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Abstract

Recent studies witnessed that context features can signif-

icantly improve the performance of deep semantic segmen-

tation networks. Current context based segmentation meth-

ods differ with each other in how to construct context fea-

tures and perform differently in practice. This paper firstly

introduces three desirable properties of context features in

segmentation task. Specially, we find that Global-guided

Local Affinity (GLA) can play a vital role in constructing ef-

fective context features, while this property has been largely

ignored in previous works. Based on this analysis, this pa-

per proposes Adaptive Pyramid Context Network (APCNet)

for semantic segmentation. APCNet adaptively constructs

multi-scale contextual representations with multiple well-

designed Adaptive Context Modules (ACMs). Specifically,

each ACM leverages a global image representation as a

guidance to estimate the local affinity coefficients for each

sub-region, and then calculates a context vector with these

affinities. We empirically evaluate our APCNet on three se-

mantic segmentation and scene parsing datasets, including

PASCAL VOC 2012, Pascal-Context, and ADE20K dataset.

Experimental results show that APCNet achieves state-of-

the-art performance on all three benchmarks, and obtains

a new record 84.2% on PASCAL VOC 2012 test set without

MS COCO pre-trained and any post-processing.

1. Introduction

Semantic segmentation, aiming at assigning a category

label for each pixel, is a fundamental yet important prob-

lem in computer vision, with wide applications in scene un-

derstanding, medical imaging, robot vision etc [27] [28].

The challenge of semantic segmentation comes from the

inner content, shape, and scale variations of the same ob-

ject/stuff, as well as the easily confused and fine bound-

aries among different objects/stuff. Current state-of-the-art

∗Yu Qiao is the corresponding author. The author emails are hejun-

jun@sjtu.edu.cn, {zy.deng1, lei.zhou, yl.wang, yu.qiao}@siat.ac.cn.

semantic segmentation methods heavily exploit deep con-

volutional neural networks (CNNs), e.g. Fully Convolu-

tional Network (FCN) [22], U-Net [28], to extract dense se-

mantic representations from input images and predict pixel-

level labels. When trained properly, deep CNNs can capture

rich scene information with multilayer convolutional opera-

tions and nonlinear pooling/activation functions. Due to the

convolutional nature of CNN, however, local convolutional

features usually have limited receptive fields. Moreover,

even with a large receptive field, these features mainly de-

scribe the core region and largely ignore the context around

boundary [23]. On the other hand, local regions from differ-

ent category may share near features, e.g. wood table and

chair may exhibit similar local textures. The precise seman-

tic segmentation always requires context information from

different scales and large regions to release the ambiguity

caused by local regions.

To address this problem, a number of recent works

[4, 40, 20, 10, 13] aggregate context vector to local con-

volutional feature to boost the segmentation performance.

These methods differ with each other in the way to con-

struct context vector, and perform differently on different

datasets. So there is a natural question, what are the optimal

contexts for semantic segmentation. This paper tries to ad-

dress this question by investigating the desirable properties

that the optimal context vector should exhibit. In principle,

the optimal context vector should describe segmentation-

relevant image contents which are complementary to the lo-

cal features, meanwhile, this vector should be compact with

irrelevant information as less as possible. Specifically, we

summarize three key properties as follows.

Property 1-Multi-scale. For semantic segmentation,

holistic objects/stuff regions yield important cues to deter-

mine the sematic labels of local pixels. Since objects usu-

ally have different sizes and positions, it is necessary to con-

struct multi-scale representations to capture image contents

from different scales. As shown in the first row of Figure 1,

method without multi-scale contexts can only capture ob-

jects in single scale and lose details in other scales.

Property 2-Adaptive. Not all areas in input image con-

7519



Figure 1. Illustration of Multi-scale and Global-guided Local Affinity properties. The first row: Multi-scale context can capture objects in

different scales. The second row: Global-guided Local Affinity is benefit to segment complete and consist object.

tribute equally to determine the sematic label of a given

pixel. Areas which contain related objects can yield use-

ful information, while others may contribute very few. In

practice, the relevant regions/pixels may exist near around

the given pixel and also can be far away from it, highly de-

pend on the contents and layout of input images. Therefore,

it is important to adaptively identify these important regions

for constructing optimal context vectors.

Property 3-Global-guided Local Affinity (GLA). To

construct effective context vector, one need to aggregate

the features from related pixels or regions. In practice,

this can be implemented by summarizing their features in a

weighted way. So there is a problem of estimating the affin-

ity weights for aggregation. These weights indicate how dif-

ferent areas contribute to predict the semantic label of a lo-

cal pixel. Previous works [20, 10, 13] mainly estimate these

adaptive weights with local representations of pixels and re-

gions, ignoring the global context. Unlike these works, here

our insight is that both local and global representations are

necessary to estimate robust affinity weights. As shown in

the second row of Figure 1, the legs of horse are small and

exhibit similar texture with snow which belongs to back-

ground class and dominates the whole scene. It is prone

to classify the legs to background class. Clearly segmen-

tation task can benefit from global representation. We call

this property as Global-guided Local Affinity (GLA), as the

local affinity weights are guided with global representation.

In the next, we make comparison of current context

based semantic segmentation methods from the perspective

of the properties mentioned above. DeepLab [4], ParseNet

[20], and PSPNet [40] utilize ASPP (atrous spatial pyra-

mid pooling), GAP (global average pooling), and PPM

(pyramid pooling module) to obtain context at different

scales, respectively. All these context vectors, however,

only describe contents at fixed locations and are NOT adap-

tive. More recently, DANet [10] encodes global context

with well designed self-attention mechanism. PSANet [13]

learns an adaptive pixel-wise position sensitive spatial at-

tention mask for aggregating contextual features. OCNet

[37] embeds self-attention mechanism to PPM and ASPP

to exploit multi-scale property. But these methods ignore

the Global-guided Local Affinity property discussed in the

above.

As summarized in Table 1, the previous methods can

only account for some of the three properties. Partly in-

spired by this fact, this paper proposes Adaptive Pyra-

mid Context Network (APCNet) for sematic segmentation,

which effectively constructs the contextual representations

with all the three properties. Specifically, APCNet designs

pyramid Adaptive Context Modules to capture multi-scale

global representations. The main contributions are as fol-

lows.

Method MS Adaptive GLA

DeepLab[4] X

PSPNet [20] X

ParseNet [20]

PSANet [13] X

DANet [10] X

OCNet [37] X X

Ours X X X

Table 1. Comparison of different deep context based semantic seg-

mentation methods. MS: multi-scale, GLA: global-guided local

affinity.

• We summarize three desirable properties of context

vectors for semantic segmentation, and compare re-

cent deep context based semantic segmentation meth-

ods from the perspective of these properties.
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• We propose Adaptive Context Modules which exploit

GLA property by leveraging local and global repre-

sentation to estimate affinity weights for local regions.

These affinities further allow us to construct adaptive

and multi-scale contextual representations for segmen-

tation task.

• Our method achieves state-of-the-art performance on

three widely used benchmarks, including PASCAL

VOC 2012, Pascal-Context and ADE20K dataset, and

obtains a new record 84.2% on PASCAL VOC 2012

test set without MS COCO pre-trained and any post-

processing.

2. Related Work

Recently, FCN [22] based approaches have achieved

promising performance on scene parsing and semantic seg-

mentation task, through encoding contextual information.

But most approaches only consider some properties as men-

tioned in table 1.

Multi-scale context. Multi-scale context plays a key role

in semantic segmentation, especially for objects/stuff with

vast variation of scales. Image Pyramid is a common way

to obtain multi-scale context. [9] uses Laplacian pyramid to

scale the input image of a DCNN [14] and merge the fea-

ture maps. SegNet [2], UNet[28], and [5] design Encoder-

Decoder architecture to fuse low-level and high-level fea-

ture map from encoder and decoder, respectively. PSPNet

[40] and DeepLab [4] propose PPM (pyramid pooling mod-

ule) and ASPP (atrous spatial Pyramid pooling) module to

encoding multi-scale context, respectively. These two mod-

ules are effective and efficiency to some extent, but they

treat all images regions equally, not in an adaptive way.

Global context. Global context is particularly import for

comprehensive complex scene understanding. ParseNet

[20] proposes a simple but effective method to encoding

global context through GAP (global average pooling) for

semantic segmentation. PSPNet [40] exploits pyramid re-

gion based context aggregation to construct global context

utilizing PPM. These methods cannot encode global context

adaptively for every specific pixel. DANet [10] and OC-

Net [37] adopt self-attention to capture long-range global

context, which calculate pixel-wise similarity map based on

the pairs semantic features. While PSANet [13] aggregates

global context through learning a pixel-wise position sensi-

tive spatial attention mask to guide information flow. Cal-

culated pixel-wise similarity map and learned pixel-wise at-

tention map are adaptive to every specific pixel, but these

pairs pixel relations which obtained by calculating pixel-

wise similarity or convolving on a specific pixel position

are lack of global information. While our method learns

relations guided by local and global information.

Different from all previous work, our proposed method

can generate more powerful multi-scale and global contexts

through aggregating multi-scale features with learned adap-

tive affinities guided by local and global information.

3. Method

Context information is essentially important for com-

plex scene parsing and semantic segmentation. Global con-

text is useful to capture long-range dependency and provide

a comprehensive understanding of the whole scene, while

segmentation of objects with different sizes can benefit from

multi-scale contextual features. In the next, we describe the

proposed Adaptive Pyramid Context Network which adap-

tively constructs multi-scale context vectors with the guid-

ance of global image representation.

3.1. Formulation

To begin with, we describe the mathematical formulation

of our problem as follows. Given an image I for segmen-

tation, we calculate a dense 3D convolution feature cube X

with a backbone CNN, where Xi denotes the convolutional

feature vector at position i. And xi denotes the reduced

convolutional feature vector at position i for efficient com-

putation. The segmentation task can be reduced to predict

a semantic label of a pixel, take i for example. One direct

idea toward this problem is to estimate the semantic label

just with the local feature Xi. However, this idea ignores

the relevant contents in other areas and limit the segmenta-

tion performance. To address this problem, context features

have been successfully exploited to boost segmentation per-

formance in previous works [4, 40, 20, 10, 13]. Mathemati-

cally, we introduce zi = Fcontext(X, i) to denote the context

feature vector for Xi, where Fcontext represents the function

to extract zi from input feature cube at position i. Previous

context segmentation methods differ with each other in how

to define Fcontext.

As discussed in the Section 1, this paper aims to design a

novel context which satisfied the three properties, 1) Multi-

scale, 2) Adaptive, and 3) Global-guided Local Affinity. To-

ward this objective, we first transform X into multi-scale

pyramid representations. Then we adaptively construct con-

text vectors for each scale separately. Here we just take one

scale s as an example and the other scales can be processed

in a similar way. For this scale, we divide the feature map

X of image I into s×s subregions, thus transform X into a

set of subregion representations, Ys = [Ys
1
,Ys

2
, ...,Ys

s×s],
according to this division. For each subregion Ys

j , we sum-

marize its contents with a feature vector ys
j by average pool-

ing and one convolution operation. We introduce affinity

coefficient αs
i,j to denote the degree of how subregion Ys

j

contributes to estimate the sematic label of Xi. Then, the
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Figure 2. The pipeline of Adaptive Pyramid Context Network (APCNet). The input image is fed into a backbone CNN to obtain convolu-

tional feature cube X. X is decomposed into multi-scale pyramid representation. The representation of each scale is feed into Adaptive

Context Module (ACM) to estimate adaptive context vectors for each local position. APCNet consists of multiple ACMs organized in par-

allel. Each ACM consists of two branches with one branch to estimate GLA affinity coefficients and the other branch to obtain subregion

representations. The output of these two branches are multiplied to obtain adaptive context vectors. Finally, APCNet concatenates context

vectors from different scales and the original feature cube X for predicting the semantic labels of the input pixels

adaptive context vector can be calculated as,

zsi =

s×s∑

j=1

αs
ijy

s
j , (1)

Here the key problem is how to calculate coefficient αs
i,j .

Ideally, αs
i,j should satisfy the GLA property by account-

ing for both local feature from xi and global representa-

tion from X given scale s and position j. Let g(X) denote

the global information representation vector of X and g is

a global information extractor. In this paper, we calculate

αs
i,j = fs(xi, g(X), j). Then Eq. 1 evolves to

zsi =
s×s∑

j=1

fs(xi, g(X), j)ys
j . (2)

The above Eq. 2 plays a key role in our design of Adap-

tive Pyramid Context Network.

3.2. Adaptive Context Module

The Adaptive Context Module (ACM) is a key compo-

nent in our Adaptive Pyramid Context Network. In princi-

ple, ACM aims to calculate a context vector for each local

position by leveraging Global-guided Local Affinity. Essen-

tially, ACM implements Eq. 2 with the network architecture

shown in Fig. 2. ACM consists of two branches. The first

branch aims to calculate affinity coefficients αs while the

second approach processes single-scale representation ys.

Details are given in the below.

In the first branch, we first process X with a 1 × 1 con-

volution to get the reduced feature map x, and then obtain

global information representation vector g(X) by applying

spatial global average pooling and one 1 × 1 convolutional

transform on x. In the next, we integrate both local fea-

tures {xi} and global vector g(X) to calculate an Global-

guided Local Affinity vector for each local positions i. This

is implemented with a 1× 1 convolution followed by a sig-

moid activation function in our design. One may argue to

exploit large spatial convolution. But this leads to poor per-

formance in experiments, partly due to the complexity of

large filters. Each affinity vector has a dimension s×s, cor-

responding the number of subregions in this scale. Totally,

we have h ∗ w affinity vectors, which can be reshaped to

an affinity map with size hw × ss. The second branch ap-

plies adaptive average pooling and a 1×1 convolution on X

to obtain ys ∈ R
s×s×512 . Then we reshape ys into size of
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s2×512 to match that of the affinity map. Then we multiply

them together and reshape the results to obtain the adaptive

context matrix zs composed of {zsi}. Residual learning is

adopted to ease the training process, and thus we add x to

zs.

3.3. Adaptive Pyramid Context Network

Next, we will describe the proposed Adaptive Pyra-

mid Context Network (APCNet) for semantic segmentation,

whose architecture is shown in Figure 2. APCNet takes a

backbone CNN e.g. ResNet or InceptionNet to calculate

a convolutional feature cube X ∈ R
h×w×c, where h,w, c

represent width, height and channel number respectively.

Then APCNet transforms X into pyramid representations

with S scales in total. Specifically, for each scale s, we

adopt adaptive average pooling and one 1 × 1 convolution

to transform X to a specific spatial size s × s and obtain

ys ∈ R
s×s×c. Then each ys together with original X

is processed with an Adaptive Context Module (ACM) to

obtain an adaptive context vector zsi for each spatial posi-

tion. Totally, APCNet includes multiple ACMs organized

in parallel. In the next, we can concatenate {zsi} obtained

from different scales into the final adaptive context vector

zi = [z1i , z
2

i , ..., z
S
i ]. Finally, we exploit both local features

{Xi} and their associate context vectors {zi} to predict the

semantic label of each pixel.

3.4. Relation to Other Approaches

In this subsection, we make comparison between our

Adaptive Pyramid Context Network and other context ap-

proaches for semantic segmentation. ParseNet [20] aggre-

gates global context through global average pooling, which

can be seen as an extreme case of our model if we just set

αs
i,j = 1, S=1, and ys

j = g(X). In PSPNet [40], αs are set

as a fixed bilinear interpolation coefficients for ys. In con-

trast our APCNet estimates αs in an adaptive way with Eq.

2. Recent methods PSANet [13], DANet [10], OCNet [37]

also alleviate this problem by introducing adaptive weights.

These methods calculate pair-wise similarity or learn pixel-

wise attention map. But they all neglect the importance

of global guidance from g(X). Unlike these works, our

APCNet not only takes Global-guided Local Affinity into

account with fs to estimate αs from both local and global

representations, but also exploits multi-scale representation

with feature pyramid.

4. Experiments

We conduct extensive experiments on three challenging

semantic segmentation and scene parsing datasets to eval-

uate our proposed method, including PASCAL VOC 2012

[7], Pascal-Context [24], and ADE20K dataset [42].

4.1. Implementation Details

We adopt ResNet [12] as our backbone which is pre-

trained on ImageNet [29]. Following [36, 4, 38], we re-

move stride and set dilation rate 2 and 4 to the last two

stages of backbone networks respectively, and the output

feature map is 1/8 size of the input image [4, 38, 35]. The

output predictions are bilinear interpolated to target size

for predicting semantic labels of each pixel. We use poly

learning rate policy lr = initial lr × (1− iter
total iter

)power

[4, 5, 38]. The initial learning rate is 0.01 for PASCAL

VOC 2012 [7] and ADE20K dataset [42], 0.001 for Pascal-

Context dataset [7], and the power is 0.9 [38]. Stochastic

gradient descent (SGD) [3] with momentum 0.9 and weight

decay 0.0001 is chosen as optimizer. We train networks for

80 epochs on PASCAL VOC 2012 [7] and Pascal-Context

dataset [24], and 120 epochs on ADE20K dataset [42]. In

practice, appropriately larger crop size can obtain better per-

formance, so we set crop size to 512 on PASCAL VOC

2012 and Pascal-Context dataset, and 576 on ADE20K as

the average image size of ADE20K dataset is larger than

other two datasets [4, 40, 38]. We randomly flip and scale

the input image from 0.5 to 2 as our data augmentation.

Our evaluation metric is mean of class-wise intersection

over union (mIoU). For multi-scale and flip evaluation, we

resize the input image to multiple scales and horizontally

flip them. The predictions are averaged as final predictions

[20, 40, 30, 34]. All experiments are implemented based on

PyTorch [26].

4.2. PASCAL VOC 2012

PASCAL VOC 2012 [7] is a benchmark dataset of se-

mantic segmentation, which originally contains 1,464 im-

ages for training, 1,449 for validation, and 1,456 for test.

Totally, there are 20 foreground object classes and one back-

ground class in the original PASCAL VOC 2012 dataset

[7]. The original dataset is augmented to 10,582 images

for training by [11]. Following [4, 38, 5], we use this aug-

mented training set in our experiments.

We conduct experiments with different settings to evalu-

ate the effectiveness of our proposed modules. Our baseline

is dilated ResNet based FCN [4, 22] as mentioned above.

Pyramid scales. ResNet50-based FCN [22] with di-

lated network is adopted as our baseline. We investigate

the performance of APCNet with different setting of pyra-

mid scales (PS). Results are listed in Table 2. From Table

2, we have the following observations. Firstly, compared

with baseline FCN (1st row), all pyramid scales settings

improve the performance significantly. Secondly, pyramid

scales of {1,2,3,6} achieve the best result, which improves

the performance of baseline FCN by 8.37% (from 69.83%

to 78.20%). We can infer that properly designed pyramid

scales can help to effectively capture the features of objects

with varied scale. In all the following experiments, we will
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adopt pyramid scales of {1,2,3,6}. Finally, deeper back-

bone network, e.g. ResNet101, can further improve the re-

sult.

Backbone PS mIoU%

ResNet50 None 69.83

ResNet50 {1} 77.89

ResNet50 {1,2} 77.48

ResNet50 {1,2,3} 77.60

ResNet50 {1,2,3,6} 78.20

ResNet50 {1,2,3,6,32} 77.29

ResNet101 {1,2,3,6} 80.71
Table 2. Investigation of different pyramid scales and backbones.

Baseline is ResNet50-based FCN with dilated network (PS in

none). PS: pyramid scales, {1, 2, 3, 6, 32}: bin sizes of pooled

feature, 1× 1, 2× 2, 3× 3, 6× 6, 32× 32. The results are evalu-

ated on the validation set of PASCAL VOC 2012 dataset, with the

single-scale input.

Figure 3 shows the visualization results of our APCNet

and baseline model FCN. It is obvious that APCNet keeps

more details (1st row) due to its pyramid scale. And it also

introduces less mislabeled pixel (2nd and 3rd row), which

leads to better performance than FCN.

Figure 3. Comparison with baseline method.

To further illustrate the effectiveness of pyramid scales,

we visualize the improvement of different scales in Figure

4. It can be observed from the figure that APCNet with

single scale is inferior to multi-scale APCNet since single

scale APCNet can hardly segment the objects with large

scale variations. More specifically, in the first row of Figure

4, APCNet with single scale lacks detailed information of

the boat and fails to segment the person on the boat. With

multi-scale setup, APCNet not only preserves most detailed

information of the boat but also correctly segments the per-

son.

Global-guided Local Affinity (GLA). We conduct exper-

iments w/o GLA with different backbones, to validate the

essential importance of GLA in our APCNet. Table 3 lists

the performance of different backbones w/o GLA on the

validation set of PASCAL VOC 2012 dataset. It is obvious

that GLA consistently increases the performance of differ-

ent backbones.

Backbone GLA mIoU%

ResNet50 77.68

ResNet50 X 78.20

ResNet101 80.17

ResNet101 X 80.71
Table 3. Investigation on the importance of GLA with different

backbone networks, and PS is {1,2,3,6}. GLA: Global-guided

Local Affinity. The results are evaluated on the validation set of

PASCAL VOC 2012 dataset, with the single-scale input.

Also, we visualize the segmentation results to show the

improvement of GLA in Figure 5. The 1st row shows that

APCNet with GLA can lead to more accurate segmentation

(for the dog near the person). The 2nd and 3rd show that

APCNet with GLA can alleviate the problem of segment-

ing an object into different classes. This verifies that global

information introduced by GLA can help better understand-

ing of complex context and more consistent segmentation

of a certain object.

Training and evaluation strategies. The results of differ-

ent training and evaluation strategy are shown in Table 4.

We can observe that 1) deep supervision can optimize the

learning process and further improve the performance, 2)

scaling the input image to multiple scales and flipping the

images left-right for evaluation are useful, 3) fine-tuning the

trained model with original training set boosts the result to

82.67% mIoU on PASCAL VOC 2012 validation set, with-

out MS COCO pre-trained.

Backbone DS Flip MS FT mIoU%

ResNet101 80.71

ResNet101 X 80.93

ResNet101 X X 81.33

ResNet101 X X X 81.93

ResNet101 X X X X 82.67
Table 4. Influence of different setting in training and evaluation

strategies, and PS is {1,2,3,6}. DS: deep supervised [40], Flip:

horizontally flip input image for evaluation, MS: multi-scale eval-

uation, FT: fine tune the trained model on PASCAL VOC 2012

original training set. The results are evaluated on the validation set

of PASCAL VOC 2012 dataset.

Adaptive. Our proposed model can be reduced as PSP-

Net if removing adaptive and GLA modules. So we reim-

plemented PSPNet with our experimental settings (add

deep supervised) as our baseline with backbone ResNet101

which gets 79.79% mIoU on PASCAL VOC validation set

(single scale). With adaptive and GLA modules, the perfor-

mance is improved clearly as shown in Table 5.
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Figure 4. Visualization of segmentation results of single scale and multi-scale.

Figure 5. Visualization of segmentation results with/without

Global-guided Local Affinity (GLA).

Adaptive GLA mIoU (%)

X 80.19

X X 80.93
Table 5. The improved performance based on PSPNet with adap-

tive and GLA module. PSPNet gets 79.79% mIoU. The results are

evaluated on the validation set of PASCAL VOC 2012 dataset.

For evaluation on PASCAL VOC 2012 [19] test set, we

set pyramid scales to {1,2,3,6} and adopt deep supervised

strategy [40] to train the backbone model on augmented

training set. The backbone model is ResNet101 pre-trained

on ImageNet [29]. Then, we fine tune the trained model on

original training and validation set. After training, multi-

scale and flip are adopted for testing. Final results are sub-

mitted to official server for evaluation and the comparison

to the state-of-the-art methods is shown in Table 6. Clearly,

our APCNet significantly outperforms other methods on al-

most all categories of PASCAL VOC 2012. Note that APC-

Net can distinguish categories that look very similar, e.g.

cow (93.7%) and horse (95%). This may owe to the GLA

properties of our methods which take both global and lo-

cal information into consideration. Without pre-trained on

MS COCO dataset [16], APCNet achieves state-of-the-art

performance of 84.2% mIoU, which demonstrates the ef-

fectiveness of our proposed method. With MS COCO pre-

trained, our proposed method also achieves the best perfor-

mance of 87.13% mIoU among the methods based on back-

bone ResNet101.

4.3. Pascal­Context

Pascal-Context dataset [24] is annotated additionally for

PASCAL VOC 2010 [8] with whole scene label. Follow-

ing [38, 17], we train our model on the training set of 4,998

images and evaluate on the test set of 5,105 images, and re-

port our result on 60 classes including 59 foreground classes

and one background class. Table 7 compares the perfor-

mance of the state-of-the-art methods. With the same back-

bone model, our APCNet surpasses DeepLab-v2 [4], Enc-

Net [38], and DANet [10] in a large margin. Moreover,

our APCNet achieves the state-of-the-art performance on

Pascal-Context dataset and thus demonstrates its effective-

ness for semantic segmentation.

4.4. ADE20K

ADE20K dataset [42] is a challenge scene parsing

dataset providing 150 classes dense labels, which consists

of 20K/2K/3K images for training, validation and test, re-

spectively. Due to the diverse and complex scene in this

dataset, it is hard to achieve subtle improvements. Results
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Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mIoU%

FCN [22] 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2

DeepLabv2 [4] 84.4 54.5 81.5 63.6 65.9 85.1 79.1 83.4 30.7 74.1 59.8 79 76.1 83.2 80.8 59.7 82.2 50.4 73.1 63.7 71.6

CRF-RNN [41] 87.5 39.0 79.7 64.2 68.3 87.6 80.8 84.4 30.4 78.2 60.4 80.5 77.8 83.1 80.6 59.5 82.8 47.8 78.3 67.1 72.0

DeconvNet [25] 89.9 39.3 79.7 63.9 68.2 87.4 81.2 86.1 28.5 77.0 62.0 79.0 80.3 83.6 80.2 58.8 83.4 54.3 80.7 65 72.5

DPN [21] 87.7 59.4 78.4 64.9 70.3 89.3 83.5 86.1 31.7 79.9 62.6 81.9 80.0 83.5 82.3 60.5 83.2 53.4 77.9 65 74.1

Piecewise [18] 90.6 37.6 80.0 67.8 74.4 92 85.2 86.2 39.1 81.2 58.9 83.8 83.9 84.3 84.8 62.1 83.2 58.2 80.8 72.3 75.3

ResNet38 [32] 94.4 72.9 94.9 68.8 78.4 90.6 90.0 92.1 40.1 90.4 71.7 89.9 93.7 91.0 89.1 71.3 90.7 61.3 87.7 78.1 82.5

PSPNet [40] 91.8 71.9 94.7 71.2 75.8 95.2 89.9 95.9 39.3 90.7 71.7 90.5 94.5 88.8 89.6 72.8 89.6 64.0 85.1 76.3 82.6

EncNet [38] 94.1 69.2 96.3 76.7 86.2 96.3 90.7 94.2 38.8 90.7 73.3 90.0 92.5 88.8 87.9 68.7 92.6 59.0 86.4 73.4 82.9

Ours 95.8 75.8 84.5 76.0 80.6 96.9 90.0 96.0 42.0 93.7 75.4 91.6 95.0 90.5 89.3 75.8 92.8 61.9 88.9 79.6 84.2

Table 6. Per-class results on PASCAL VOC 2012 test set. Our method outperforms all previous state-of-art methods and achieves 84.2%

without MS COCO dataset pre-trained.

Method Backbone mIoU%

FCN-8S [22] 37.8

CRF-RNN [41] 39.3

ParseNet [20] 40.4

BoxSup [6] 40.5

HO CRF [1] 41.3

Piecewise [18] 43.3

VeryDeep [31] 44.5

DeepLab-v2 [4] ResNet101-COCO 45.7

RefineNet [17] ResNet152 47.3

MSCI [16] ResNet152 50.3

EncNet [38] ResNet101 51.7

DANet [10] ResNet101 52.6

Ours ResNet101 54.7
Table 7. Segmentation results on PASCAL-Context dataset of 60

classes with background. Our method outperforms all previous

state-of-art methods with a large margin.

on ADE20K validation set of different methods are summa-

rized in Table 8. Our result outperforms other state-of-the-

art results, even with a shallower backbone networks. We

also submit the test set segmentation results of our method

to official evaluation server. The pixel accuracy is 72.94%,

mIoU is 38.39%, and score is 55.67%, which ranks top on

the leaderboard.

4.5. Summary

Comparing to ParseNet [20] and PSPNet [40], our

method achieves better results on PASCAL VOC 2012,

Pascal-Context and ADE20K dataset. These results demon-

strate the APCNet to adaptively aggregate multi-scale con-

text with the guidance of global representation. Different

from PSANet [13], OCNet [37] and DANet [10] which con-

struct semantic context by calculating semantic correlation

on every pair pixels or convolving on a specific pixel, our

global-guided local affinity is more reasonable and leads to

higher performance.

5. Conclusion

In this paper, we discuss the properties of context fea-

tures, and propose APCNet to adaptively construct multi-

scale context representation for semantic segmentation and

Method Backbone mIoU%

FCN [22] 29.39

SegNet [2] 21.64

DilatedNet [35] 32.31

CascadeNet [42] 34.90

RefineNet [17] ResNet152 40.7

PSPNet [40] ResNet101 43.29

PSPNet [40] ResNet269 44.94

EncNet [38] ResNet101 44.65

SAC [39] ResNet101 44.30

PSANet [13] ResNet101 43.77

UperNet [33] ResNet101 42.66

DSSPN [15] ResNet101 43.68

OCNet [37] ResNet101 45.08

Ours ResNet101 45.38
Table 8. Segmentation results on ADE20K validation set. Our

method outperforms all previous methods.

scene parsing. APCNet introduces Adaptive Context Mod-

ules which generate local affinity coefficients with our elab-

orately designed Global-guided Local Affinity. Extensive

experiments show that APCNet can capture different scales

objects, and the predictions of objects are more completely

and consistently. APCNet can not only be embedded to any

FCN based semantic segmentation networks, but also any

layer of the networks which independent of the input feature

map size. APCNet may extend to other scene understanding

tasks, according to the properties and flexibility.
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