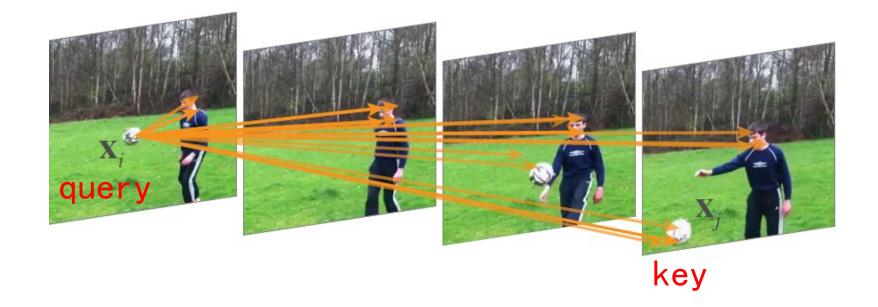
Disentangled Non-Local Networks

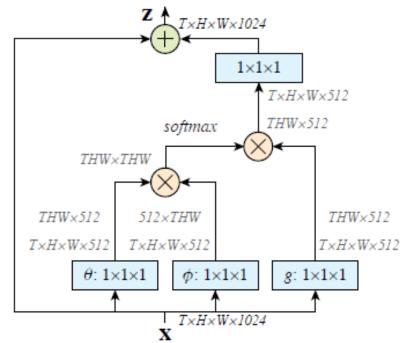
ECCV 2020

Minghao Yin^{1*}, Zhuliang Yao^{1,2*}, Yue Cao², Xiu Li¹, Zheng Zhang², Stephen Lin², and Han Hu²


¹ Tsinghua University
{yinmh17,yzl17}@mails.tsinghua.edu.cn li.xiu@sz.tsinghua.edu.cn
² Microsoft Research Asia
{yuecao,zhez,stevelin,hanhu}@microsoft.com

Introduction

- From Non-Local to Disentangled Non-Local
- Theoretical and Experimental Analysis
- Disentangled Non-Local Block and Experiments
- Comparisons with Self Attention, Pairwise Attention, Non-Local


Non-Local Block

- Sequential data Recurrent operations
- Image data Convolutional operations
- Computationally inefficient, optimization difficulties, multi-hop dependency modelling

Non-Local Block

$$y_{i} = \frac{1}{C(x)} \sum_{\forall j} f(x_{i}, x_{j}) g(x_{j})$$
$$z_{i} = W_{z} y_{i} + x_{i}$$
$$y_{i} = \frac{1}{\sum_{d} f(x_{d}, \hat{x}_{d})} g(\hat{x}_{d})$$

$$y_i = \frac{1}{C(\hat{x})} \sum_{\forall j} f(x_i, \hat{x}_j) g(\hat{x}_j)$$

$$f(x_i, x_j) = e^{\theta(x_i)^T \phi(x_j)}$$
$$\theta(x_i) = W_{\theta} x_i, \phi(x_j) = W_{\phi} x_j$$

$$C(x) = \sum_{\forall j} f(x_i, x_j)$$
$$g(x_j) = W_g x_j$$

From Non-Local to Entangled Non-Local

 $y_{i} = \frac{1}{C(x)} \sum_{\forall j} \frac{f(x_{i}, x_{j})g(x_{j})}{\downarrow}$ may encode unary information as well

a pixel may have its own independent impact on all other pixels

a whitened pairwise term accounts for impact of one pixel specifically on another pixel

a unary term influence of one pixel generally over all pixels

Dividing Non-local Block

$$y_{i} = \sum_{j \in \Omega} \omega(x_{i}, x_{j}) g(x_{j})$$
$$\omega(x_{i}, x_{j}) = \sigma(q_{i}^{T} k_{j}) = \frac{\exp(q_{i}^{T} k_{j})}{\sum_{t \in \Omega} \exp(q_{i}^{T} k_{t})}$$
$$q_{i} = W_{q} x_{i}, k_{j} = W_{k} x_{j}$$

Special case

- query vector is a constant over all image pixels, a key pixel will have global impact on all query pixels
- non-local blocks frequently degenerate into a pure unary term in several image recognition tasks where each key pixel in the image has the same similarity with all query pixels

Pure pairwise term

$$\left(q_{i} - \mu_{q}\right)^{T} \left(k_{j} - \mu_{k}\right)$$
$$\mu_{q} = \frac{1}{|\Omega|} \sum_{i \in \Omega} q_{i}, \mu_{k} = \frac{1}{|\Omega|} \sum_{j \in \Omega} k_{j}$$

- averaged query and key embedding over all pixels
- a whitened dot product between key and query
- determined by maximizing the normalized differences between query and key pixels

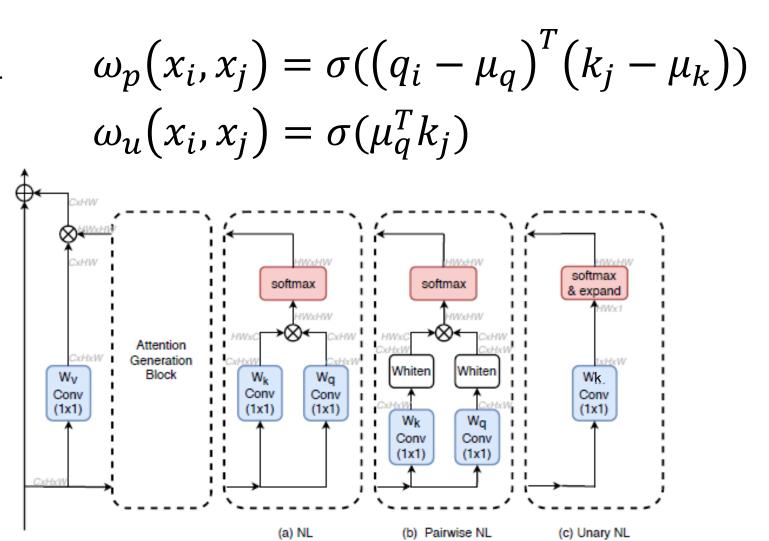
$$(q_i - \mu_q)^T (k_j - \mu_k)$$
$$\mu_q = \frac{1}{|\Omega|} \sum_{i \in \Omega} q_i, \mu_k = \frac{1}{|\Omega|} \sum_{j \in \Omega} k_j$$

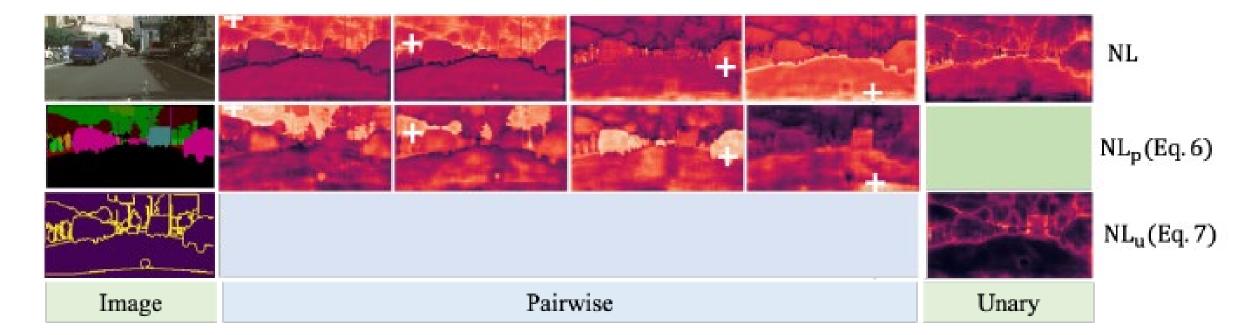
Proposition 1: $\alpha^* = \frac{1}{|\Omega|} \sum_{i \in \Omega} \mathbf{q}_i, \ \beta^* = \frac{1}{|\Omega|} \sum_{m \in \Omega} \mathbf{k}_m$ is the optimal solution of the following optimization objective:

$$\arg\max_{\alpha,\beta} \quad \frac{\sum_{i,m,n\in\Omega} \left((\mathbf{q}_{i}-\alpha)^{T} (\mathbf{k}_{m}-\beta) - (\mathbf{q}_{i}-\alpha)^{T} (\mathbf{k}_{n}-\beta) \right)^{2}}{\sum_{i\in\Omega} \left((\mathbf{q}_{i}-\alpha)^{T} (\mathbf{q}_{i}-\alpha) \right) \cdot \sum_{m,n\in\Omega} \left((\mathbf{k}_{m}-\mathbf{k}_{n})^{T} (\mathbf{k}_{m}-\mathbf{k}_{n}) \right)} + \frac{\sum_{m,i,j\in\Omega} \left((\mathbf{k}_{m}-\beta)^{T} (\mathbf{q}_{i}-\alpha) - (\mathbf{k}_{m}-\beta)^{T} (\mathbf{q}_{j}-\alpha) \right)^{2}}{\sum_{m\in\Omega} \left((\mathbf{k}_{m}-\beta)^{T} (\mathbf{k}_{m}-\beta) \right) \cdot \sum_{i,j\in\Omega} \left((\mathbf{q}_{i}-\mathbf{q}_{j})^{T} (\mathbf{q}_{i}-\mathbf{q}_{j}) \right)}$$
(3)

Proof sketch: The Hessian of the objective function O with respect to α and β is a non-positive definite matrix. The optimal α^* and β^* are thus the solutions of the following equations: $\frac{\partial O}{\partial \alpha} = 0$, $\frac{\partial O}{\partial \beta} = 0$. Solving this yields $\alpha^* = \frac{1}{|\Omega|} \sum_{i \in \Omega} \mathbf{q}_i$, $\beta^* = \frac{1}{|\Omega|} \sum_{m \in \Omega} \mathbf{k}_m$. Please see the appendix for a detailed proof.

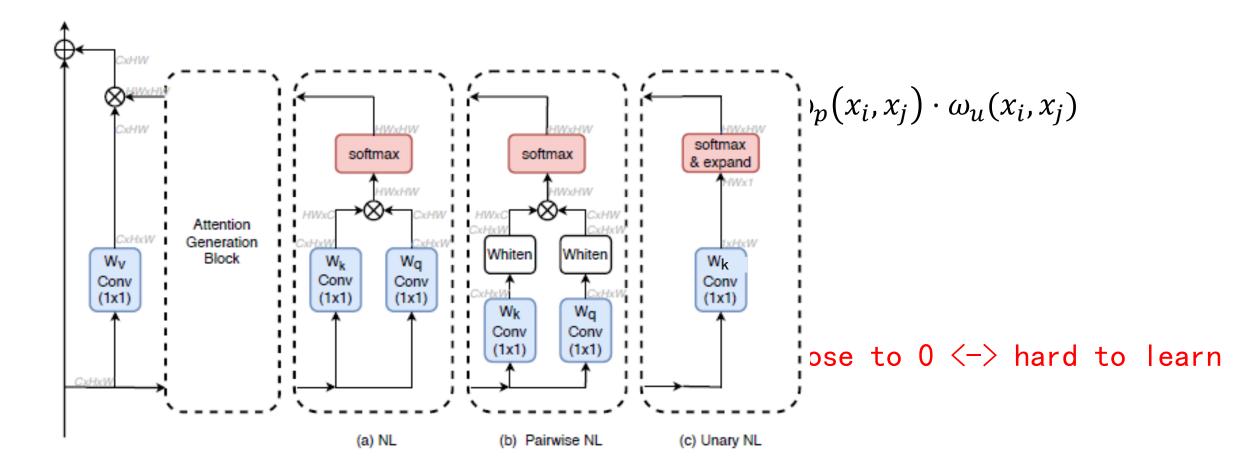
$$\omega(x_i, x_j) = \sigma(q_i^T k_j) = \frac{\exp(q_i^T k_j)}{\sum_{t \in \Omega} \exp(q_i^T k_t)}$$


$$q_i^T k_j = (q_i - \mu_q)^T (k_j - \mu_k) + \mu_q^T k_j + q_i^T \mu_k + \mu_q^T \mu_k \quad \text{can be}$$


$$\omega(x_i, x_j) = \sigma(q_i^T k_j) = \sigma((q_i - \mu_q)^T (k_j - \mu_k) + \mu_q^T k_j)$$

$$\text{pairwise} \quad \text{unary}$$

Expect to learn what?


Pariwise NL Unary NL

method	pair \cap within-category	pair \cap boundary	unary \cap boundary
random	0.259	0.132	0.135
pairwise NL (Eq. 6)	0.635	0.141	_
unary NL (Eq. 7)	-	-	0.460
NL (Eq. 2)	0.318	0.160	0.172
DNL^* (Eq. 13)	0.446	0.146	0.305
DNL^{\dagger} (Eq. 14)	0.679	0.137	0.657
DNL (Eq. 12)	0.759	0.130	0.696

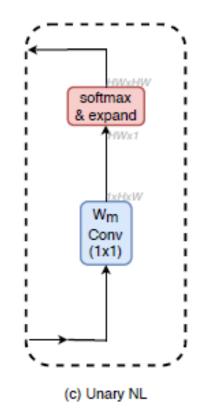
Why Non-Local **7**?

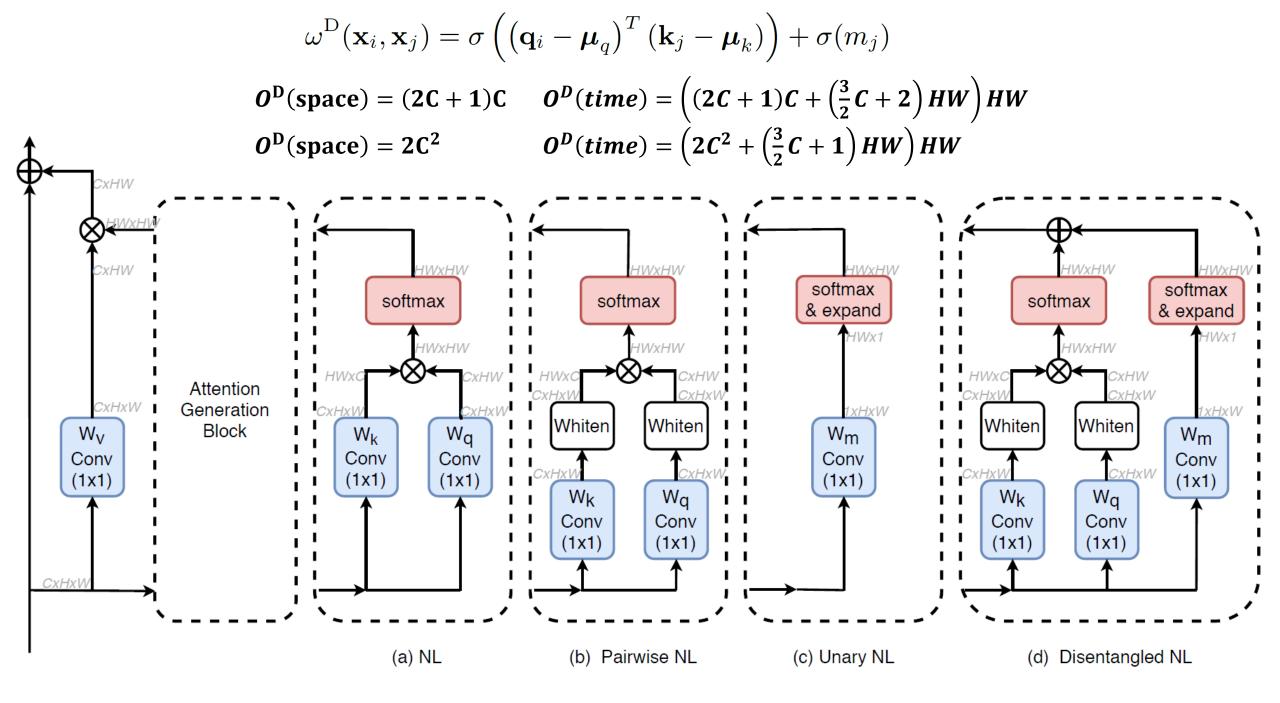
Modification

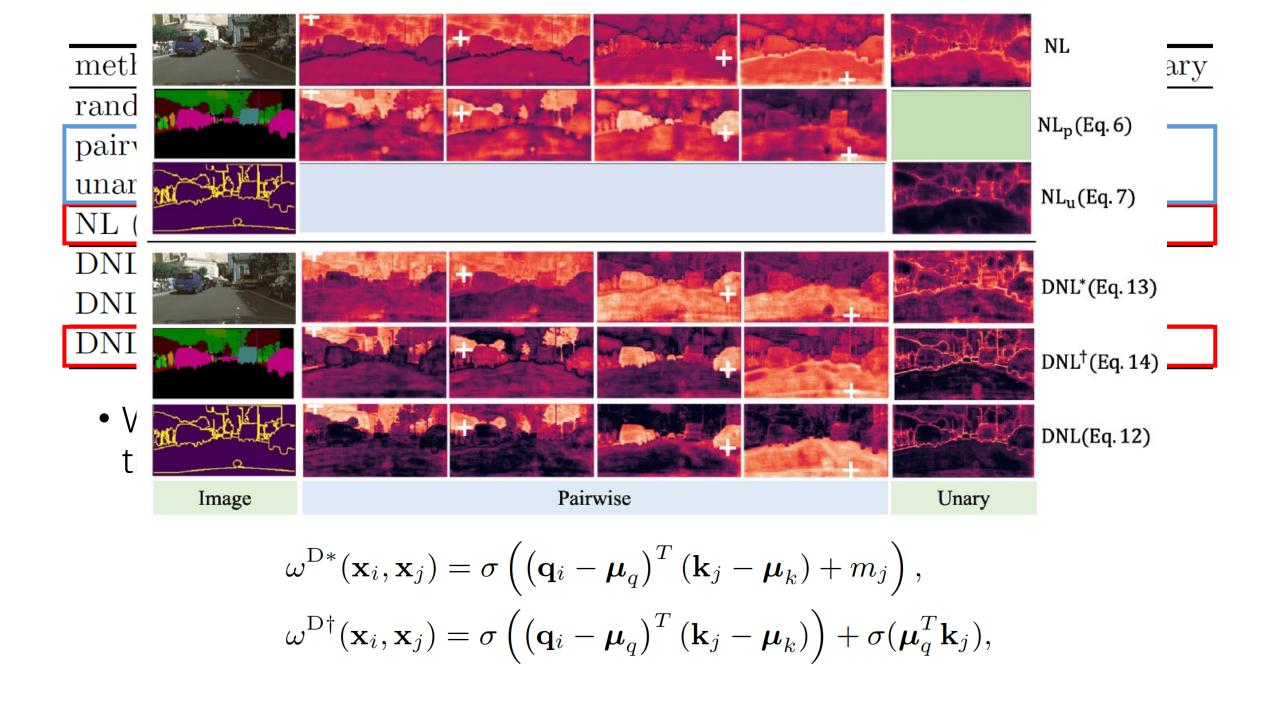
• Multiplication \rightarrow Addition

$$\omega(\mathbf{x}_i, \mathbf{x}_j) = \omega_{\mathrm{p}}(\mathbf{x}_i, \mathbf{x}_j) \cdot \omega_{\mathrm{u}}(\mathbf{x}_i, \mathbf{x}_j)$$

$$\Rightarrow \quad \omega(\mathbf{x}_i, \mathbf{x}_j) = \omega_{\mathrm{p}}(\mathbf{x}_i, \mathbf{x}_j) + \omega_{\mathrm{u}}(\mathbf{x}_i, \mathbf{x}_j)$$


$$\frac{\partial L}{\partial \sigma(\omega_{\mathrm{p}})} = \frac{\partial L}{\partial \sigma(\omega)}, \frac{\partial L}{\partial \sigma(\omega_{\mathrm{u}})} = \frac{\partial L}{\partial \sigma(\omega)}.$$


• Unary term \rightarrow independent linear transformation


$$\boldsymbol{\mu}_q^T \mathbf{k}_j = \boldsymbol{\mu}_q^T W_k \mathbf{x}_j \Rightarrow m_j = W_m \mathbf{x}_j.$$

• DNL formulation

$$\omega^{\mathrm{D}}(\mathbf{x}_{i}, \mathbf{x}_{j}) = \sigma \left(\left(\mathbf{q}_{i} - \boldsymbol{\mu}_{q} \right)^{T} \left(\mathbf{k}_{j} - \boldsymbol{\mu}_{k} \right) \right) + \sigma(m_{j})$$
$$\omega^{\mathrm{D}*}(\mathbf{x}_{i}, \mathbf{x}_{j}) = \sigma \left(\left(\mathbf{q}_{i} - \boldsymbol{\mu}_{q} \right)^{T} \left(\mathbf{k}_{j} - \boldsymbol{\mu}_{k} \right) + m_{j} \right),$$
$$\omega^{\mathrm{D}\dagger}(\mathbf{x}_{i}, \mathbf{x}_{j}) = \sigma \left(\left(\mathbf{q}_{i} - \boldsymbol{\mu}_{q} \right)^{T} \left(\mathbf{k}_{j} - \boldsymbol{\mu}_{k} \right) \right) + \sigma(\boldsymbol{\mu}_{q}^{T} \mathbf{k}_{j}),$$

Method	Backbone	ASPP	Coarse	mIoU (%)
PSANet [44]	ResNet-101			80.1
DANet 13	ResNet-101			81.5
HRNet 31	HRNetV2-W48			81.9
SeENet 29	ResNet-101			81.2
SPGNet 7	$\operatorname{ResNet-101}$			81.1
CCNet $\boxed{23}$	ResNet-101			81.4
ANN 47	ResNet-101			81.3
DenseASPP $[38]$	DenseNet-161	\checkmark		80.6
OCNet 39	ResNet-101			81.7
$\operatorname{ACFNet}[40]$	ResNet-101	\checkmark		81.8
PSPNet $[43]$	$\operatorname{ResNet-101}$			81.2
PSANet [44]	ResNet-101			81.4
DeepLabv3 5	ResNet-101	\checkmark		81.3
NL	ResNet-101			80.8
DNL (ours)	$\operatorname{ResNet-101}$		\checkmark	82.0
NL	HRNetV2-W48			82.5
DNL (ours)	$\mathrm{HRNetV2}$ -W48			83.0

Table 3. Comparisons with state-of-the-art approaches on the Cityscapes test set

(a) Decoupling strategy

(b) Pairwise and	l unary terms
------------------	---------------

	$\mathrm{mul} \to \mathrm{add}$	non-shared W_k	mIoU
Baseline	-	-	75.8
NL	×	×	78.5
$\mathrm{DNL}^{\dagger}(14)$	\checkmark	×	79.2
$DNL^*(13)$	×	\checkmark	79.0
DNL	\checkmark	\checkmark	80.5

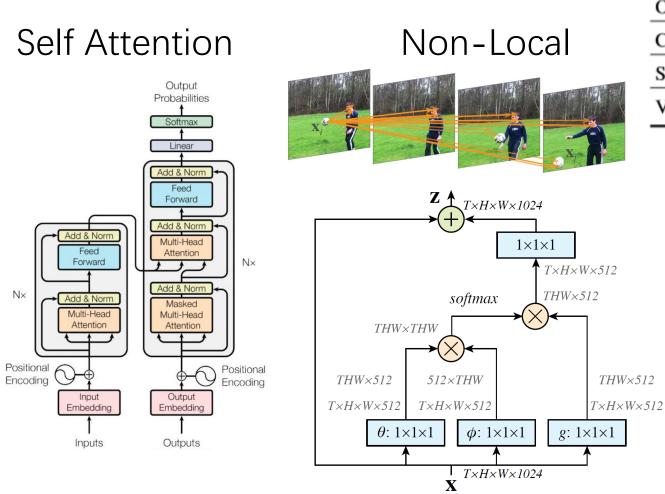
	pairwise term	unary term	mIoU
Baseline	-	-	75.8
NL	\checkmark	\checkmark	78.5
NL_p	\checkmark	×	77.5
NL_u	×	\checkmark	79.3
DNL	\checkmark	\checkmark	80.5

Table 4. Comparisons with state-of-the-art approaches on the validation set and testset of ADE20K, and test set of PASCAL-Context

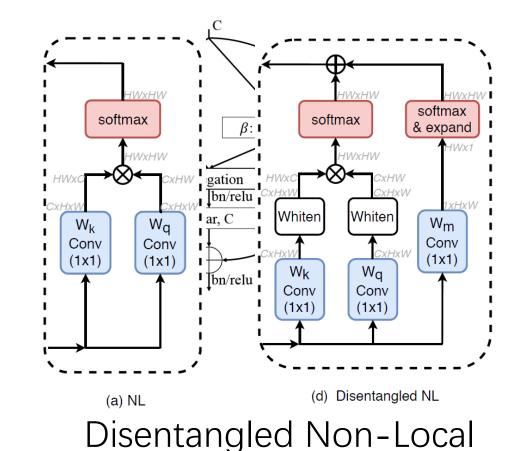
Mathad	Backbone	ADE20K		PASCAL-Context
Method		val mIoU (%)	test mIoU (%)	test mIoU (%)
PSANet [44]	ResNet-101	43.77	55.46	-
CCNet [23]	ResNet-101	45.22	-	-
OCNet 39	ResNet-101	45.45	-	-
SVCNet [11]	ResNet-101	-	-	53.2
EMANet 25	ResNet-101	-	-	53.1
HRNetV2 31	HRNetV2-W48	42.99	-	54.0
EncNet [41]	ResNet-101	44.65	55.67	52.6
DANet 13	ResNet-101	45.22	-	52.6
CFNet $\boxed{42}$	ResNet-101	44.89	-	54.0
ANN 47	ResNet-101	45.24	-	52.8
DMNet [17]	ResNet-101	45.50	-	54.4
ACNet 14	ResNet-101	45.90	55.84	54.1
NL	ResNet-101	44.67	55.58	50.6
DNL (ours)	ResNet-101	45.97	56.23	54.8
NL	HRNetV2-W48	44.82	55.60	54.2
DNL (ours)	HRNetV2-W48	45.82	55.98	55.3

 Table 5. Complexity comparisons

	# param(M)	FLOPs(G)	latency(s/img)
baseline	70.960	691.06	0.177
\mathbf{NL}	71.484	765.07	0.192
DNL	71.485	765.16	0.194


Table 7. Results based on Slow-only baseline using R50 as back-bone on Kinetics validation set

	Top-1 Acc	Top-5 Acc
baseline	74.94	91.90
NL	75.95	92.29
NL_p	76.01	92.28
NL_u	75.76	92.44
DNL	76.31	92.69



Comparisons

Pairwise Attention

Operation	Content adaptive	Channel adaptive
Convolution [19]	×	
Scalar attention [33, 35, 27, 13]		×
Vector attention (ours)	 Image: A start of the start of	 Image: A start of the start of

Comments

- Combination of theoretical analysis and experimental analysis
- Reasonable extension and modelling

Limitations

- Limited improvements
- Only improvement of Non-Local, not outside the framework
- "Long"-range not long enough

Thanks