2102.09717v1 [cs.CV] 19 Feb 2021

arxXiv

Continual Learning for Blind Image
Quality Assessment

Weixia Zhang, Member, IEEE, Dingquan Li,Chao Ma, Member, IEEE, Guangtao Zhai, Senior
Member, IEEE, Xiaokang Yang, Fellow, IEEE, and Kede Ma, Member, IEEE

Abstract—The explosive growth of image data facilitates the fast development of image processing and computer vision methods for
emerging visual applications, meanwhile introducing novel distortions to the processed images. This poses a grand challenge to
existing blind image quality assessment (BIQA) models, failing to continually adapt to such subpopulation shift. Recent work suggests
training BIQA methods on the combination of all available human-rated IQA datasets. However, this type of approach is not scalable to
a large number of datasets, and is cumbersome to incorporate a newly created dataset as well. In this paper, we formulate continual
learning for BIQA, where a model learns continually from a stream of IQA datasets, building on what was learned from previously seen
data. We first identify five desiderata in the new setting with a measure to quantify the plasticity-stability trade-off. We then propose a
simple yet effective method for learning BIQA models continually. Specifically, based on a shared backbone network, we add a
prediction head for a new dataset, and enforce a regularizer to allow all prediction heads to evolve with new data while being resistant
to catastrophic forgetting of old data. We compute the quality score by an adaptive weighted summation of estimates from all prediction
heads. Extensive experiments demonstrate the promise of the proposed continual learning method in comparison to standard training

techniques for BIQA.

Index Terms—Blind image quality assessment, continual learning, subpopulation shift

1 INTRODUCTION

A IMING to automatically quantify human perception of
image quality, blind image quality assessment (BIQA)
[1] has experienced an impressive series of successes due in
part to the creation of human-rated image quality datasets
over the years. For example, the LIVE dataset [2] marks
the switch from distortion-specific [3] to general-purpose
BIQA [4], [5]. The CSIQ dataset [6] enables cross-dataset
comparison. The TID2013 dataset [7] and its successor
KADID-10K [8] expose the difficulty of BIQA methods
in generalizing to different distortion types. The Waterloo
Exploration Database [9] tests model robustness to diverse
content variations of natural scenes. The LIVE Challenge
Database [10] probes the synthetic-to-real generalization,
which is further evaluated by the KonIQ-10K [11] and SPAQ
[12] datasets. Assuming that the input domain X of BIQA is
the space of all possible images, each IQA dataset inevitably
represents a tiny subpopulation of X (see Fig. 1). That is,
BIQA models are bound to encounter subpopulation shift
during deployment. It is, therefore, of enormous value to
build robust BIQA models to subpopulation shift.

Previous work [4], [5], [13], [14] on BIQA mainly focuses
on boosting performance within subpopulations, while few
efforts have been dedicated to testing and improving model
robustness to subpopulation shift. Mittal et al. [15] aimed
ambitiously for universal BIQA by measuring a probabilistic
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distance between patches extracted from natural undis-
torted images and those from the test “distorted” image.
The resulting NIQE only works for a limited set of synthetic
distortions. Zhang et al. [16] modified NIQE by adding more
expressive statistical features with marginal improvement.

A straightforward adaptation to subpopulation shift is
to fine-tune model parameters with new data, which has
been extensively practiced by the BIQA methods based on
deep neural networks (DNNs). However, new learning may
destroy performance on old data, a phenomenon known
as catastrophic forgetting [17], [18]. Recently, Zhang et al.
[19], [20] proposed a dataset combination trick for train-
ing BIQA models against catastrophic forgetting. Despite
demonstrated robustness to subpopulation shift, this type
of method may suffer from three limitations. First, it is
not scalable to handle a large number of datasets because
of the computation and storage constraints. Second, it is
inconvenient to accommodate a new dataset since training
samples from all datasets are required for joint fine-tuning.
Third, some datasets may not be accessible after a period
of time (e.g., due to privacy issues [21]), preventing naive
dataset combination.

In this paper, we take steps towards assessing and
improving the robustness of BIQA models to subpopula-
tion shift in a continual learning setting. The basic idea is
that a BIQA model learns continually from a stream of
IQA datasets, integrating new knowledge from the current
dataset (i.e., plasticity) while preventing the forgetting of
acquired knowledge from previously seen datasets (i.e.,
stability). To make continual learning for BIQA feasible,
nontrivial, and practical, we identify five desiderata: 1) com-
mon perceptual space, 2) apparent subpopulation shift, 3)
no test-time oracle, 4) no direct access to previous data, and
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Fig. 1. lllustration of the continual learning paradigm for BIQA. Subpop-
ulation shift exists across distortion types and scenarios. In Setting |,
a BIQA model continually evolves from one distortion type to another
within the same distortion scenario. In Setting Il, a BIQA model continu-
ally evolves with varying distortion scenarios.

5) bounded model size. Furthermore, we describe a simple
yet effective continual learning method for robust BIQA
to subpopulation shift. Specifically, based on a shared and
continually-updated backbone network, we add a quality
prediction head for each new dataset as a way of promoting
plasticity for learning new knowledge. Consolidation of
previous knowledge is implemented by stabilizing predic-
tions of previous heads. We summarize the current training
dataset using K-means in feature space, and use the learned
centroids to compute adaptive weightings for final quality
prediction.
In summary, our main contributions are threefold.
e We establish the continual learning paradigm for
BIQA, in which model robustness to subpopulation
shift can be evaluated more directly and practically.

o We propose a computational method for continually
learning BIQA models, which significantly outper-
forms standard training techniques for BIQA.

e We conduct extensive experiments to test various
aspects of the proposed method, including plasticity,
stability, accuracy, and order-robustness.

2 RELATED WORK

In this section, we give an overview of representative IQA
datasets as different subpopulations from the image space
X. We then discuss the progress of BIQA driven by the
construction of IQA datasets (see Table 1). Finally, we review
continual learning in a broader context.

2.1 IQA Datasets

Hamid et al. [2] conducted the first “large-scale” subjective
user study of perceptual image quality. The resulting LIVE
dataset [2] includes 779 distorted images with five synthetic
distortion types at five to eight levels. Single stimulus
continuous quality rating (S5-CQR) was adopted to collect
the mean opinion scores (MOSs). In 2010, Larson et al. [6]
released the CSIQ dataset, covering 866 images with six
synthetic distortions at three to five levels, among which
four types are shared by LIVE. A form of the multiple stim-
ulus method was used for subjective testing, where a set of
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images were linearly displaced according to their perceived
quality. The horizontal distance between every pair of im-
ages reflected the perceptual difference. In 2011, Ciancio et
al. [22] built the BID dataset, including mostly blurry images
due to camera and/or object motion during acquisition.
The same subjective method as in LIVE was adopted to
acquire human quality annotations. In 2013, Ponomarenko
et al. [7] extended the TID2008 dataset to TID2013 with
3,000 images distorted by 25 types at five levels. Paired
comparison with a Swiss-system tournament was imple-
mented to reduce subjective cost. In 2016, Ghadiyaram and
Bovik [10] created the LIVE Challenge Database with 1,162
images, undergoing complex realistic distortions. They de-
signed an online crowdsourcing system to gather MOSs
using the SS-CQR method. In 2017, Ma et al. [9] complied
the Waterloo Exploration Database, aiming to probe model
generalization to image content variations. No subjective
testing was conducted. Instead, the authors proposed three
rational tests, namely, the pristine/distorted image discrim-
inability test (D-Test), the listwise ranking consistency test
(L-Test), and the pairwise preference consistency test (P-
Test) to evaluate IQA methods in a more economic man-
ner. From 2018 to 2019, two large-scale datasets, KADID-
10K [8] and KonlQ-10K [11], were made publicly available,
which significantly expand the number of synthetically and
realistically distorted images, respectively. MOSs of the two
datasets were sourced on crowdsourcing platforms using
single stimulus absolute category rating. In 2020, Fang et
al. [12] constructed the SPAQ dataset for perceptual quality
assessment of smartphone photography. Apart from MOSs,
EXIF data, image attributes, and scene category labels were
also recorded to facilitate the development of BIQA models
for real-world applications. Concurrently, Ying et al. [23]
built a large dataset that contains patch quality annotations.

As discussed previously, different datasets may use dif-
ferent subjective procedures, leading to different perceptual
scales of the collected MOSs. Even if two datasets happen
to use the same subjective method, their MOSs may not be
directly comparable due to differences in the purposes of
the studies and the visual stimuli of interest. In Sections 3
and 4, we will give a careful treatment of this subtlety in
continual learning for BIQA.

2.2 BIQA Models

In the pre-dataset era, the research in BIQA dealt with
specific distortion types, such as JPEG compression [3]
and JPEG2000 compression [24]. Since the inception of the
LIVE dataset, general-purpose BIQA began to be popular.
Many early methods relied on natural scene statistics (NSS)
extracted from either spatial domain [4], [15] or transform
domain [25], [26]. The underlying assumption is that a
measure of the destruction of statistical regularities of nat-
ural images [27] provides a reasonable approximation to
perceived visual quality. Another line of work explored
unsupervised feature learning for BIQA [5], [28]. Since the
introduction of the LIVE Challenge Database, synthetic-
to-real generalization of BIQA models has received much
attention. Ghadiyaram and Bovik [29] handcrafted a bag
of statistical features specifically for authentic camera dis-
tortions. As the number of images in the newly released



TABLE 1
Summary of IQA datasets used in our experiments. CLIVE stands for the LIVE Challenge Database. SS: Single stimulus. DS: Double stimulus.
MS: Multiple stimulus. CQR: Continuous quality rating. ACR: Absolute category rating. CS: Crowdsourcing

Dataset | #of Images  # of Training Pairs  # of Test Images  Scenario  # of Types  Testing Methodology  Year
LIVE [2] 779 7,780 163 Synthetic 5 SS-CQR 2006
CsIQ [6] 866 8,786 173 Synthetic 6 MS-CQR 2010
BID [22] 586 11,204 117 Realistic N.A SS-CQR 2011
CLIVE [10] 1,162 24,604 232 Realistic N.A SS-CQR-CS 2016
KonlIQ-10K [11] 10,073 139,274 2,015 Realistic N.A. SS-ACR-CS 2018
KADID-10K [8] 10,125 140,071 2,000 Synthetic 25 DS-ACR-CS 2019

IQA datasets becomes larger, deep learning came into play
and began to dominate the field of BIQA. Many strate-
gies were proposed to compensate for the lack of human-
labeled data, including patchwise training [13], [30], trans-
fer learning [31], and quality-aware pre-training [14], [32],
[33], [34], [35]. To confront the synthetic-to-real challenge
(and vice versa), Zhang et al. [19], [20] proposed a com-
putational method of training BIQA models on multiple
datasets. Latest interesting BIQA studies include active
learning for improved generalizability [36], meta-learning
for fast adaptation [37], patch-to-picture mapping for local
quality prediction [23], loss normalization for accelerated
convergence [38], and adaptive convolution for content-
aware quality prediction [39].

2.3 Continual Learning

Human learning is a complex and incremental process
that continues throughout the life span. While humans
may forget the learned knowledge, they forget it gradually
rather than catastrophically [40]. However, this is not the
case for machine learning models such as DNNs, which
tend to completely forget old concepts once new learning
starts [17]. A plethora of continual learning methods have
been proposed, mainly in the field of image classification. Li
and Hoiem [41] proposed learning without forgetting (LwF),
which uses model predictions of previous tasks as pseudo
labels in a knowledge distillation framework [42]. Based on
LwEF, Rannon et al. [43] attempted to alleviate domain shift
among tasks in the learned latent space. Another family
of methods identify and penalize changes to important
parameters with respect to previous tasks when learning
new tasks. Representative work includes elastic weight
consolidation [44] and its online variant [45], incremental
moment matching [46], variational continual learning [47],
synaptic intelligence [48], and memory-aware synapses [49].
Masse et al. [50] proposed context-dependent gating as a
complementary module to weight consolidation [44], [48].
Farquhar and Gal [51] noted that soft regularization may
not suffice to constrain the model parameters in feasible
regions. As a result, parameter isolation [52] as a form of
hard regularization has been proposed, which allows grow-
ing branches to accommodate new tasks [53] or masking
learned parameters for previous tasks [54], [55], [56]. While
parameter isolation effectively prevents catastrophic forget-
ting, it requires the task oracle to activate the corresponding
branch or mask during inference.

It is important to note that the recent success of con-
tinual learning for image classification may not transfer in

a straightforward way to BIQA. This motivates us to es-
tablish a continual learning paradigm for BIQA, identifying
desiderata to make it feasible, nontrivial, and practical. We
also contribute to effective and robust continual learning
methods for training BIQA models.

3 A CONTINUAL LEARNING PARADIGM FOR BIQA

In this section, we formulate continual learning for BIQA
with five desiderata and a plasticity-stability measure.

3.1

We define the learning on a new IQA dataset as a new task
in our continual learning setting. When training on the ¢-th
dataset Dy, no direct access to training images in {Dy}i_}
is allowed, leading to the following training objective:
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Problem Definition

£Dw) = z;t\ (1)

where z and ¢ denote the “distorted” image and the corre-
sponding MOS, respectively. f,, represents a BIQA model
parameterized by a vector w. £(-) is the objective function,
quantifying the quality prediction performance. One may
add a regularizer r(w) to Eq. (1) with the goal of gaining
resistance to catastrophic forgetting. During evaluation, we
may measure the performance of f,, on the hold-out test
sets of all tasks seen so far:

S L) =3
k=1 k=1

where Vj is the test set for the k-th task. An ideal BIQA
model should perform well on new tasks, and endeavor to
mitigate catastrophic forgetting of old tasks, resulting in a
low objective value in Eq. (2).
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3.2 Five Desiderata

Considering the distinct differences between image classi-
fication and BIQA, we argue that careful treatment should
be given to make continual learning for BIQA feasible, non-
trivial, and practical. Towards this, we list five desiderata.

I Common Perceptual Space. This requires that
IQA datasets of possibly different perceptual scales
should share a common perceptual space. In other
words, there exists a monotonic function for each
dataset to embed its MOSs to this perceptual space.
Otherwise, learning a single f,, for multiple datasets
continually is conceptually infeasible. Desideratum I
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Fig. 2. Images sampled from the DQA dataset [57]. A larger MOS in the dataset denotes lower rain density. It is not hard to observe that rain
density is not monotonically correlated with perceived image quality. Therefore, DQA violates Desideratum |, and should be excluded to form the

task sequence for BIQA. Images are cropped for improved visibility.

excludes human-rated datasets that record only cer-
tain aspects of image quality (e.g., contrast perception
[58] and scene visibility [57], [59]), and that mea-
sure perceptual quantities closely related to image
quality (e.g., quality of experience [60] that highly
depends on viewing conditions). To highlight this
point, we show some images from the deraining
quality assessment (DQA) dataset [57] in Fig. 2, with
a smaller MOS indicating higher rain density. It is
clear that rain density is not monotonically correlated
with visual quality. Therefore, DQA violates this
desideratum, and should be excluded to form the
task sequence for BIQA.

II Apparent Subpopulation Shift. It is empirically
proven that existing BIQA models generalize reason-
ably to test images with previously seen distortions.
Therefore, to make continual learning for BIQA non-
trivial, we stipulate that at least two datasets in a
task sequence should exhibit apparent subpopula-
tion shift. In other words, part of the distorted im-
ages from the two datasets should exhibit noticeably
different appearances (see Fig. 1). Desideratum II
excludes a series of easy settings, for example, con-
tinual learning from additive noise to multiplicative
noise and from LIVE [2] to CSIQ [6].

III' No Direct Access to Previous Data. Some continual
learning methods for image classification [52] rely
on replaying (at least part of) training data of old
tasks to fight against catastrophic forgetting [61],
[62], [63], [64]. In the context of BIQA, Zhang et
al. [19], [20] proposed to jointly train models on
data from all tasks, which can be seen as the upper
bound of methods with partial access to previous
data. To make continual learning for BIQA practical,
we assume no direct access to previous data when
training new tasks. Notwithstanding, Desideratum
III permits summarizing datasets with negligible bits
of statistics compared to the dataset sizes.

IV No Test-Time Oracle. A well-designed continual
learning method should be independent of the task
oracle to make prediction. That is, the method should
be unaware of which dataset the test image belongs
to. Desideratum IV is imperative in BIQA because if
we know in advance the task label, we may be able
to train separate and specialized models for each of
the datasets, making continual learning for BIQA a
trivial task.

V  Bounded Model Size. The model capacity in terms
of the number of model parameters should be rel-
atively fixed, forcing the BIQA method to allocate
its capacity wisely to achieve the Pareto optimum
between plasticity and stability. Desideratum V re-
quires the number of learnable parameters intro-
duced by a new task to be negligible compared to
that of the current model.

3.3 A Plasticity-Stability Measure

The plasticity-stability dilemma [65] is pervasive in contin-

ual learning of computer algorithms, especially for those
implemented by artificial neural networks. Formally, the
plasticity and stability refer to the ability of integrating new
information and preserving previous knowledge, respec-
tively. Here we propose a quantitative measure to evaluate
the plasticity-stability trade-off of a BIQA model during
continual learning. Without loss of generality, we use Spear-
man’s rank correlation coefficient (SRCC) to benchmark the
performance of a BIQA model. Other correlation measures
(e.g., Kendall rank correlation coefficient and Pearson lin-
ear correlation coefficient) and distance metrics (e.g., mean
squared error and mean absolute error) can also be applied.
We define a plasticity-stability ratio after the BIQA model
has learned the ¢-th task:

PSR SRCCq
T (i ) - smecy

where SRCCyy, for k < t, is the SRCC result of the model on
the k-th dataset when it has just learned on the ¢-th dataset.
We omit a subscript when ¢ = k. A larger PSR, indicates a
better plasticity-stability trade-off. Generally, learning a new
task will destroy some performance of old tasks, leading to
SRCCy,/SRCCy, < 1. Nevertheless, it also makes sense that
new tasks will help improve performance on old ones. In Eq.
(3), we give credit to such cases with SRCCy,/SRCCy, > 1.
Finally, we define a mean PSR (MPSR) over a list of 1" tasks
as an overall plasticity-stability measure:

t=1
i>1, ©

1 T
MPSR = — t:zl PSRy, 4)

where we drop the subscript T of MPSR to make the
notation uncluttered.
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Fig. 3. System diagram of the proposed continual learning method for BIQA. Black and grey arrows correspond to the training and testing phases,

respectively.

4 A CONTINUAL LEARNING METHOD FOR BIQA

In this section, we propose a simple yet effective continual
learning method for BIQA. The system diagram of our
method is shown in Fig. 3.
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We describe the proposed method with respect to the
desiderata stated in Section 3.2. According to Desiderata I,
it is desirable to work in the assumed common perceptual
space. However, this is difficult because we are only given a
stream of T IQA datasets without the monotonic functions
to embed the associated MOSs into this space. Inspired by
[19], [20], we want to learn a single perceptual scale for all
tasks by exploiting relative quality information. Specifically,
under the Thurstone’s model [66], the perceptual quality
of image z, denoted by ¢, follows a Gaussian distribution
with mean fi,, and variance o2. Assuming the variability
of quality between z € D; and y € D; is uncorrelated, the
quality difference qT gy is also Gaussian with mean g1, — ji,
and variance o2 + 0. We then compute a probability that x
is perceived better than y by

Model Estimation

Kz — Hy

/52 2
o0z + oy

as the ground-truth annotation for pair of images z,y €
D;, where ®(-) is the standard Normal cumulative dis-
tribution function. The p, and o2 can be approximated
by the collected MOS and the corresponding variance.
In summary, when learning the ¢-th task, we transform

ot ol N2 o P = A ) R
where N; < (‘gtl).

Our BIQA model consists of a backbone network, fy(-)
parameterized by ¢, to produce a fixed-length feature vector
irrespective of input resolution, and an output head, Ay, (-)
parameterized by v, to compute quality estimates for the
t-th task. Under the Thurstone’s Case V model, we are able
to estimate the probability that x is of higher quality than y
by

p(z,y) =@ (5)

) - (h¢t (qu(l‘)) - hi/Jt (f¢(y>)> , (6)

ﬁt(m>y - \/5

where the variance of quality predictions is fixed to one
[66]. The full set of parameters (over a list of T  tasks),
{d, 91,2, ...,9r}, constitute the parameter vector w to be
optimized.

For the current ¢-th task, we measure the statistical dis-
tance between the ground-truth and predicted probabilities
using the fidelity loss [67], whose advantages over the
cross entropy loss have been demonstrated in several BIQA
studies [19], [20]:

Enew(x7y; ¢7 wt) =1- p(‘rvy)ﬁt(x’y)
/= p@, )1~ pula.y). @)

Direct optimization of Eq. (7) may cause catastrophic for-
getting of old tasks (see Table 4). Inspired by LwF [41],
we add a regularizer to allow forgetting old knowledge
gracefully, while respecting Desiderata III. Before training
the t-th task, we use the k-th output head to compute a
probability pi(x,y) for each pair of (z,y) € P; according
to Eq. (6). This creates ¢ — 1 datasets {P, }i_} with pseudo-
labels to constrain the updated prediction p to be close to
the recorded prediction pyi. Again, we use the fidelity loss
to implement the constraint:

i <1 - \/ﬁtk(%y)ﬁm(x,y)

—\/ — per(z,y))(1 —ﬁtk(l’,y))) :
®)
In practice, we randomly sample a mini-batch 5; from P

and use a variant of stochastic gradient descent to minimize
the following empirical loss:

1
@ Z (Enew(-r7 Y; ¢7 wt)
+)\‘€old (.’ﬂ, Y; ¢v {wk 2

(z,y)EB:
1),

eold (.’137 Y; (ba {wk}t

L (B ¢ {¥n}hmr) =
©)

where A governs the trade-off between the two terms.
Two delicate design choices are worth elaborating. First,
to remind the proposed method of preventing catastrophic



TABLE 2
The network architecture of the proposed method based on
ResNet-18 [69] for a T-length task sequence. The nonlinear activation
and the normalization layers are omitted for brevity

Layer Name Layer Specification
Convolution 7x7, 64, stride 2
Max Pooling 3x3, stride 2
. 3x3, 64, stride 1
Residual Block 1 3%3, 64, stride 1 X2
[ 3x3, 128, stride 2 | 1
3x3,128, stride 1 |~
Residual Block 2
3x3, 128, stride 1 «1
3x3, 128, stride 1
[ 33,256, stride 2 |, ;
3x3, 256, stride 1
Residual Block 3
3x%3, 256, stride 1 1
3x3,256, stride 1 |
[ 3x3,512, stride 2 | 4
3x3,512, stride 1 |~
Residual Block 4
3x%x3, 512, stride 1 1
3x3,512, stride 1 |~
Global Average Pooling -
Full Connection 512 x T

forgetting [64], we treat the backbone network as a compo-
sition of two functions f, = fy, o fs., where f,_ and fg,
represent the first few and the remaining convolution layers
of the DNN. The pre-trained fg, (for object recognition)
is fairly transferable across different vision tasks. We take
advantage of this and freeze f;, to encourage stability
during training. The parameters of fy are adapted to new
tasks, accounting for plasticity. Second, we append an /,-
normalization layer [68] on top of the backbone network:

7 fo(2)
P = ol
to project the feature representation onto the unit hyper-
sphere. This pushes the predictions of all heads to approx-
imately the same range, making subsequent computation,
e.g., weighted summation of quality scores, more numeri-
cally stable.

(10)

4.2 Model Inference

During inference, the original LwF for image classification
needs the task oracle, which violates Desideratum IV and
is not directly applicable to BIQA. Instead of relying on
the task oracle to precisely activate a task-specific predic-
tion head, we design an adaptive weighting mechanism to
compute a weighted summation of quality estimates from
all heads as the overall quality score.

During the training of the t-th task, we compute the
fixed-length quality representations {f. (mil))}gi‘ by a
feedforward sweep of D;:

P (o) = Poolle. )

= TIbool (s, ()] (1)

TABLE 3
Performance comparison in terms of MPSR and weighted SRCC (with
weightings proportional to the sizes of the six IQA test sets). All
methods are trained in chronological order

Method MPSR  Weighted SRCC
Proposed (LwF-AW) | 0.8166 0.7886
SL 0.7223 0.6585
SH-CL 0.7698 0.7010
MH-CL 0.7560 0.6704
MH-CL-AW 0.7392 0.6565
LwF 0.7723 0.6996
MH-CL-O 0.7447 0.6711
LwF-O 0.8166 0.8198

where pool(-) denotes global average pooling over spatial
locations. Similar in Eq. (10), we normalize the pooled rep-
resentations to make them more comparable across different
tasks. We then summarize D, with K centroids {cgj ) }<, by
applying K-means [70] to {fs. (xﬁ”)}fjg'. As the number
bits to store K centroids is considerably smaller than that
of the entire training set, Desideratum III is respected. We
use fy, (rather than fy o fy or hy, o fs o fs.) as a feature
extractor to distill D; because it is fixed during model devel-
opment, which effectively reduces the task-recency bias [71].
We measure the perceptual relevance of the test image
x to D; by computing the minimal Euclidean distance
between its feature representation and the K centroids of
Dtl
dife) = min | fo, () = [ (12)
We then pass {d;(z)}7_, to a softmin function to compute
the adaptive weighting for the ¢-th prediction head:

o) = exp(—7d;(x))
it exp(—7dy ()

where 7 > 0 is a temperature parameter used to tune the
smoothness of the softmin function. Setting a higher value
of 7 produces a harder weight assignment over 1" prediction
heads. The final quality score is defined as the inner product
between two vectors of adaptive weightings and quality
predictions:

; (13)

T
() =Y arthy, (fo(@)).

t=1

(14)

A final note is that the number of parameters of the T
prediction heads is designed to be considerably smaller than
that of the backbone network. Thus, our BIQA model meets
Desideratum V.

5 EXPERIMENTS

In this section, we describe a realistic and challenging exper-
imental setup for continual learning of BIQA models, which
strictly obeys Desiderata I and II. As the proposed continual
learning method is the first of its kind, the performance
comparison is done mainly with respect to its variants, some
of which can be treated as performance upper bounds.



TABLE 4
Performance comparison in terms of SRCC between the proposed method and its variants. Best results in each section are highlighted in bold,
while results of future tasks are marked in grey

Dataset | Method | LIVE[2] CSIQ[6] BID[22] CLIVE[10] KonIQ-10K[11] KADID-10K [8]
LIVE All 0.9266
SL 0.9193 0.8449
SH-CL 0.9360 0.8246
CSIO MH-CL 0.9339 0.8189
MH-CL-AW | 0.9200 0.8139
LwF 0.9363 0.8020
Proposed 0.9038 0.7688
SL 0.6509 0.5732 0.8082
SH-CL 0.8814 0.7764 0.8134
BID MH-CL 0.8538 0.7509 0.8117
MH-CL-AW | 0.8674 0.7618 0.8116
LwF 0.8408 0.7694 0.8183
Proposed 0.9276 0.7901 0.8150
SL 0.6562 0.5457 0.8327 0.8316
SH-CL 0.7430 0.5889 0.8252 0.8387
CLIVE MH-CL 0.6577 0.5911 0.8162 0.8375
MH-CL-AW | 0.6660 0.5803 0.8170 0.8359
LwF 0.7629 0.6441 0.8407 0.8599
Proposed 0.9230 0.7815 0.8399 0.8034
SL 0.7651 0.7452 0.7760 0.7043 0.8811
SH-CL 0.8104 0.7250 0.7677 0.7024 0.8809
KonlQ-10K MH-CL 0.8297 0.7413 0.7688 0.6725 0.8811
MH-CL-AW | 0.7853 0.7169 0.7591 0.6718 0.8783
LwF 0.7992 0.7037 0.7603 0.7107 0.8704
Proposed 0.9233 0.7934 0.8156 0.7819 0.8450
SL 0.8206 0.7120 0.5865 0.3822 0.5109 0.8241
SH-CL 0.8496 0.7185 0.6560 0.3777 0.6240 0.8043
KADID-10k | MH-CL 0.8885 0.7233 0.5521 0.3282 0.5531 0.8120
MH-CL-AW | 0.7331 0.5133 0.5169 0.4390 0.5814 0.7706
LwF 0.8481 0.6958 0.6989 0.3423 0.6104 0.8184
Proposed 0.8948 0.7836 0.7797 0.7263 0.8117 0.7655

5.1 Experimental Setup

We select six widely used IQA datasets, including LIVE [2],
CSIQ [6], BID [22], LIVE Challenge [10], KonIQ-10K [11],
and KADID-10K [8], whose details are summarized in Ta-
ble 1. We organize these datasets in chronological order, i.e.,
LIVE — CSIQ — BID — LIVE Challenge — KonlQ-10K
— KADID-10K. In Section 5.4, we also use task sequences
of different orders to evaluate the order-robustness of the
proposed method. We randomly sample 80% images from
each dataset for training, and leave the remaining for test-
ing. We follow [19], [20] to form image pairs in {P;}7_;,
whose numbers are given in Table 1. To ensure content
independence in LIVE, CSIQ, and KADID-10K, we divide
the training and test sets according to the reference images.
Although in the proposed continual learning setting, test
sets of future tasks are assumed to be inaccessible, we
consider using them for performance evaluation as in the
standard cross-dataset setting.

We use a variant of ResNet-18 [69] as the backbone of our
BIQA model, which contains more than 10 million trainable
parameters. We strip all fully connected layers in ResNet-
18, and append a global average pooling layer after the last
convolution to produce a 512-dimensional feature vector.
Each of the six prediction heads is implemented by a fully
connected layer with 512 parameters (and no bias term),
accounting for less than 0.03% of the total parameters.
As such, the growth of model complexity introduced by
each new task is negligible, conforming to Desideratum V.
Details of the network is presented in Table 2. We set the

first convolution layer and the subsequent three residual
blocks as the stable layers by freezing their parameters
during continual learning. The last residual block and all
full connections are the plastic layers, whose parameters can
evolve with the task sequence (see Fig. 3). Different splitting
points of the stable and plastic layers will be investigated in
Section 5.4.

For each task, stochastic optimization is carried out by
Adam [72] with A = 1 in Eq. (9). The parameters of the
backbone network and the prediction heads are initialized
by the weights pre-trained on ImageNet [73] and the He’s
method [74], respectively. We set the initial learning rate to
3x10~* with a decay factor of 10 for every three epochs, and
we train our method for nine epochs. A warm-up training
strategy is used: only the prediction heads are trained in
the first three epochs with a mini-batch size of 128; for the
remaining epochs, we fine-tune the entire network with a
mini-batch size of 32. During training, we re-scale and crop
the images to 384 x 384 x 3, preserving the aspect ratio.
During testing, the number of centroids used in K-means
is set to K = 128 for all tasks. Empirically, we find that
the performance is insensitive to the choice of K. We set
the temperature to 7 = 16 in Eq. (13). We test on images of
original size in all experiments.

5.2 Competing Methods

We present several training techniques that are closely
related to our method for comparison.



TABLE 5
Performance comparison in terms of SRCC between the proposed method and its “upper bounds”

Dataset | Method | LIVE[2] (CSIQ[6] BID[22] CLIVE[10] KonIQ-10K [11] KADID-10K [8]
All JL 0.9663 0.8691 0.8512 0.8201 0.8971 0.8804
LIVE All 0.9266
MH-CL-O 0.9338 0.8189
CSIQ LwEF-O 0.8641 0.8020
Proposed 0.9038 0.7688
MH-CL-O 0.8690 0.7594 0.8117
BID LwF-O 0.9069 0.7883 0.8183
Proposed 0.9276 0.7901 0.8150
MH-CL-O 0.6373 0.5951 0.8180 0.8375
CLIVE LwF-O 0.8848 0.7569 0.8176 0.8599
Proposed 0.9230 0.7815 0.8399 0.8034
MH-CL-O 0.7987 0.7339 0.7582 0.6880 0.8811
KonIQ-10K | LwF-O 0.8721 0.7485 0.8022 0.8401 0.8704
Proposed 0.9233 0.7934 0.8156 0.7819 0.8450
MH-CL-O 0.7113 0.4494 0.5268 0.4272 0.5819 0.8120
KADID-10K | LwF-O 0.8604 0.7029 0.7649 0.8026 0.8333 0.8184
Proposed 0.8948 0.7836 0.7797 0.7263 0.8117 0.7655

Separate Learning (SL) is the de facto method in
BIQA. We train the model with a single prediction
head on one of the six training sets by optimizing
Eq. 9) with A = 0.

Joint Learning (JL) is a recently proposed
method [19], [20] to overcome the cross-distortion-
scenario challenge (as a specific form of subpopula-
tion shift) in BIQA. We train the same model with a
single head on the combination of all six training sets
by optimizing Eq. (9) with A = 0. With full access to
all training data, JL serves as the upper bound of all
continual learning methods.

Single-Head Continual Learning (SH-CL) is a base-
line of the proposed continual learning method,
where the same model with a single head is succes-
sively trained on {P;}¢_, by optimizing Eq. (9) with
A = 0. The difference between SL and SH-CL lies
in training the model from scratch for the current
task and fine-tuning the model with initialization
provided by the previous task.

Multi-Head Continual Learning (MH-CL) is a
multi-head extension of SH-CL. MH-CL adds a pre-
diction head for a new task, and optimizes it for Eq.
(9) with A = 0. It remains to specify one of the heads
for final quality prediction. To encourage adaptation
to a constantly changing environment, we simply use
the latest head to make prediction. Meanwhile, we
may incorporate the proposed adaptive weighting
during inference, giving rise to MH-CL-AW. More-
over, we leverage the task oracle to precisely activate
the corresponding head for prediction, denoted by
MH-CL-O, which may give the performance upper
bound in the multi-head architecture.

Learning without Forgetting (LwF) in BIQA builds
upon MH-CL by optimizing Eq. (9) with A = 1. In
other words, LWF introduces a stability regularizer
to preserve the performance of previously seen data.
Same as MH-CL, LwF relies on the latest head for
quality prediction.

The proposed method (LwF-AW) can be seen as
the combination of LwF and adaptive weighting.

0551
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Fig. 4. PSR as a function of the task index ¢.

Moreover, we also explore the task oracle to select the
corresponding head for quality prediction, denoted
by LwE-O.

5.3 Main Results

5.3.1 Quantitative Results

We use the proposed MPSR in Eq. (4) to benchmark the
plasticity-stability trade-off once the learning on the task
sequence is completed. We also report the weighted SRCC
on the six IQA test sets. From Table 3 we have several
interesting observations. First, the unsatisfactory perfor-
mance of SL calls for continual learning methods to miti-
gate catastrophic forgetting in BIQA. Second, while SH-CL
improves the MPSR result upon SL by a clear margin, it
underperforms LwF, indicating that regularizers to stabilize
the performance of previous tasks may be necessary. This
is also evidenced through the comparison between MH-CL
and LwE, where we observe significant performance drops
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Fig. 5. Perceptual scaling of images sampled from the six IQA datasets. The bar charts of adaptive weightings and quality predictions of all heads
are also presented along with each image. The final quality prediction ¢(x) is shown in the subcaption. Zoom in for better distortion visibility.

of MH-CL in terms of both MPSR and weighted SRCC.
Third, adaptive weighting (or the task oracle) alone may
hurt the performance of MH-CL, when comparing to MH-
CL-AW and MH-CL-O. We believe this arises because the
backbone network is constantly evolving with new data,
but old prediction heads are not, resulting in a mismatch
between the feature extractor and the quality predictors.
Fourth, equipped with the adaptive weighting mechanism
and the LwF regularizer, our method approaches the upper-
bound performance by LwF-O in terms of MPSR. We also
plot PSR; as a function of the task index ¢ in Fig. 4, from
which we find that our method is more stable, and performs
much better as the length of the task sequence increases.
We take a closer look at the performance variations
along the task sequence, and summarize the SRCC results
continually in Table 4. Note that all methods begin training
on LIVE [2], and their SRCC results are the same before
continually learning on any new task. There are several
useful findings. First, we observe that subpopulation shift
between different tasks significantly oscillates the results of
SL. This is not surprising because it is often challenging for
BIQA models trained on datasets of synthetic distortions
to perform well on datasets of realistic distortions (and
vice versa) [31], [33]. Second, compared with SL, SH-CL
generally improves on old tasks with similar performance
on new tasks. Therefore, SH-CL achieves a better plasticity-
stability trade-off. Third, both MH-CL and LwF add a
prediction head for each new task, which enable learning
new quality mapping functions without affecting old ones.
However, the new head does not handle old tasks well,

which necessitates an effective mechanism to make full use
of all learned heads. Fourth, built upon LwF, our method
employs adaptive weighting to pool quality estimates, lead-
ing to better performance especially on previous tasks.

Table 5 shows the SRCC results of our method against
three “upper bounds”, which leverage some form of in-
formation not allowed by the desiderata in Section 3.2. As
expected, JL provides an effective solution to subpopulation
shift in BIQA. Despite being unscalable, it serves as the
upper bound of all continual learning methods. With access
to the task oracle, LWF-O achieves the closest performance
to JL. Interestingly, the proposed method is able to deliver
better performance on many of the old tasks with strict
adherence to Desideratum IV. This may be because the
proposed adaptive weighting mechanism effectively imple-
ments a BIQA ensemble, which appears to be more resistant
to catastrophic forgetting.

5.3.2 Qualitative Results

We conduct a qualitative analysis of our BIQA model by
sampling test images from the task sequence. Also shown
in Fig. 5 are the bar charts of adaptive weightings and
quality predictions corresponding to each image. Although
the proposed method is not jointly trained on all IQA
datasets [19], [20], it successfully learns one perceptual scale
for all tasks, well aligning different images in the learned
scale. Moreover, visual inspections of the bar charts reveal
that the prediction heads may only give accurate quality
estimates for the datasets they are exposed to. Fortunately,
given a test image, the proposed adaptive weighting is
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TABLE 6
Performance comparison in terms of SRCC of the proposed method for different task orders. I: Reverse chronological order. II: Synthetic and
realistic distortions in alternation. Ill: Synthetic distortions followed by realistic distortions. 1V: Realistic distortions followed by synthetic distortions

Order Dataset KADID-10K [8] KonIQ-10K [11] CLIVE [10] BID [22] CSIQ [6] LIVE [2]
KADID-10K 0.8241
KonIQ-10K 0.7873 0.8580
I CLIVE 0.7695 0.8495 0.8044
BID 0.7397 0.8261 0.8135 0.8355
CSIQ 0.6491 0.8151 0.7647 0.7962 0.8213
LIVE 0.6417 0.8072 0.7247 0.7569 0.7710 0.9356
Order Dataset LIVE [2] BID [22] CSIQ [6] CLIVE[10] KADID-10K [8] KonIQ-10K [11]
LIVE 0.9266
BID 0.9431 0.8066
I CSIQ 0.9167 0.7792 0.7823
CLIVE 0.9283 0.8277 0.7710 0.8115
KADID-10K 0.9098 0.7593 0.8333 0.7548 0.7703
KonIQ-10K 0.9141 0.7710 0.8510 0.7874 0.7225 0.8114
Order Dataset BID [22] CLIVE [10] KonIQ-10K [11]  LIVE[2] CSIQ [6] KADID-10K [8]
BID 0.8082
CLIVE 0.8414 0.8390
I KonIQ-10K 0.8287 0.8194 0.8438
LIVE 0.7907 0.7342 0.8129 0.9403
CSIQ 0.7690 0.7042 0.7902 0.9394 0.7626
KADID-10K 0.7486 0.6873 0.7649 0.9230 0.8009 0.7219
Order Dataset LIVE [2] CSIQ [6] KADID-10K [8]  BID [22] CLIVE [10] KonlIQ-10K [11]
LIVE 0.9266
CSIQ 0.9038 0.7688
v KADID-10K 0.8859 0.8119 0.7884
BID 0.9240 0.8352 0.7768 0.7939
CLIVE 0.9196 0.8112 0.7503 0.8325 0.7759
KonIQ-10K 0.9172 0.8203 0.7384 0.8087 0.7632 0.8439
able to compensate for the prediction inaccuracy, assigning TABLE 7

larger weights to the heads trained on images with similar
distortions. For example, when evaluating the images sam-
pled from LIVE [2] (see Fig. 5 (a)), the heads trained on
CSIQ [6] and KADID-10K [8] of similar synthetic distortions
are also assigned relatively high weights. As another exam-
ple, KADID-10K [8] contains some distinct distortion types
(e.g., spatial jitter in Fig. 5 (f)); consequently, the assigned
weighting for the head of KADID-10K tends to dominate.

5.4 Ablation Study

In this subsection, we conduct a series of ablation experi-
ments to evaluate the robustness of our method to different
task orders and alternative design choices.

5.4.1

The main experiments are conducted on the task sequence
in chronological order. In real-world situations, new distor-
tions may emerge in arbitrary order, and similar distortions
may also reappear in the future. Consequently, a BIQA
model is expected to be independent of the task order it is
trained on [75]. To evaluate the order-robustness of the pro-
posed method, we experiment with four extra task orders:
(I) reverse chronological order - KADID-10K — KonlQ-10K
— LIVE Challenge — BID — CSIQ — LIVE; (II) synthetic
and realistic distortions in alternation - LIVE — BID —
CSIQ — LIVE Challenge — KADID-10K — KonlQ-10K;
(IIT) synthetic distortions followed by realistic distortions -
LIVE — CSIQ — KADID-10K — BID — LIVE Challenge
— KonlQ-10K; and (IV) realistic distortions followed by

Order-Robustness

Performance comparison in terms of MPSR and weighted SRCC for
different task orders. I: Reverse chronological order. II: Synthetic and
realistic distortions in alternation. Ill: Synthetic distortions followed by
realistic distortions. 1V: Realistic distortions followed by synthetic
distortions. V: Default chronological order in bold

Order | MPSR  Weighted SRCC
I 0.8000 0.7338
1I 0.8163 0.7924
I 0.7993 0.7488
v 0.8184 0.7953
\% 0.8166 0.7886

synthetic distortions - BID — LIVE Challenge — KonlQ-
10K — LIVE — CSIQ — KADID-10K. We list the detailed
SRCC results in Table 6 and the MPSR and the weighted
SRCC results in Table 7, respectively, from which we make
some useful observations. First, the proposed method is
quite robust to handle task sequences of different orders in
terms of MPSR, providing justifications for its use in real-
world applications. Second, the reverse chronological order
(Order I) and the sequence of realistic distortions followed
by synthetic distortions (Order III) achieve lower weighted
SRCC results compared to the other two task orders. We
believe this is because harder tasks appear in the beginning
of the sequence, making it difficult for our method to trade
off plasticity and stability. Specifically, for Order I, the first
task on KADID-10K [8] is considered a much harder one
than those on CSIQ [6] and LIVE [2] due to the introduction
of more distortion types. Our method offers an SRCC of
0.8241 on KADID-10K [8] when it is first trained on, and



TABLE 8
MPSR and weighted SRCC as functions of the splitting point of stable
and plastic layers. The default setting is highlighted in bold

Splitting Point | MPSR  Weighted SRCC
None 0.7620 0.6605
Up to First Convolution | 0.7937 0.7708
Up to Residual Block 1 0.7895 0.7567
Up to Residual Block 2 0.8069 0.7664
Up to Residual Block 3 | 0.8166 0.7886
Up to Residual Block 4 0.6497 0.5859

fails to stabilize the performance with a final SRCC of
0.7219. Similarly, quality prediction of realistically distorted
images is a more difficult computational task than evalu-
ating synthetically distorted images. This may help explain
the final inferior performance on BID [22], LIVE Challenge
[10], and KonIQ-10K [11] as the first three tasks in Order III.
The order-robustness experiment reveals that there is still
room for improving the model ability to consolidate learned
knowledge and acquire new knowledge in the presence of a
difficult task order.

5.4.2 Splitting Point of Stable and Plastic Layers

As stated in Section 4.1, the backbone network of the pro-
posed method is composed of a cascade of stable and plastic
layers. Recall that we use ResNet-18 [69] as the backbone
network, which consists of a first convolution layer followed
by four residual blocks (see Table 2). We list the MPSR
and the weighted SRCC results as functions of the splitting
point in Table 8. We notice a significant performance drop
(compared to the default setting) when all parameters are
frozen (i.e., up to Residual Block 4). This is not surprising
since no plastic layer is reserved for adapting to new tasks.
An opposite extreme is when there is no stable layer, namely,
all network parameters are updated with new data during
continual learning. In this case, we apply Eq. (11) to the
responses of the last convolution to compute the feature
vector for adaptive weighting. It is clear that this variant
is also weak in terms of both MPSR and weighted SRCC.
For the remaining cases, our method is relatively insensitive
to the choice of the splitting point.

5.4.3 Model Weighting and Feature Normalization

To demonstrate the promise of our adaptive weighting
scheme, we compare it with two alternative weighting
strategies. The first is to simply average the quality pre-
dictions of all heads, which is termed as LwF-SW. The
second adopts a hard-weighting method, selecting a sin-
gle head with the highest weight for quality prediction,
termed as LwF-HW. Mathematically, LwF-SW and LwF-
HW correspond to setting 7 = 0 and 7 — oo in Eq. (13),
respectively. We list the MPSR and the weighted SRCC
results in Table 9. Detailed SRCC values are shown in
Table 10. We find that our method clearly outperforms
LwEF-SW, suggesting that simple averaging may introduce
bias from less reliable prediction heads. LwF-HW shows an
MPSR improvement over LwWF-SW, indicating that a better
plasticity-stability trade-off has been made. However, it is
dangerous to rely solely on the prediction head with the
highest weight, especially when the weighting function for

11

TABLE 9
Performance comparison in terms of MPSR and weighted SRCC for
different design choices

Design Choice MPSR  Weighted SRCC
LwF-SW with normalization 0.7746 0.7620
LwF-HW with normalization 0.7960 0.7391
LwEF-AW w /o normalization 0.7820 0.7321
LwF-AW with normalization (Ours) | 0.8166 0.7886

the given test image is less accurate. This has been reflected
by a noticeable reduction in weighted SRCC, where hard
weighting is unable to handle the last task on KADID-
10K, as shown in Table 10. By contrast, adaptive weighting
in the proposed method effectively constructs an ensemble
from a set of relatively accurate prediction heads, therefore
representing a more reliable means of computing the final
quality score.

We then remove the normalization step of the proposed
method (computed by Eq. (10)). From Table 9, we observe
that our method without normalization gives inferior per-
formance in MPSR and weighted SRCC. We attribute this
performance drop to the scale differences of the learned
prediction heads. For example, without feature normaliza-
tion, the prediction head for LIVE produces quality scores
in the range of [—7,5], while the head for CSIQ outputs
scores in [—3, 2]. As a result, it is less meaningful to combine
quality scores linearly. As empirically observed after feature
normalization, all prediction heads give scores of similar
scales, making adaptive weighting more sensible.

5.5 Further Testing Using Different Continual Learning
Regularizers

We have incorporated LwF [41] into BIQA as a regularizer
to mitigate catastrophic forgetting. On top of LWF, we have
described an adaptive weighting module for the BIQA
model with multiple heads, bypassing the task oracle during
inference. In this subsection, we show that the proposed
method of computing the final quality score is compatible
with other regularizers in continual learning. Specifically,
we implement three such regularizers - elastic weight con-
solidation (EWC) [44], synaptic intelligence (SI) [48], and
memory aware synapses (MAS) [49]. All the three methods
follow a similar paradigm that penalizes the changes to the
estimated “important” parameters for previous tasks when
learning the new task. Given a mini-batch of samples, 3,
the empirical loss is computed as

! Z (EneW(xay; ¢7¢t)

|Bt| (z,y)EB:

TAD i (6 — )%,

L (By; ¢, {tn}ie) =
(15)

where ; refers to the estimated importance of the i-th
parameter to previous tasks. ¢, records the value of the
i-th parameter before learning the ¢-th task, and ¢; — ¢/
represents the corresponding change. EWC computes
offline as the diagonals of the Fisher information matrix. SI
and MAS estimate /3 online using the accumulated gradients
in slightly different ways. We empirically set the A values for
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TABLE 10
Performance comparison in terms of SRCC for different weighting strategies

Dataset | Method | LIVE[2] CSIQ[6] BID[22] CLIVE[10] KonIQ-10K [11] KADID-10K [8]
LIVE All 0.9266
LwF-SW 0.9264 0.7416
CSIQ LwF-HW 0.8674 0.8000
Proposed 0.9038 0.7688
LwF-SW 0.9165 0.7452 0.7629
BID LwF-HW 0.9031 0.8248 0.8194
Proposed 0.9276 0.7901 0.8150
LwF-SW 0.8639 0.7175 0.8098 0.7053
CLIVE LwF-HW 0.8728 0.7960 0.8235 0.8606
Proposed 0.9230 0.7815 0.8399 0.8034
LwF-SW 0.8564 0.7432 0.7909 0.7104 0.8209
KonIQ-10K LwF-HW 0.8675 0.8049 0.8153 0.8092 0.8625
Proposed 0.9233 0.7934 0.8156 0.7819 0.8450
LwF-SW 0.8546 0.7496 0.7624 0.6447 0.7970 0.7345
KADID-10K | LwF-HW 0.8429 0.7885 0.7862 0.7861 0.8246 0.6336
Proposed 0.8948 0.7836 0.7797 0.7263 0.8117 0.7655
0.95 TABLE 11
P LwF Performance improvements upon different baseline continual learning
regularizers in terms of MPSR and weighted SRCC. All baselines
09 compute quality scores using the latest prediction head
0.85F Method | Baseline Baseline+AW  Improvement (%)
MPSR
o EWC 0.7587 0.7942 4.68
@ 0.8 SI 0.7746 0.8166 542
MAS 0.7563 0.7968 5.36
0.75F Weighted SRCC
EWC 0.6513 0.7481 14.86
SI 0.6558 0.7633 16.39
0.7 MAS 0.6584 0.7665 16.42
0.65 Il Il Il Il
1 2 3 4 5 6 wide open whether we need to add or remove several

Fig. 6. PSR: as a function of the task index ¢ for different continual
learning regularizers.

EWC, SI, and MAS to 10, 000, 100, and 10, respectively, bal-
ancing the magnitude of 3 for different methods. We com-
pare PSR; as a function of the task index ¢ in Fig. 6, where
we find that the proposed method works equally well with
different continual learning regularizers. We also show the
performance comparison in terms of MPSR and weighted
SRCC in Table 11, where the baselines use the latest head
to predict image quality. We see that the proposed method
leads to consistent performance gains over the baselines.
Therefore, we may conclude that the improvement by the
proposed adaptive weighting is orthogonal to the adopted
continual learning regularizers.

6 CONCLUSION

We have formulated continual learning for BIQA with five
desiderata and a plasticity-stability measure. We also con-
tributed a continual learning method to train BIQA models
robust to subpopulation shift in this new setting.

This work establishes a new research direction in BIQA
with many important topics left unexplored. First, it remains

desiderata to make continual learning for BIQA more practi-
cal. For example, it may be useful to add the online learning
desideratum, where learning happens instantaneously with
no distinct boundaries between tasks (or datasets). Second,
better continual learning methods for BIQA are desirable
to bridge the performance gap between the current method
and the upper bound by joint learning. Third, the current
work only considers two distortion scenarios, i.e., synthetic
and realistic distortions, to construct the task sequence. In
the future, it would be interesting to incorporate multiple
distortion scenarios, representing more subpopulation shift
during training and testing. Last, the current work only
explores small-length task sequences with a limited number
of task orders. It is necessary to test the current method
on task sequences with arbitrary length and in arbitrary
order. It is also important to develop more order-robust and
length-robust continual learning methods for BIQA.
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