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Speed: 1x

Step 10301 (60.0 step/s)

Model type:

 Growing

 Persistent

 Regenerating

Rotation 0° [experiment 4] 

Regenerating models were subject to pattern damages during training, so their regenerative
capabilities are much stronger, especially in the central area. [experiment 3]
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This article is part of the Differentiable Self-organizing Systems Thread, an experimental

format collecting invited short articles delving into differentiable self-organizing systems,

interspersed with critical commentary from several experts in adjacent fields.

← PREVIOUS ARTICLE

Differentiable Self-organizing
Systems Thread

NEXT ARTICLE →

Self-classifying MNIST Digits

Most multicellular organisms begin their life as a single egg cell - a single cell whose progeny

reliably self-assemble into highly complex anatomies with many organs and tissues in precisely

the same arrangement each time. The ability to build their own bodies is probably the most

fundamental skill every living creature possesses. Morphogenesis (the process of an organism’s

shape development) is one of the most striking examples of a phenomenon called self-
organisation. Cells, the tiny building blocks of bodies, communicate with their neighbors to

decide the shape of organs and body plans, where to grow each organ, how to interconnect

them, and when to eventually stop. Understanding the interplay of the emergence of complex

outcomes from simple rules and homeostatic feedback loops is an active area of research 

. What is clear is that evolution has learned to exploit the laws of physics and computation to

implement the highly robust morphogenetic software that runs on genome-encoded cellular

hardware.

This process is extremely robust to perturbations. Even when the organism is fully developed,

some species still have the capability to repair damage - a process known as regeneration.

Some creatures, such as salamanders, can fully regenerate vital organs, limbs, eyes, or even

parts of the brain! Morphogenesis is a surprisingly adaptive process. Sometimes even a very

atypical development process can result in a viable organism - for example, when an early

mammalian embryo is cut in two, each half will form a complete individual - monozygotic twins!

The biggest puzzle in this field is the question of how the cell collective knows what to build and

when to stop. The sciences of genomics and stem cell biology are only part of the puzzle, as

they explain the distribution of specific components in each cell, and the establishment of

different types of cells. While we know of many genes that are required for the process of

regeneration, we still do not know the algorithm that is sufficient for cells to know how to build

or remodel complex organs to a very specific anatomical end-goal. Thus, one major lynch-pin of

future work in biomedicine is the discovery of the process by which large-scale anatomy is

specified within cell collectives, and how we can rewrite this information to have rational control

of growth and form. It is also becoming clear that the software of life possesses numerous

modules or subroutines, such as “build an eye here”, which can be activated with simple signal

triggers . Discovery of such subroutines and a mapping out of the developmental logic is a

new field at the intersection of developmental biology and computer science. An important next

1 [1, 2]

[3]
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new field at the intersection of developmental biology and computer science. An important next

step is to try to formulate computational models of this process, both to enrich the conceptual

toolkit of biologists and to help translate the discoveries of biology into better robotics and

computational technology.

Imagine if we could design systems of the same plasticity and robustness as biological life:

structures and machines that could grow and repair themselves. Such technology would

transform the current efforts in regenerative medicine, where scientists and clinicians seek to

discover the inputs or stimuli that could cause cells in the body to build structures on demand

as needed. To help crack the puzzle of the morphogenetic code, and also exploit the insights of

biology to create self-repairing systems in real life, we try to replicate some of the desired

properties in an in silico experiment.

Model

Those in engineering disciplines and researchers often use many kinds of simulations

incorporating local interaction, including systems of partial derivative equation (PDEs), particle

systems, and various kinds of Cellular Automata (CA). We will focus on Cellular Automata

models as a roadmap for the effort of identifying cell-level rules which give rise to complex,

regenerative behavior of the collective. CAs typically consist of a grid of cells being iteratively

updated, with the same set of rules being applied to each cell at every step. The new state of a

cell depends only on the states of the few cells in its immediate neighborhood. Despite their

apparent simplicity, CAs often demonstrate rich, interesting behaviours, and have a long history

of being applied to modeling biological phenomena.

Let’s try to develop a cellular automata update rule that, starting from a single cell, will produce

a predefined multicellular pattern on a 2D grid. This is our analogous toy model of organism

development. To design the CA, we must specify the possible cell states, and their update

function. Typical CA models represent cell states with a set of discrete values, although variants

using vectors of continuous values exist. The use of continuous values has the virtue of allowing

the update rule to be a differentiable function of the cell’s neighbourhood’s states. The rules

that guide individual cell behavior based on the local environment are analogous to the low-level

hardware specification encoded by the genome of an organism. Running our model for a set

amount of steps from a starting configuration will reveal the patterning behavior that is enabled

by such hardware.

So - what is so special about differentiable update rules? They will allow us to use the powerful

language of loss functions to express our wishes, and the extensive existing machinery around

gradient-based numerical optimization to fulfill them. The art of stacking together differentiable

functions, and optimizing their parameters to perform various tasks has a long history. In recent

years it has flourished under various names, such as (Deep) Neural Networks, Deep Learning or
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years it has flourished under various names, such as (Deep) Neural Networks, Deep Learning or

Differentiable Programming.

Cell State

We will represent each cell state as a vector of 16 real values (see the figure above). The first

three channels represent the cell color visible to us (RGB). The target pattern has color channel

values in range  and an  equal to 1.0 for foreground pixels, and 0.0 for background.

The alpha channel ( ) has a special meaning: it demarcates living cells, those belonging to the

pattern being grown. In particular, cells having  and their neighbors are considered

“living”. Other cells are “dead” or empty and have their state vector values explicitly set to 0.0 at

each time step. Thus cells with  can be thought of as “mature”, while their neighbors

with  are “growing”, and can become mature if their alpha passes the 0.1 threshold.

Hidden channels don’t have a predefined meaning, and it’s up to the update rule to decide what

to use them for. They can be interpreted as concentrations of some chemicals, electric

potentials or some other signaling mechanism that are used by cells to orchestrate the growth.

In terms of our biological analogy - all our cells share the same genome (update rule) and are

A single update step of the model.

[0.0, 1.0] α

α

α > 0.1

α > 0.1
α ≤ 0.1

 when no neighbour with → 0.00state⃗ α > 0.10
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In terms of our biological analogy - all our cells share the same genome (update rule) and are

only differentiated by the information encoded the chemical signalling they receive, emit, and

store internally (their state vectors).

Cellular Automaton rule

Now it’s time to define the update rule. Our CA runs on a regular 2D grid of 16-dimensional

vectors, essentially a 3D array of shape [height, width, 16]. We want to apply the same

operation to each cell, and the result of this operation can only depend on the small (3x3)

neighborhood of the cell. This is heavily reminiscent of the convolution operation, one of the

cornerstones of signal processing and differential programming. Convolution is a linear

operation, but it can be combined with other per-cell operations to produce a complex update

rule, capable of learning the desired behaviour. Our cell update rule can be split into the

following phases, applied in order:

Perception. This step defines what each cell perceives of the environment surrounding it. We

implement this via a 3x3 convolution with a fixed kernel. One may argue that defining this kernel

is superfluous - after all we could simply have the cell learn the requisite perception kernel

coefficients. Our choice of fixed operations are motivated by the fact that real life cells often rely

only on chemical gradients to guide the organism development. Thus, we are using classical

Sobel filters to estimate the partial derivatives of cell state channels in the  and  directions,

forming a 2D gradient vector in each direction, for each state channel. We concatenate those

gradients with the cells own states, forming a  dimensional perception vector,
or rather percepted vector, for each cell.

Update rule. Each cell now applies a series of operations to the perception vector, consisting of

typical differentiable programming building blocks, such as 1x1-convolutions and ReLU

nonlinearities, which we call the cell’s “update rule”. Recall that the update rule is learned, but

every cell runs the same update rule. The network parametrizing this update rule consists of

approximately 8,000 parameters. Inspired by residual neural networks, the update rule outputs

def perceive(state_grid):
sobel_x = [[-1, 0, +1],
[-2, 0, +2],
[-1, 0, +1]]
sobel_y = transpose(sobel_x)
# Convolve sobel filters with states
# in x, y and channel dimension.
grad_x = conv2d(sobel_x, state_grid)
grad_y = conv2d(sobel_y, state_grid)
# Concatenate the cell’s state channels,
# the gradients of channels in x and
# the gradient of channels in y.
perception_grid = concat(
state_grid, grad_x, grad_y, axis=2)
return perception_grid

x ⃗ y ⃗

16 ∗ 2 + 16 = 48
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approximately 8,000 parameters. Inspired by residual neural networks, the update rule outputs

an incremental update to the cell’s state, which applied to the cell before the next time step. The

update rule is designed to exhibit “do-nothing” initial behaviour - implemented by initializing the

weights of the final convolutional layer in the update rule with zero. We also forego applying a

ReLU to the output of the last layer of the update rule as the incremental updates to the cell

state must necessarily be able to both add or subtract from the state.

Stochastic cell update. Typical cellular automata update all cells simultaneously. This implies

the existence of a global clock, synchronizing all cells. Relying on global synchronisation is not

something one expects from a self-organising system. We relax this requirement by assuming

that each cell performs an update independently, waiting for a random time interval between

updates. To model this behaviour we apply a random per-cell mask to update vectors, setting all

update values to zero with some predefined probability (we use 0.5 during training). This

operation can be also seen as an application of per-cell dropout to update vectors.

Living cell masking. We want to model the growth process that starts with a single cell, and

don’t want empty cells to participate in computations or carry any hidden state. We enforce this

by explicitly setting all channels of empty cells to zeros. A cell is considered empty if there is no

“mature” (alpha>0.1) cell in its 3x3 neightborhood.

Experiment 1: Learning to Grow

def update(perception_vector):
# The following pseudocode operates on
# a single cell’s perception vector.
# Our reference implementation uses 1D
# convolutions for performance reasons.
x = dense(perception_vector, output_len=128)
x = relu(x)
ds = dense(x, output_len=16, weights_init=0.0)
return ds

def stochastic_update(state_grid, ds_grid):
# Zero out a random fraction of the updates.
rand_mask = cast(random(64, 64) < 0.5, float32)
ds_grid = ds_grid * rand_mask
return state_grid + ds_grid

def alive_masking(state_grid):
# Take the alpha channel as the measure of “life”.
alive = max_pool(state_grid[:, :, 3], (3,3)) > 0.1
state_grid = state_grid * cast(alive, float32)
return state_grid
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In our first experiment, we simply train the CA to achieve a target image after a random number

of updates. This approach is quite naive and will run into issues. But the challenges it surfaces

will help us refine future attempts.

We initialize the grid with zeros, except a single seed cell in the center, which will have all

channels except RGB set to one. Once the grid is initialized, we iteratively apply the update

rule. We sample a random number of CA steps from the [64, 96] range for each training step,

as we want the pattern to be stable across a number of iterations. At the last step we apply

pixel-wise L2 loss between RGBA channels in the grid and the target pattern. This loss can be

differentiably optimized with respect to the update rule parameters by backpropagation-

through-time, the standard method of training recurrent neural networks.

Once the optimisation converges, we can run simulations to see how our learned CAs grow

patterns starting from the seed cell. Let’s see what happens when we run it for longer than the

number of steps used during training. The animation below shows the behaviour of a few

different models, trained to generate different emoji patterns.

Training regime for learning a target pattern.

2 

3 

4 
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We can see that different training runs can lead to models with drastically different long term

behaviours. Some tend to die out, some don’t seem to know how to stop growing, but some

happen to be almost stable! How can we steer the training towards producing persistent

patterns all the time?

Experiment 2: What persists, exists

One way of understanding why the previous experiment was unstable is to draw a parallel to

dynamical systems. We can consider every cell to be a dynamical system, with each cell sharing

the same dynamics, and all cells being locally coupled amongst themselves. When we train our

cell update model we are adjusting these dynamics. Our goal is to find dynamics that satisfy a

number of properties. Initially, we wanted the system to evolve from the seed pattern to the

target pattern - a trajectory which we achieved in Experiment 1. Now, we want to avoid the

instability we observed - which in our dynamical system metaphor consists of making the target

pattern an attractor.

One strategy to achieve this is letting the CA iterate for much longer time and periodically

applying the loss against the target, training the system by backpropagation through these

longer time intervals. Intuitively we claim that with longer time intervals and several applications

of loss, the model is more likely to create an attractor for the target shape, as we iteratively mold

the dynamics to return to the target pattern from wherever the system has decided to venture.

However, longer time periods substantially increase the training time and more importantly, the

memory requirements, given that the entire episode’s intermediate activations must be stored in

memory for a backwards-pass to occur.

Instead, we propose a “sample pool” based strategy to a similar effect. We define a pool of seed

states to start the iterations from, initially filled with the single black pixel seed state. We then

sample a batch from this pool which we use in our training step. To prevent the equivalent of

“catastrophic forgetting” we replace one sample in this batch with the original, single-pixel seed

state. After concluding the training step , we replace samples in the pool that were sampled for

the batch with the output states from the training step over this batch. The animation below

shows a random sample of the entries in the pool every 20 training steps.

def pool_training():
# Set alpha and hidden channels to (1.0).
seed = zeros(64, 64, 16)
seed[64//2, 64//2, 3:] = 1.0

Many of the patterns exhibit instability for longer time periods. 

REPRODUCE IN A NOTEBOOK
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Early on in the training process, the random dynamics in the system allow the model to end up in

various incomplete and incorrect states. As these states are sampled from the pool, we refine

the dynamics to be able to recover from such states. Finally, as the model becomes more robust

at going from a seed state to the target state, the samples in the pool reflect this and are more

seed[64//2, 64//2, 3:] = 1.0
target = targets[‘lizard’]
pool = [seed] * 1024
for i in range(training_iterations):
idxs, batch = pool.sample(32)
# Sort by loss, descending.
batch = sort_desc(batch, loss(batch))
# Replace the highest-loss sample with the seed.
batch[0] = seed
# Perform training.
outputs, loss = train(batch, target)
# Place outputs back in the pool.
pool[idxs] = outputs

A random sample of the patterns in the pool during training, sampled every 20 training steps. 

REPRODUCE IN A NOTEBOOK
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at going from a seed state to the target state, the samples in the pool reflect this and are more

likely to be very close to the target pattern, allowing the training to refine these almost

completed patterns further.

Essentially, we use the previous final states as new starting points to force our CA to learn how

to persist or even improve an already formed pattern, in addition to being able to grow it from a

seed. This makes it possible to add a periodical loss for significantly longer time intervals than

otherwise possible, encouraging the generation of an attractor as the target shape in our

coupled system. We also noticed that reseeding the highest loss sample in the batch, instead of

a random one, makes training more stable at the initial stages, as it helps to clean up the low

quality states from the pool.

Here is what a typical training progress of a CA rule looks like. The cell rule learns to stabilize the

pattern in parallel to refining its features.

Experiment 3: Learning to regenerate

In addition to being able to grow their own bodies, living creatures are great at maintaining them.

Not only does worn out skin get replaced with new skin, but very heavy damage to complex vital

organs can be regenerated in some species. Is there a chance that some of the models we

trained above have regenerative capabilities?

CA behaviour at training steps 100, 500, 1000, 4000. 

REPRODUCE IN A NOTEBOOK
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The animation above shows three different models trained using the same settings. We let each

of the models develop a pattern over 100 steps, then damage the final state in five different

ways: by removing different halves of the formed pattern, and by cutting out a square from the

center. Once again, we see that these models show quite different out-of-training mode

behaviour. For example “the lizard” develops quite strong regenerative capabilities, without

being explicitly trained for it!

Since we trained our coupled system of cells to generate an attractor towards a target shape

from a single cell, it was likely that these systems, once damaged, would generalize towards

non-self-destructive reactions. That’s because the systems were trained to grow, stabilize, and

never entirely self-destruct. Some of these systems might naturally gravitate towards

regenerative capabilities, but nothing stops them from developing different behaviors such as

explosive mitoses (uncontrolled growth), unresponsiveness to damage (overstabilization), or

even self destruction, especially for the more severe types of damage.

If we want our model to show more consistent and accurate regenerative capabilities, we can try

to increase the basin of attraction for our target pattern - increase the space of cell

configurations that naturally gravitate towards our target shape. We will do this by damaging a

few pool-sampled states before each training step. The system now has to be capable of

regenerating from states damaged by randomly placed erasing circles. Our hope is that this will

generalize to regenerational capabilities from various types of damage.

Patterns exhibit some regenerative properties upon being damaged, but not full re-growth. 

REPRODUCE IN A NOTEBOOK
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The animation above shows training progress, which includes sample damage. We sample 8

states from the pool. Then we replace the highest-loss sample (top-left-most in the above) with

the seed state, and damage the three lowest-loss (top-right-most) states by setting a random

circular region within the pattern to zeros. The bottom row shows states after iteration from the

respective top-most starting state. As in Experiment 2, the resulting states get injected back

into the pool.

As we can see from the animation above, models that were exposed to damage during training

are much more robust, including to types of damage not experienced in the training process (for

instance rectangular damage as above).

Experiment 4: Rotating the perceptive field

Damaging samples in the pool encourages the learning of robust regenerative qualities. Row 1 are samples
from the pool, Row 2 are their respective states after iterating the model.

REPRODUCE IN A NOTEBOOK

Patterns exposed to damage during training exhibit astounding regenerative capabilities. 

REPRODUCE IN A NOTEBOOK
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As previously described, we model the cell’s perception of its neighbouring cells by estimating

the gradients of state channels in  and  using Sobel filters. A convenient analogy is that each

agent has two sensors (chemosensory receptors, for instance) pointing in orthogonal directions

that can sense the gradients in the concentration of certain chemicals along the axis of the

sensor. What happens if we rotate those sensors? We can do this by rotating the Sobel kernels.

This simple modification of the perceptive field produces rotated versions of the pattern for an

angle of choosing without retraining as seen below.

In a perfect world, not quantized by individual cells in a pixel-lattice, this would not be too

surprising, as, after all, one would expect the perceived gradients in  and  to be invariant to

the chosen angle - a simple change of frame of reference. However, it is important to note that

x ⃗ y ⃗

= ∗[Kx

Ky
] [cos θ

sin θ

− sin θ

cos θ
] [Sobelx

Sobely
]

Rotating the axis along which the perception step computes gradients brings about rotated versions of the
pattern. 

REPRODUCE IN A NOTEBOOK

x ⃗ y ⃗

2020/11/30 上午 10:57
⻚码：14/23



things are not as simple in a pixel based model. Rotating pixel based graphics involves

computing a mapping that’s not necessarily bijective and classically involves interpolating

between pixels to achieve the desired result. This is because a single pixel, when rotated, will

now likely overlap several pixels. The successful growth of patterns as above suggests a certain

robustness to the underlying conditions outside of those experienced during training.

Related Work

CA and PDEs

There exists an extensive body of literature that describes the various flavours of cellular

automata and PDE systems, and their applications to modelling physical, biological or even

social systems. Although it would be impossible to present a just overview of this field in a few

lines, we will describe some prominent examples that inspired this work. Alan Turing introduced

his famous Turing patterns back in 1952 , suggesting how reaction-diffusion systems can be

a valid model for chemical behaviors during morphogenesis. A particularly inspiring reaction-

diffusion model that stood the test of time is the Gray-Scott model , which shows an extreme

variety of behaviors controlled by just a few variables.

Ever since von Neumann introduced CAs  as models for self-replication they have captivated

researchers’ minds, who observed extremely complex behaviours emerging from very simple

rules. Likewise, the a broader audience outside of academia were seduced by CA’s life-like

behaviours thanks to Conway’s Game of Life . Perhaps motivated in part by the proof that

something as simple as the Rule 110 is Turing complete, Wolfram’s “A New Kind of Science” 

asks for a paradigm shift centered around the extensive usage of elementary computer

programs such as CA as tools for understanding the world.

More recently, several researchers generalized Conway’s Game of life to work on more

continuous domains. We were particularly inspired by Rafler’s SmoothLife  and Chan’s Lenia

, the latter of which also discovers and classifies entire species of “lifeforms”.

A number of researchers have used evolutionary algorithms to find CA rules that reproduce

predefined simple patterns . For example, J. Miller  proposed an experiment similar to

ours, using evolutionary algorithms to design a CA rule that could build and regenerate the

French flag, starting from a seed cell.

Neural Networks and Self-Organisation

[5]

[6]

[7]

[8]

[9]

[10]

[11, 12]

[13, 14] [15]
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Neural Networks and Self-Organisation

The close relation between Convolutional Neural Networks and Cellular Automata has already

been observed by a number of researchers . The connection is so strong it allowed us to

build Neural CA models using components readily available in popular ML frameworks. Thus,

using a different jargon, our Neural CA could potentially be named “Recurrent Residual

Convolutional Networks with ‘per-pixel’ Dropout”.

The Neural GPU  offers a computational architecture very similar to ours, but applied in

the context of learning multiplication and a sorting algorithm.

Looking more broadly, we think that the concept of self-organisation is finding its way into

mainstream machine learning with popularisation of Graph Neural Network  models.

Typically, GNNs run a repeated computation across vertices of a (possibly dynamic) graph.

Vertices communicate locally through graph edges, and aggregate global information required

to perform the task over multiple rounds of message exchanges, just as atoms can be thought

of as communicating with each other to produce the emergent properties of a molecule , or

even points of a point cloud talk to their neighbors to figure out their global shape .

Self-organization also appeared in fascinating contemporary work using more traditional

dynamic graph networks, where the authors evolved Self-Assembling Agents to solve a variety

of virtual tasks .

Swarm Robotics

One of the most remarkable demonstrations of the power of self-organisation is when it is

applied to swarm modeling. Back in 1987, Reynolds’ Boids  simulated the flocking behaviour

of birds with just a tiny set of handcrafted rules. Nowadays, we can embed tiny robots with

programs and test their collective behavior on physical agents, as demonstrated by work such

as Mergeable Nervous Systems  and Kilobots . To the best of our knowledge, programs

embedded into swarm robots are currently designed by humans. We hope our work can serve as

an inspiration for the field and encourage the design of collective behaviors through

differentiable modeling.

Discussion

Embryogenetic Modeling

[16, 17]

[18, 19]

[20]

[21]

[22]

[23]

[24]

[25] [26]
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This article describes a toy embryogenesis and regeneration model. This is a major direction for

future work, with many applications in biology and beyond. In addition to the implications for

understanding the evolution and control of regeneration, and harnessing this understanding for

biomedical repair, there is the field of bioengineering. As the field transitions from synthetic

biology of single cell collectives to a true synthetic morphology of novel living machines ,

it will be essential to develop strategies for programming system-level capabilities, such as

anatomical homeostasis (regenerative repair). It has long been known that regenerative

organisms can restore a specific anatomical pattern; however, more recently it’s been found that

the target morphology is not hard coded by the DNA, but is maintained by a physiological circuit

that stores a setpoint for this anatomical homeostasis . Techniques are now available for re-

writing this setpoint, resulting for example  in 2-headed flatworms that, when cut into

pieces in plain water (with no more manipulations) result in subsequent generations of 2-headed

regenerated worms (as shown above). It is essential to begin to develop models of the

computational processes that store the system-level target state for swarm behavior

, so that efficient strategies can be developed for rationally editing this information

structure, resulting in desired large-scale outcomes (thus defeating the inverse problem that

holds back regenerative medicine and many other advances).

Engineering and machine learning

The models described in this article run on the powerful GPU of a modern computer or a

smartphone. Yet, let’s speculate about what a “more physical” implementation of such a system

could look like. We can imagine it as a grid of tiny independent computers, simulating individual

cells. Each of those computers would require approximately 10Kb of ROM to store the “cell

genome”: neural network weights and the control code, and about 256 bytes of RAM for the cell

Regeneration-capable 2-headed planarian, the creature that inspired this work  

REPRODUCE IN A NOTEBOOK
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genome”: neural network weights and the control code, and about 256 bytes of RAM for the cell

state and intermediate activations. The cells must be able to communicate their 16-value state

vectors to neighbors. Each cell would also require an RGB-diode to display the color of the pixel

it represents. A single cell update would require about 10k multiply-add operations and does not

have to be synchronised across the grid. We propose that cells might wait for random time

intervals between updates. The system described above is uniform and decentralised. Yet, our

method provides a way to program it to reach the predefined global state, and recover this state

in case of multi-element failures and restarts. We therefore conjecture this kind of modeling may

be used for designing reliable, self-organising agents. On the more theoretical machine learning

front, we show an instance of a decentralized model able to accomplish remarkably complex

tasks. We believe this direction to be opposite to the more traditional global modeling used in

the majority of contemporary work in the deep learning field, and we hope this work to be an

inspiration to explore more decentralized learning modeling.

This article is part of the Differentiable Self-organizing Systems Thread, an experimental

format collecting invited short articles delving into differentiable self-organizing systems,

interspersed with critical commentary from several experts in adjacent fields.

← PREVIOUS ARTICLE

Differentiable Self-organizing
Systems Thread

NEXT ARTICLE →

Self-classifying MNIST Digits
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entire process and contributed extensively to the later stages of development by performing experiments and refining the

model.

The idea of applying neural networks to understanding regeneration, and to designing self-organising systems, was

proposed by Michael Levin in his email to Alexander, that was sent following the DeepDream  publication by Alexander

in 2015. Alexander’s proposal of this model and this work were inspired by the talk  given by Michael at NeurIPS 2018

as well as the subsequent email exchange between Alexander and Michael.

Demos: Alexander created both the WebGL and the tf.js demo. Ettore contributed to the tf.js demo.

Writing & Diagrams: Alexander outlined the structure of the article, and contributed to the content throughout. Ettore

contributed to the content throughout. Eyvind drew all the diagrams, contributed to the content throughout, and wrote all

of the pseudocode. Michael made extensive contributions to the article text, providing the biological context and

motivation for this work.

Implementation
details

WebGL playground. Starting from our first experiments on Neural CA growth and regeneration, we wanted to challenge

our models with new situations not seen during training, like removing large portions of the pattern, or seeding multiple

instances side-by-side. To facilitate exploration and sharing of our models, we created a TensorFlow.js playground that

allowed us to interact with trained models right in a browser. The code for exporting and loading CA models in TF.js format

is available in the accompanying Colab notebook.

While writing this article, we decided to see how far one can push the performance and portability of this interactive

playground. We reimplemented all necessary operations from scratch using the WebGL API and GLSL shader language.

This implementation powers the demo that can be found on the top of this page. We decided to quantize all model

parameters and activations to 8-bit values, in order to maximize the performance and compatibility with mobile hardware.

The quantization was largely an afterthought, and was not accounted for during training. That’s why there are slight

differences in models’ behaviours between the online demo and the Python version. However, most of the CAs that we’ve

trained managed to survive the somewhat draconic quantization without severe artifacts, although in a few cases we had to

resort to selecting the best model checkpoint between a few training runs.

Colaboratory Notebook. All of the experiments, images and videos in this article can be recreated using the single

notebook referenced at the beginning of the article. Images have a “Recreate in Colab” button which brings you to the

corresponding cell that generated the image. Our reference implementation of the Neural CA was written while striving to

be as concise and simple as possible and thus foregoes many performance optimizations and tricks one could implement.

For the core of the CA - the neural network parametrizing the update rule - the full code is contained in the tf.keras.Model

NeuralCA class. Note that this network consists of just 8.3K parameters - minute by most standards and we suspect it

could be minimized further employing pruning or other forms of compression. The update loop consists of a native python

loop iteratively applying the aforementioned update function, and making use of various techniques we’ve described in the

article, such as having a sample pool and applying damage to the starting seeds. The rest of the notebook consists of code

to generate and visualize the various images and videos employed in this article, utilizing models pre-trained by us using

this very same colab. These pre-trained models can be easily recreated in a matter of minutes with a current generation

GPU or one provided for free in Colab.

Footnotes

1. Self-regulatory feedback loops trying maintain the body in a stable state or preserve its correct overall morphology

under external perturbations [ ↩]

[38]
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2. We set RGB channels of the seed to zero because we want it to be visible on the white background. [ ↩]

3. This should be a sufficient number of steps to grow the pattern of the size we work with (40x40), even considering the

stochastic nature of our update rule. [ ↩]

4. We observed training instabilities, that were manifesting themselves as sudden jumps of the loss value in the later

stages of the training. We managed to mitigate them by applying per-variable L2 normalization to parameter gradients.

This may have the effect similar to the weight normalization . Other training parameters are available in the

accompanying source code. [ ↩]

5. We noticed that our models are more sensitive to the accuracy of small magnitude activation values, rather than the

large ones. That’s why we use the non-linear  function to compress the unbounded activation values to the

bounded segment, preserving the highest accuracy around zero. [ ↩]
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Updates
and
Corrections

If you see mistakes or want to suggest changes, please create an issue on GitHub.
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Diagrams and text are licensed under Creative Commons Attribution CC-BY 4.0 with the source available on GitHub, unless

noted otherwise. The figures that have been reused from other sources don’t fall under this license and can be recognized

by a note in their caption: “Figure from …”.
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