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1 Introduction

Images may suffer from a variety of distortions during image acquisition, compres-
sion, transmission, display, etc. To monitor and improve the quality of images,
image quality assessment (IQA) becomes a fundamental technique for modern
multimedia systems. Since human is the end-user in most multimedia devices, the
most accurate image quality evaluation is achieved by subjective ratings. However,
subjective evaluation is difficult to carry out in real-time applications due to its draw-
backs of inconvenience, high price, and inefficiency. These drawbacks lead to the
need of efficient and effective objective IQA methods that can automatically predict
image quality. Objective IQA can be categorized into full-reference IQA (FR-IQA,
e.g., PSNR, MSSIM [27]), reduced-reference IQA (RR-IQA, e.g., FEDM [30]), and
no-reference IQA (NR-IQA, e.g., BRISQUE [17]). Due to the unavailability of the
reference images in most practical applications, NR-IQA is preferable but also more
challenging.

In this work, we focus on blur-specific NR-IQA. Blur is one of the most
common distortions and unintentional blur impairs image quality. Image blur
often occurs in the following situations: (1) out of focus, (2) object motion and
camera shake, (3) nonideal imaging systems, (4) atmospheric turbulence or aerosol
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scattering/absorption, and (5) image compression and image denoising [6, 9, 19].
Researches on blur-specific NR-IQA can bring new perspectives for related appli-
cations, e.g., autofocusing and image deblurring [12].

Various blur-specific NR-IQA methods have been proposed over the last two
decades. In 2009, Ferzli and Karam [6] summarized several traditional meth-
ods, most of which are designed for “autofocus” applications. In 2012, Vu and
Chandler [25] gave an overview and classified existing methods into edge-based
methods (based on measuring the edge spread), pixel-based methods (operated in
the spatial domain but with no assumption on edges), and transform-based methods
(operated in the spectral domain). Many novel blur-specific NR-IQA methods have
been recently developed, e.g., [7, 13–15, 29]. This work aims to give an overall
classification of existing methods and systematically introduces 18 representative
methods, especially the recently developed ones, so as to provide an integrated
and valuable reference for blur-specific NR-IQA research and help researchers keep
abreast of the recent progress.

Most existing methods only test their performance on Gaussian blur images. It
is thus unclear how these methods would behave in the presence of noise or in
more complex realistic situations. Stability and practicability are very important for
objective methods, so we conduct comparative experiments for 13 representative
methods with available codes on two sorts of images, including Gaussian blur
images from TID2013 [20] and realistic blur images from BID [4]. By comparing
the experimental results, we can see that most existing methods have satisfactory
performance on Gaussian blur images, but they fail to accurately estimate the image
quality of realistic blur images. Therefore, further study is needed in this field. At
last, we discuss the issues of realistic blur, on which practical blur-specific NR-IQA
methods focus.

The rest of this paper is organized as follows. In Sect. 2, existing blur-specific
NR-IQA methods are classified, and several representative methods are reviewed.
Then experimental settings, results, analysis, and discussions are presented in
Sect. 3. Finally, concluding remarks are made in Sect. 4.

2 Blur-Specific No-Reference Image Quality Assessment:
Classification and Review

Blur-specific NR-IQA methods based on traditional signal/image processing tech-
nologies have been investigated over 20 years. However, traditional signal process-
ing technologies cannot accurately express the diversity of blur process and the
complexity of human visual system (HVS), so researchers have turned to machine
learning technologies for estimating image quality of blur images. Though blur-
specific NR-IQA methods based on machine learning technologies have only been
studied in recent years, they are in a rapid growth. In terms of this natural fact, we
divide the existing blur-specific NR-IQA methods into two categories: learning-free
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Fig. 1 An overall classification of blur-specific no-reference image quality assessment methods,
including learning-free methods and learning-based methods. NSS is the abbreviation of “natural
scene statistics”

methods and learning-based methods. An overall classification is shown in Fig. 1,
where the representative methods in each category will be discussed in detail later.
It should be noted that, for Gaussian blur images, image sharpness can be used as
the synonym of image quality, while image blurriness can be used as the antonym
of image quality. In previous literatures, researchers mainly considered Gaussian
blur images; therefore, we not only review blur-specific NR-IQA methods but also
review both sharpness and blurriness estimators. However, we should also note that
the abovementioned relationships among quality, sharpness, and blurriness are not
necessarily true in realistic situations.

2.1 Learning-Free Methods

Among learning-free methods, some use the characteristics of blur in the spatial
domain (e.g., the spread of edges and the smoothing effects), while others further
use the characteristics of blur in the transform domain (e.g., the reduction of high-
frequency components and the loss of phase coherence). In this regard, learning-free
methods can be classified as transform-free methods and transform-based methods.

Transform-Free Methods

Transform-free methods only make use of the spatial information. They can be
further divided into edge-based methods and edge-free methods. The former makes
assumptions on edges while the latter does not.
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Edge-Based Methods

Given that blur affects the edge’s property (e.g., blur tends to make the edge spread),
a lot of blur-specific NR-IQA methods are developed based on analyzing the edges.
MDWE [16], JNB [6], CPBD [19], PSI [5], and EMBM [8] are the representative
edge-based methods.

A. MDWE

Marziliano et al. [16] proposed a blur-specific NR-IQA method, called MDWE,
based on measuring the average edge width. The basic assumption is that blur
makes the edges spread, so image blur can be directly estimated based on the edge
width. The framework of MDWE is shown in Fig. 2. First, the RGB color image
is transformed into the gray image. Then, the vertical Sobel filter is used as the
edge detector to find vertical edges in the image. Third, for each edge point, the
edge width is used as a local blur measure, where the edge width is measured by
the distance between the local maximum and minimum points closest to the edge

Fig. 2 The framework of MDWE, which is based on measuring the average edge width. The
bottom right part is an illustration of how to compute the edge width on one row of the image
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(along the horizontal direction). The bottom right part of Fig. 2 illustrates how to
compute the edge width. P ′

2 and P2 are the local maximum and minimum points
closest to the edge point P1, so P1’s edge width is |P ′

2P2|. Similarly, P3’s edge
width is |P ′

4P4|. Finally, the global blur measure is obtained by averaging the edge
width over all edge points. The smaller the global blur value is, the better image
quality is.

B. JNB

Ferzli and Karam [6] estimated image quality by integrating the concept of just
noticeable blur (JNB) and edge width into a probability summation model. Taking
the characteristics of HVS into account, JNB is proposed to deal with the failure
of estimating blur among images with different contents. It considers the minimum
amount of perceived blurriness at distinct contrast levels. JNB width is the minimum
edge width that people can perceive the blur, and subjective experiments were
performed to obtain the JNB width. The results showed that:

WJNB(C) =
{

5, C ≤ 50

3, C ≥ 51
(1)

where WJNB and C are the JNB width and the image contrast, respectively.
The probability P(ek) of detecting a blur distortion at edge ek is determined by

a psychometric function.

P(ek) = 1 − exp

(
− | W(ek)

WJNB(Cek
)

|β
)

(2)

where W(ek) is the measured edge width using MDWE [16], WJNB(Cek
) is the JNB

width defined in Eq. (1), and Cek
is the local contrast near the edge ek . β ranges

from 3.4 to 3.8, and it is simply fixed to its median value 3.6.
Adopting a probability summation hypothesis, the localized detection probabili-

ties over a region of interest R can be pooled as:

Pblur(R) = 1 −
∏
ek∈R

(1 − P(ek)) = 1 − exp(−D
β
R) (3)

where

DR =
⎛
⎝∑

ek∈R

| W(ek)

WJNB(Cek
)

|β
⎞
⎠

1
β

Considering the size of the foveal region, the image I is divided into blocks
with a block size of 64 × 64. The edge blocks are the blocks with more than 0.2%
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edge pixels. For each edge block Rb, the probability of detecting blur in Rb can be
computed by Eq. (3). Therefore, the probability of detecting blur in the image I is
given by:

Pblur(I ) = 1 −
∏

Rb∈I

(1 − Pblur(Rb)) = 1 − exp(−Dβ) (4)

where

D =
⎛
⎝ ∑

Rb∈I

| DRb
|β

⎞
⎠

1
β

(5)

Finally, the image quality score s is determined by:

s = L

D
(6)

where L is the total number of processed blocks and D is given by Eq. (5).

C. CPBD

JNB method [6] is based on the assumption that the blur impairment increases when
Pblur increases; however, it ignores that blur is not likely to be perceived when the
edge width is small enough (below the JNB width). When W(ek) equals WJNB(Cek

)

in Eq. (2), the probability of blur detection Pblur(ek) is the just noticeable blur
detection probability PJNB = 63%. That is, when the probability of blur detection
Pblur at edge ek is below PJNB = 63%, the blur is not likely to be detected. Based on
this assumption, Narvekar and Karam [19] used the concept of JNB together with a
cumulative probability of blur detection. The flowchart of CPBD is shown in Fig. 3a,
which is the same as JNB method except for the last pooling step. The last pooling
step in CPBD is obtained from the normalized histogram of the probability of blur
detection Pblur in the image, and the image quality score equals to the percentage of
edges whose blur cannot be detected, which can be calculated as:

CPBD = P(Pblur ≤ PJNB) =
PJNB∑

Pblur=0

P(Pblur) (7)

D. PSI

Feichtenhofer et al. [5] proposed a perceptual sharpness index (PSI) based on
the statistical analysis of local edge gradients. First, an adaptive edge selection
procedure based on a threshold and thinning process is applied to select the most
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Fig. 3 The flowcharts of CPBD and EMBM

significant edges in the image. Second, the edge widths of the selected edges
are computed by an improved edge width measurement based on diagonal edge
gradients. Third, according to the human perception of acutance, edge widths above
the JNB width are subtracted by the edge slopes. Finally, the local sharpness map is
deduced by applying the above three steps in a block-wise way. Since the sharpest
regions in an image are most related to human sharpness perception, the global
image quality score is determined by the highest Qth percentile average of the local
sharpness values.
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E. EMBM

Guan et al. [8] proposed a blur-specific NR-IQA method EMBM by integrating
the concept of edge modeling into JNB, where the edge is modeled as the step
function convolved with a Gaussian function. The flowchart of EMBM is shown in
Fig. 3b. There are some differences between EMBM and CPBD. First, unlike CPBD,
the parametric edge model in EMBM is used for edge description and detection,
from which the edge width and the local contrast for each edge can be computed
simultaneously. Second, all edges are depicted parametrically, so EMBM needs not
to be performed in a block-wise way. Third, EMBM only considers salient edges
(with large contrast) that grab most attention from human visual perception.

Edge-Free Methods

Operating in the spatial domain but with no assumption on edges, edge-free methods
are based on the intrinsic characteristics of the image, the comparison between
an image and its re-blurred version, or the comparison between pixels and their
adjacent pixels. SVC [21], BIBS [3], MLV [1], ARISMc [7], and CATV [2] are the
representative edge-free methods.

A. SVC

Sang et al. [21] observed that the singular values in the singular value curve (SVC)
decay exponentially, and they decay even faster with larger degree of blur. So the
degree of attenuation can be used to capture the image blur. Since the shape of
SVC closely resembles an inverse power function, Sang et al. fitted the singular
value curve by the equation y = x−q . After taking logarithms of the equation, the
fitting process can be achieved by linear regression. Denote the kth singular value
as sk, k = 1, 2, · · · , r , then the estimated q follows the formula:

q =
∑r

k=1 ln k ln 1
sk∑r

k=1 ln k ln k
(8)

Since the tails of the singular value curve are almost indistinguishable, they are
not helpful for the estimation of q. Therefore, in practice, the truncated sum is
considered:

q =
∑

sk>c ln k ln 1
sk∑

sk>c ln k ln k
(9)

where c is a threshold value and it is set to 50.
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J=I J=J(smax)
s = 0 s = smin s = smax

J=I*G(s)

J   I

Fig. 4 The re-blurred process of image I in BIBS. G(σ) is the 3 × 3 Gaussian blur kernel with
standard deviation σ

B. BIBS

Image quality can be measured in a “FR-like” fashion by comparing the blurred
image with its re-blurred version which is generated by applying a Gaussian filter.
This is based on the observation that the blurred image changes less than the pristine
image after the re-blurring process. Bong et al. [3] predicted blind image blur score
(BIBS) by applying a re-blurring process (see Fig. 4), where two specific states in
the re-blurring process are selected: the state (σ = σmin) that the re-blurred image
starts to change its pixel values, and the state (σ = σmax) that re-blurred image never
changes anymore. Then, image quality is measured based on the shape difference of
local histogram between the image and its re-blurred versions.

C. MLV and CATV

Bahrami and Kot [1] proposed a novel blur-specific NR-IQA method based on the
content-based weighting distribution of the maximum local variation (MLV). MLV
of a pixel Ii,j is defined as the maximum variation between the intensity of Ii,j with
respect to its 8-neighbor pixels:

ψ(Ii,j ) = max{| Ii,j − Ix,y | |x = i − 1, i, i + 1; y = j − 1, j, j + 1.} (10)

And the MLV map Ψ (I) of an image I is constructed by:

Ψ (I) =
⎛
⎜⎝

ψ(I1,1) · · · ψ(I1,N )
...

. . .
...

ψ(IM,1) · · · ψ(IM,N)

⎞
⎟⎠ (11)

where M and N are the numbers of row and column in the image I , respectively.
Since variations in the pixel values can be an indication of image quality, the

statistics of MLV distribution can be used for quality assessment. Bahrami and
Kot [1] modeled the MLV distribution by the generalized Gaussian distribution
(GGD), which is given by:
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f (Ψ (I);μ, γ, σ ) =

⎛
⎜⎜⎜⎜⎝

γ

2σΓ ( 1
γ
)

√
Γ ( 1

γ
)

Γ ( 3
γ

)

⎞
⎟⎟⎟⎟⎠ e

−

⎛
⎜⎜⎜⎝(

Ψ (I)−μ

σ

√√√√ Γ ( 1
γ )

Γ ( 3
γ )

⎞
⎟⎟⎟⎠

γ

(12)

where μ, σ , and γ are the mean, standard variation, and shape parameter, respec-
tively. Γ (·) is the Γ function. The estimated standard deviation σ is an indicator
of image blurriness, where σ increases by decreasing image blurriness. To take
the human sharpness perception into account, high variation regions should be
emphasized. This can be achieved by assigning higher weights to the larger MLV
pixels, which results in a weighted MLV map Ψw(I)

Ψw(I) =
⎛
⎜⎝

w1,1ψ(I1,1) · · · w1,Nψ(I1,N )
...

. . .
...

wM,1ψ(IM,1) · · · wM,Nψ(IM,N)

⎞
⎟⎠ (13)

where weight is defined as wi,j = eηi,j and ηi,j is the normalized rank (ranging
from 0 to 1) of ψ(Ii,j ) when Ψ (I) is sorted in ascending order.

Instead of considering the MLV distribution, later Bahrami and Kot [2] proposed
a content aware total variation (CATV) method by parameterizing the image total
variation (TV) distribution using GGD. Image quality is defined as the standard
deviation σ modified by the shape parameter γ to account for the image content
variation, i.e, image quality score s is given by:

s = σ

γ
1−γ

2

(14)

D. ARISMc

Gu et al. [7] proposed ARISMc to estimate image quality based on the analysis of
the locally estimated coefficients in the autoregressive (AR) parameter space. The
framework of the proposed ARISMc method is shown in Fig. 5.

To take chrominance information into account, the image is first transferred to
YIQ color space. Then, for each channel, the AR parameters at each pixel are
estimated based on an 8th-order AR model.

Since image blurring can increase the similarity of locally estimated AR param-
eters, image quality can be assessed by energy difference and contrast difference of
locally estimated AR parameters. The energy difference Ei,j and contrast difference
Ci,j of AR parameters at pixel (i, j) are given by:

Ei,j = | max
(x,y)∈Ωi,j

Wx,y − min
(x,y)∈Ωi,j

Wx,y |2 (15)
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Fig. 5 The framework of ARISMc

Ci,j = | max(x,y)∈Ωi,j
Wx,y − min(x,y)∈Ωi,j

Wx,y |2
max(x,y)∈Ωi,j

W 2
x,y + min(x,y)∈Ωi,j

W 2
x,y

(16)

where Ωi,j = {(x, y)|x ∈ [i − 1, i + 1], y ∈ [j − 1, j + 1], (x, y) �= (i, j)} and
{Wx,y, (x, y) ∈ Ωi,j } denotes the estimated AR parameters at pixel (i, j).

The contrast difference can be further modified into block-based version:

Cbb
u,v = 1

B

√ ∑
(i,j)∈Φu,v

Ci,j (17)

where Φu,v = {(i, j)|i ∈ [(u − 1)B, uB], j ∈ [(v − 1)B, vB]}, 1 ≤ u ≤
�M/B�, 1 ≤ v ≤ �N/B�, B is the block size and M and N are the row and column
of the image.

At percentile pooling stage, the largest Qk% values in the k(k ∈ {E,C,Cbb})
are averaged to obtain ρk . Then, the overall score for an image channel is given by a
weighted average of ρk(k ∈ {E,C,Cbb}). Finally, the ARISMc score for estimating
the image quality is given by a weighted average of the three overall scores in YIQ
channels.

Transform-Based Methods

In the transform domain, blur has some quality-relevant characteristics such as
the reduction of high-frequency components and the loss of phase coherence.
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Transform-based methods utilize wavelet transform or “Fourier-like” transform
(e.g., Fourier transform and cosine transform), so we categorize them into wavelet-
based methods and Fourier-like methods.

Wavelet Methods

A. FISHbb

Blur leads to the reduction of high-frequency components. Vu and Chandler [24]
proposed a fast wavelet-based method FISHbb by analyzing the energies of the
high-frequency coefficients. The image is broken into 16 × 16 blocks with 50%
overlapping in advance.

For each block, the DWT coefficients are obtained by Cohen-Daubechies-
Fauraue 9/7 filters with three levels of decomposition. The three high-frequency
sub-bands are denoted as SLHn, SHLn , and SHHn, (n = 1, 2, 3). Then, the overall
log energy at each DWT level is computed as the weighted average log energy of
the three high-frequency sub-bands, which is given by:

En = (1 − α)
ELHn + EHLn

2
+ αEHHn, α = 0.8. (18)

EXYn = log10

⎡
⎣1 + 1

MnNn

∑
i,j

S2
XYn

(i, j)

⎤
⎦ , XY ∈ {LH,HL,HH }. (19)

where Mn and Nn are the size of the nth sub-band.
Next, the overall sharpness score FISH of a block is given by the weighted sum

of the overall log energy in the three levels, which is obtained by:

FISH =
3∑

n=1

23−nEn (20)

Finally, a sharpness map is derived. And to consider the human sharpness
perception, the single FISHbb score is computed by the root mean square of the
1% largest values of the local sharpness map.

FISHbb =
√√√√ 1

K

K∑
k=1

FISH2
k (21)

where K denotes the number of blocks which received the 1% largest FISH scores
of the sharpness map and FISHk, k = 1, · · · ,K denote the FISH scores of these
blocks.
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B. LPC

Wang and Simoncelli [26] showed that step edges result in strong local phase coher-
ence (LPC) structures across scales and space in the complex wavelet transform
domain and blur causes the loss of such phase coherence. This gives a different
perspective for understanding blur perception. Following this idea, Hassen et al. [9]
proposed a blur-specific NR-IQA method based on the strength of the LPC near
edges and lines. Figure 6 shows a simple flowchart of LPC. First, the image is
passed through 3-scale 8-orientation log-Gabor filters, and the complex coefficient
at the ath scale, the bth orientation, and the kth spatial location is denoted as cabk .
Then the LPC strength at bth orientation and kth spatial location is computed by:

S
{b,k}
LPC = cos

(
3∑

a=1

waΦ{cabk}
)

= cos

(
Φ

{
3∏

a=1

c
wa

abk

})
=

R
{∏3

a=1 c
wa

abk

}
| ∏3

a=1 c
wa

abk | (22)

where Φ{·} and R{·} are the phase function and the real part of a complex number.
[w1, w2, w3] = [1,−3, 2] denotes the weights during LPC evaluation.

Then the LPC strength measure at all orientations and kth spatial location is
pooled by a weighted average. To give higher importance for the orientations with
more energy, the weights are determined by the magnitude of the first (finest) scale
coefficient c1bk . So the LPC strength measure at kth spatial location is given by:

Image passed through 3-
scale 8-orientation log-

Gabor filters

Compute LPC strength at
one orientation and one

spatial location

Compute LPC strength at
each spatial location

LPC score

Pooling

Fig. 6 A simple flowchart of LPC. It consists of three steps: computation of complex coefficients,
LPC strength calculation, and LPC strength pooling
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S
{k}
LPC =

∑8
b=1 |c1bk|S{b,k}

LPC∑M
b=1 |c1bk| + c0

(23)

where c0 = 2 is a constant to avoid instability when
∑M

b=1 |c1bk| is close to zero.

Finally, a spatial LPC map is obtained. Let S
{(k)}
LPC , k = 1, · · · ,K denote the

sorted LPC strength values in descending order such that S
{(1)}
LPC ≥ S

{(2)}
LPC ≥

· · · ≥ S
{(K)}
LPC . To emphasize the importance of the sharpest regions in human visual

perception, the overall image quality score SLPC is obtained by a weighted average,
where the weights are assigned based on the ranks of LPC values.

SLPC =
∑K

k=1 ukS
{(k)}
LPC∑K

k=1 uk

(24)

where uk is the weight assigned to the k-th ranked spatial LPC value and is
calculated by:

uk = exp

[
−

(
k − 1

K − 1

)
/βk

]
, βk = 1e − 4. (25)

Fourier-Like Methods

A. S3

Vu and Chandler [25] proposed a blur-specific NR-IQA method S3 based on the
combination of spectral and spatial measures. The flowchart of S3 is shown in
Fig. 7. According to the reduction of high-frequency components in blur images,
the spectral measure S1(x) of a block x is initially defined as the slope of the
local magnitude spectrum αx, then rectified by a sigmoid function to account for
HVS, i.e.,

S1(x) = 1 − 1

1 + eβ1(αx−β2)
, β1 = −3, β2 = 2. (26)

To further consider the contrast effect, the spatial measure S2(x) of a block x is
calculated based on the local total variation, which is given by:

S2(x) = 1

4
max
ξ∈x

TV(ξ) (27)

where ξ is a 2 × 2 block of x and TV(ξ) is the total variation of ξ .
Then, the overall sharpness map S3 of the image I is obtained by a geometric

mean of spectral and spatial measures in a block-wise way:
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S3(x) = √
S1(x)S2(x), x ∈ I. (28)

Finally, to consider the human sharpness perception, the overall sharpness score
is calculated as the average of the largest 1% values of the overall sharpness map.

B. BIBLE

Having observed that blur affects the moment energy, Li et al. [13] presented a
blind image blur evaluator (BIBLE) to assess image quality based on the variance-
normalized moment energy. The flowchart of BIBLE is shown in Fig. 8. The
gradient image is divided into equal-sized blocks, and the Tchebichef moments [18]
of all blocks are computed. Then the block’s energy is calculated by summing up
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the squared non-DC moments. Finally, image quality is measured by the variance-
normalized moment energy together with a visual saliency model to adapt to the
HVS characteristics.

2.2 Learning-Based Methods

Recently, researchers turn to machine learning technologies for blur-specific NR-
IQA. Learning-based methods comprise two steps: feature extraction and quality
prediction. The most important thing is to extract features that can reflect image
quality. Once it is done, quality prediction can be achieved by support vector
regression (SVR), neural network, probabilistic prediction model, etc. To emphasize
the importance of feature extraction, the learning-based methods are classified as
handcrafted feature-based methods and learnt feature-based methods.

Handcrafted Feature-Based Methods

Handcrafted features are generally extracted from the nature scene statistic (NSS)
models. Meanwhile, they can also be obtained by some NSS-free low-level image
features (e.g., contrast, brightness, etc.) So we divide the handcrafted feature-based
methods into NSS-based methods and NSS-free methods.

A Representative NSS-Based Method BIBE

It is assumed that natural scenes contain certain statistical properties that could
be altered by the existence of distortions. Therefore, by modeling the statistical
distributions of image coefficients, image quality can be estimated by deviations
of these statistics. Wang et al. [28] proposed a blur-specific NR-IQA method BIBE
based on the NSS of gradient distribution, where the flowchart of BIBE is shown in
Fig. 9. First, the blurred image is passed through the horizontal and vertical Prewitt
filters to get the gradient map. Then, the gradient-related distributions represented
by histograms are modeled using the generalized Gaussian distribution (GGD) or
asymmetric GGD. Finally, the NSS features (parameters of the models) are fed into
the extreme learning machine [10] to predict the image quality.
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Map

Gradient
Calculation

Histogram NSS models Extreme Learning
Machine

Gradient
Distribution

NSS
features

Final
Score

Fig. 9 The flowchart of BIBE
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A Representative NSS-Free Method RISE

Inspired by the multi-scale characteristics of HVS when perceiving visual scenes,
Li et al. [15] proposed a blur-specific NR-IQA method RISE based on multi-scale
features extracted in both the spatial and spectral domains. The flowchart of RISE
is shown in Fig. 10.

For an image I (x, y), the scale space L(x, y, σ ) can be first built by convoluting
it with a series of Gaussian filters G(x, y, σ ):

L(x, y, σ ) = I (x, y) ∗ G(x, y, σ ),G(x, y, σ ) = 1

2πσ 2
e−(x2+y2)/2σ 2

(29)

where σ is the scale and ∗ denotes the convolution.
Second, multi-scale gradient similarity maps GSk, k = 1, 2, 3, 4 can be obtained

by:

GSk = DkD0 + c1

D2
k + D2

0 + c1
(30)

where Dk is the gradient map of the k-th scale image (k = 1, 2, 3, 4), D0 is the
gradient map of the original image. c1 is a small constant to ensure numerical
stability.

The gradient similarity features are defined as:

f G
k = 1

MN

M∑
x=1

N∑
y=1

GSk(x, y), k = 1, 2, 3, 4 (31)

Gaussian Filters
Blurred
Image

Scale
Space
Images

Gradient
Computation

DCT-domain

Support Vector Machine
(SVR)

RISE score

M
ul

ti
-r

es
ol

ut
io

n
M

ulti-scale

Down-sampling Singular Value
Decomposition

Entropy
Gradient
Similarity

Singular Value
Similarity

Fig. 10 The flowchart of RISE



62 D. Li and T. Jiang

where M and N are the number of rows and columns in the image.
Third, multi-scale singular value similarity f S

k , k = 1, 2, 3, 4 is defined as:

f S
k = sT

k s0 + c2

s2
k + s2

0 + c2
(32)

where sk is the singular values of the k-th scale image (k = 1, 2, 3, 4) and s0 is
the singular values of the original image. c2 is a small constant to ensure numerical
stability.

To take the impact of the viewing distance into account, the blurred image is also
down-sampled to get multi-resolution images, and the DCT domain entropies of all
multi-resolution images are calculated as the third type of features.

Finally, all the three types of features are concatenated and fed into an SVR
model with RBF kernel to get the quality score.

Learnt Feature-Based Methods

Learnt feature-based methods utilize machine learning methods to learn powerful
features that can strongly reflect image quality. These methods can be divided into
two categories: shallow learning methods and deep learning methods, in terms of
whether features are extracted from shallow learning architectures or deep learning
architectures.

A Representative Shallow Learning Method SPARISH

Having observed that over-complete dictionaries learned from natural images can
capture edge patterns, Li et al. [14] proposed a blur-specific NR-IQA method
SPARISH based on the sparse representation. Figure 11 shows the flowchart of
SPARISH. An over-complete dictionary is learnt to construct a sparse coding model
for the image gradient blocks, then the variance-normalized block energy over
high-variance image blocks is used as the quality score, where the block energy
is obtained from the sparse coefficients.
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Fig. 11 The flowchart of SPARISH
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Fig. 12 The flowchart of Yu’s CNN. MLP is the abbreviation of multilayer perceptron, GRNN
indicates the general regression neural network and SVR means support vector regression

A Representative Deep Learning Method Yu’s CNN

Human visual mechanism is very complicated and cannot be accurately expressed
by shallow learning architectures. Recently, deep learning techniques have been
applied for general purpose IQA [11]. Yu et al. [29] made an attempt on applying
deep learning architectures to blur image quality assessment. The flowchart of Yu’s
CNN is shown in Fig. 12. The image patches pre-processed by the local contrast
normalization are passed through a convolutional layer, a down-sampling layer and
a fully connected layer to extract patch features and then the features are mapped
to patch quality scores by a regression model (MLP, GRNN or SVR). Finally, the
average of patch quality scores is used as the overall image quality score.

3 Experiments

3.1 Experimental Settings

Evaluated Methods

We choose the 13 representative methods with available codes for comparative
experiments, i.e., 6 transform-free methods (MDWE, CPBD, PSI, EMBM, MLV,
ARISMc), 4 transform-based methods (FISHbb, LPC, S3, BIBLE), 1 handcrafted
feature-based method RISE, and 2 learnt feature-based methods (SPARISH and Yu’s
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CNN). The quality prediction models for learning-based methods are trained on the
LIVE blur database [22].

Evaluation Criteria

Video Quality Experts Group (VQEG) [23] suggests to map the objective score o to
the subjective score s using a four-parameter logistic function:

F(o) = τ1 − τ2

1 + e
o−τ3
τ4

+ τ2 (33)

where τ1, τ2, τ3, and τ4 are free parameters to be determined during the nonlinear
mapping process, with initial values as τ1 = max(s), τ2 = min(s), τ3 = mean(o),
and τ4 = std(o)/4.

Three evaluation criteria are chosen to evaluate the method’s performance:
Spearman’s rank-order correlation coefficient (SRCC), Pearson’s linear correlation
coefficient (PLCC), and root-mean-square error (RMSE). SRCC indicates how
well the relationship between subjective and objective scores can be described
using a monotonic function. PLCC is a measure of the linear correlation between
the subjective and objective scores after the nonlinear mapping. RMSE is used
to measure the differences between the subjective and objective scores after the
nonlinear mapping. For a good method, the values of SRCC and PLCC are close to
1, while the value of RMSE is close to 0.

Testing Databases

We consider blurred images from TID2013 [20] and BID [4]. Gaussian blur images
from TID2013 are obtained using Gaussian filters, which are to approximate the out-
of-focus blur. There are 125 blurred images generated from 25 reference images
and 5 blur kernels. Realistic blur images from BID are taken from real world along
with a variety of scenes, camera apertures, and exposure time. There are 586 images,
most of which suffer from realistic out-of-focus blur or motion blur. The subjective
scores are in the form of mean opinion score (MOS) with a range [0, 9] on TID2013
and [0, 5] in BID.

3.2 Experimental Results

The performance comparison is shown in Table 1, where the best three values are in
boldface. On Gaussian blur images from TID2013, most existing methods correlate
well with subject ratings in terms of SRCC and PLCC (SRCC, PLCC > 0.8). On
realistic blur images from BID, FISHbb outperforms the others. However, the SRCC
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Table 1 Performance comparison and average computational time (seconds/image) on
TID2013 [20] and BID [4], where the best three values in each column are marked in boldface

TID2013 [20] BID [4]
Method SRCC↑ PLCC↑ RMSE↓ Time(s)↓ SRCC↑ PLCC↑ RMSE↓ Time(s)↓
MDWE [16] 0.816 0.835 0.686 0.184 0.307 0.320 1.186 3.333

CPBD [6] 0.852 0.855 0.647 0.068 0.018 0.004 1.252 1.826
PSI [5] 0.868 0.879 0.594 0.015 0.069 0.198 1.228 0.210
EMBM [8] 0.865 0.875 0.604 0.212 0.299 0.314 1.189 2.913

MLV [1] 0.879 0.883 0.587 0.037 0.320 0.363 1.167 0.481
ARISMc [7] 0.901 0.898 0.549 6.466 -0.013 0.155 1.237 87.966

FISHbb [24] 0.858 0.876 0.603 0.167 0.477 0.473 1.103 2.283

LPC [9] 0.889 0.892 0.565 0.565 0.316 0.385 1.155 8.378

S3 [25] 0.861 0.881 0.590 4.927 0.413 0.423 1.134 52.656

BIBLE [13] 0.899 0.905 0.531 0.916 0.361 0.370 1.163 10.982

RISE [15] 0.932 0.923 0.481 0.345 0.120 0.135 1.252 7.138

SPARISH [14] 0.893 0.900 0.543 1.485 0.307 0.328 1.183 25.217

Yu’s CNN [29] 0.843 0.860 0.639 3.100 0.030 0.160 1.236 40.857

The negative of SRCC indicates that the prediction trend is contrary to what it is supposed to be

of FISHbb is less than 0.5 (far less than 1), which indicates that there is still a large
space for designing robust and effective blur-specific NR-IQA methods for realistic
blur images.

Computational time is also an important aspect for evaluating the performance
of NR-IQA methods since many practical applications need to run in real time.
Images in TID2013 are 512 × 384 pixels, while the size of images in BID is larger,
ranging from 1280 × 960 to 2272 × 1704. All tests are carried out on a desktop
computer with Intel Core i7 6700 K CPU at 4 GHz, 32 GB RAM, Windows 10, and
Matlab R2016a (Yu’CNN is implemented using Python 2.7.6 and tested on Ubuntu
14.04 using the CPU of the same desktop computer). We used the default settings
of the codes and did not optimize them. In Table 1, we also report the average
computational time (seconds/image) on TID2013 and BID. We can observe that (1)
the fast three methods (PSI, MLV, CPBD) are operated in the spatial domain and (2)
most methods run fast on TID2013. However, as the image size increases, methods
such as ARISMc, S3 get quite slow on BID, which cannot meet the requirement of
time-sensitive applications.

Discussion on Realistic Blur

It is hard to model all the influence factors in the real world. Besides the Gaussian
and out-of-focus blur, there are other crucial factors to be considered, e.g., motion
blur, ghosting, macrophotography, and image content variation in Fig. 13.

• Motion blur: there are few NR-IQA methods for assessing the quality of motion
blur images, though its related problem “motion deblurring” is a hot topic.
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Fig. 13 Crucial factors (besides the Gaussian and out of focus blur) that influence the quality
of realistic blur images. (a) Motion blur. (b) Ghosting. (c) Macrophotography. (d) Image content
variation

Motion blur has directionality while Gaussian blur is isotropic. In terms of this
specific characteristic of motion blur, one may further consider the directionality
and the directional features for quality estimation on motion blur images. We
believe that a large realistic motion blur image database with subjective ratings
will facilitate the works.

• Ghosting: ghosting effect arises when the motion degree is very high, which
differs from the ordinary motion blur.

• Macrophotography: the blur in Bokeh is to strengthen the photo’s expressiveness.
In view of this, to evaluate the quality of macrophotography images, aesthetic
factors may need to be taken into account.

• Image content variation: due to the image content variation, NR-IQA methods
may produce quite different objective scores for images with very similar
subjective quality. At the meantime, NR-IQA methods may produce inconsistent
predictions on image pairs with quite different subjective quality. To ease the
impact of image content variation on blur-specific NR-IQA methods, the image
content variation and blur distortion level should be jointly considered.
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4 Conclusion

In this paper, we have classified previous works and have reviewed 18 representative
blur-specific NR-IQA methods. Remarkable progress has been made in the past
decades, evidenced by a number of state-of-the-art methods correlating well with
subjective evaluations on Gaussian blur images. However, experimental results have
also shown that most of the existing methods fail to estimate image quality of
realistic blur images. It is the evidence that the blur-specific NR-IQA problem is
far from being solved. We have also discussed on realistic blur, especially the issue
on image content variation that should be considered in the development of blur-
specific NR-IQA methods.
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