparison results are shown
in Figure 6. The results show that the MJS method has the best
compatibility with the DEFLATE algorithm. The compression

is most effective when the two are combined.

EFFECT AFTER USING DEFLATE

95
90

85 — 85.4— 002

80 792 T
&7 75.2 755
— —MJS
~N 70 03— o 5\0.5
Qms5 \ \655 - B
62.1 R AE
60 \ =
56.7.
55 S~—~as
50
4% 8% 12% 20% 40% 60% 100%

Compression Ratio

Fig. 6. Gain comparison after adding the DEFLATE algorithm. The horizontal
axis represents different compression ratios, and The vertical axis indicates
the D3 /D3 (less is better). The DEFLATE algorithm brings the most notable
gain to the MJS method. That is the combination of the two is more effective

than others.
CONCLUSION

In this paper, we proposed the method called MJS which
is the first compression algorithm for skeleton data in ac-
tion recognition. We also verified the effectiveness of the
proposed method on the NTU-RGB+D dataset. Under the
same compression ratio, The MJS algorithm has the excellent
performance compared to other methods. At the same time,
we also explored the combination of the MJS method and
the traditional lossless compression algorithm, and found an
effective way. Even so, we still have some work to do in the
future. For example, one of them is that in a multi-person
scenario, how to use the redundant information of different
people to further improve the compression ratio.

REFERENCES

[1] Zhengyou Zhang. Microsoft Kinect sensor and its effect. [EEE
Multimedia, 19(2):4-10, 2012.

[2] Leonid Keselman, John Iselin Woodfill, Anders Grunnet-Jepsen, and
Achintya Bhowmik. Intel RealSense stereoscopic depth cameras. arXiv
preprint arXiv:1705.05548, 2017.

[3] Eric Saux and Marc Daniel. Data reduction of polygonal curves using
B-splines. Computer-aided design, 31(8):507-515, 1999.

[4] Gunnar Johansson. Visual perception of biological motion and a model
for its analysis. Perception & Psychophysics, 14(2):201-211, 1973.

[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N Gomez, Fukasz Kaiser, and Illia Polosukhin. Attention

is all you need. In Advances in neural information processing systems,

pages 5998-6008, 2017.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville,

Ruslan Salakhutdinov, Richard Zemel, and Yoshua Bengio. Show, attend

and tell: Neural image caption generation with visual attention. arXiv

preprint arXiv:1502.03044, 2015.

[71 Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang. NTU RGB+
D: A large scale dataset for 3D human activity analysis. In CVPR, pages
1010-1019, 2016.

[8] Peter Deutsch. Deflate compressed data format specification version 1.3.
Technical report, 1996.

[9] Chao Li, Qiaoyong Zhong, Di Xie, and Shiliang Pu. Co-occurrence

feature learning from skeleton data for action recognition and detection

with hierarchical aggregation. arXiv preprint arXiv:1804.06055, 2018.

Ian Goodfellow, Yoshua Bengio, Aaron Courville. Autoencoder Deep

Learning, volume 14, pages 499-504 ,2016

Steven Kay. Some results in linear interpolation theory [EEE Trans-

actions on Acoustics, Speech, and Signal Processing, volume 31, pages

746-749 ,1983

[6

—_

[10]

[11]

