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ABSTRACT

Most existing image quality assessment models focus on eval-
uating the image quality score, however, the quality score
alone is not enough to characterize the degeneration. In this
paper, we propose a full reference framework named Mask
Gated Convolutional Network (MGCN) for evaluating the im-
age quality score and identifying distortions simultaneously.
Observing the fact that the reference images are distorted by
various distortions in pixel space, we design an encoder mod-
ule to capture the transformation between reference images
and distorted images as low level features. Further higher
level features are extracted from the low level features and
shared by both the regression and the classification tasks. In-
stead of simply cropping patches to augment data, we mask
the high level feature map in the spatial domain to randomly
sample patches from the image and learn to assign the im-
age quality score to the patch set. The proposed method
achieves the state-of-the-art performance on LIVE2, TID2008
and TID2013 datasets.

Index Terms— image quality assessment, gated convolu-
tional network

1. INTRODUCTION

Generally, objective image quality assessment (IQA) can be
divided into three categories according to the availability
of reference images: full-reference (FR), reduced-reference
(RR) and no-reference (NR). This paper focuses on FR IQA
which has full access to the whole reference image.

In all existing FR databases such as [1, 2, 3], the refer-
ence images are usually distorted by different distortions at
different levels. Image quality is closely related to the dis-
tortion type. The degeneration arises from the specific dis-
tortion and the image quality depends on the distortion type
and level. However, neither the image quality score nor the
distortion type alone is enough to describe the degeneration
from the reference images to the distorted images. On the
one hand, images with different types of distortions may have
similar image quality scores; on the other hand, images with
the same distortion may have different quality scores. So it’s

more appropriate to characterize the distorted images in terms
of both the distortion type and the image quality score. Un-
fortunately, all existing FR methods only evaluate the image
quality ignoring the distortion type as far as we know. Only a
few NR methods try to evaluate the image quality considering
the information of the distortion type.

In this work, our goal is to design a FR deep network for
evaluating the image quality score and identifying distortions
simultaneously. Different from previous works which take
image patches as inputs, this network is designed to take both
the reference image and distorted image as inputs directly.
To achieve this goal, there are two questions to answer: 1)
How to extract features from reference images and distorted
images, which are correlated to both image quality and dis-
tortion type? 2) How to deal with the insufficiency of training
data because the size of current FR-IQA datasets is limited.

For the first question, some prior works use Siamese net-
work [4] with two branches sharing parameters. It can be
viewed as hierarchical feature extraction followed by similar-
ity measures. Different strategies have been applied to merge
two information flows on the top of the Siamese network for
IQA. Then the merged feature is passed on to the subsequent
procedure. The simplest way of merging is to concatenate
the output features of the two branches directly where it al-
lows great flexibility but requires lots of parameters, e.g. [5].
Another way of merging is to bind the output features of the
two branches together assuming the alignment between the
two features is known implicitly. For example, taking the
difference of two features is one special case under such as-
sumption. In this work, we propose to fuse the information of
reference images and the distorted images earlier. Instead of
extracting image features for each image independently fol-
lowed by merging, we capture the transformation between
one reference image and its distorted image, and then use the
transformation feature to predict the image quality. Because
reference images are transformed in raw pixel space by distor-
tions such as Gaussian blur, the transformations between ref-
erence images and distorted images relate to both the distor-
tion type and the image quality score closely. This motivates
us to design the dedicated module to capture the transforma-
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Fig. 1. Architecture of MGCN. � indicates the Hadamard product. The model takes a distorted image and a reference image
as inputs. The encoder module learns to encode the transformation between images as the low level feature. The abstractor
module further extracts the high level feature. The predictor module evaluates the image quality score and identifies distortions
simultaneously. The image quality score equals to the average or the weighted average of patch quality scores.

tion. In [6, 7], the gated auto-encoder (GAE) demonstrates
the ability to delineate not only the combination of multiple
affine transformation such as translation, rotation and scal-
ing, but also the parent-offspring relationship. We conjecture
that GAE can work with not only affine transformations but
also complex transformations. Inspired by the concept of the
GAE, we design a gated encoder using multiplicative inter-
actions between pixels to encode the transformation between
images. The encoder is pre-trained by unsupervised learning
within the GAE, which alleviates over-fitting and shares the
ability to represent transformation. To our best knowledge,
this is the first time that GAE is introduced to IQA.

For the second question, most IQA methods augment
datasets by randomly cropping patches from the image, and
assigning the image quality score to the patches. However,
this limits the performance because of: 1) Inconsistency. It is
questionable to equate the patch quality score with the image
quality score, especially when the patch size is much less than
the image size or the distortion is inhomogeneous. 2) Redun-
dancy. Multiple patches with overlap from one image lead
to redundant computation. To address the issue of inconsis-
tency, we can treat an image as a set of patches rather than a
single patch, and learn to assign the image quality score to the
patch set. As for the redundancy, inspired by dropout [8], we
extract high level features from the image in a convolutional
way, and mask the high level feature map in the spatial do-
main. This process is equivalent to randomly sampling multi-
ple patches and sharing feature computation among multiple
patches. Then we can combine the quality scores of multiple
patches to predict the quality score of the image.

Fig. 1 shows our network named as Mask Gated Convolu-
tional Network (MGCN). Our contributions are summarized
as follows. (1) This is the first time that GAE is introduced
to IQA. We design the dedicated encoder module to capture
the distortion feature between reference images and distorted
images. (2) A deep model is proposed for multi-task learn-

ing in FR IQA to fully characterize the distorted images. As
far as we know, this is the first paper which predicts the image
quality score and distortion type simultaneously in FR. (3) We
resolve the inconsistency between the patch quality score and
the image quality score, and improve efficiency by masking
the high level feature map.

2. RELATED WORK

DCNN [5] is an early work using deep learning in FR IQA.
It uses images which have similar scene with distorted im-
ages as reference to evaluate the image quality score. FR
IQA is the special case where “similar images” are distortion
free images. They crop 224 × 224 patches to augment the
dataset. Within the framework of Siamese network, they con-
catenate features extracted from two patches and predict the
patch quality score. The subsequent models [9, 10] work in
a similar way in feature fusion between reference images and
distorted images, but differ in the weighting phase. DeepQA
[9] crops patches and learns a weight map to weight the MSE
map between the reference patch and the distorted patch.
WaDIQaM-FR [10] crops 32 patches , then predicts the patch
quality score and the patch weight. The image quality score
is the weighted sum of the quality scores of multiple patches.

Multi-task learning is widely used in deep learning, how-
ever only a few NR methods consider the distortion. [11]
first pre-trains a sub-network for distortion identification,
then end-to-end fine-tunes the quality prediction sub-network.
[12] uses a convolution network to evaluate the image quality
score and classify the distortion simultaneously.

3. MASK GATED CONVOLUTIONAL NETWORK

The proposed MGCN contains three modules as shown in
Fig. 1: the encoder module, the abstractor module and the
predictor module. The network takes the distorted image and
its reference image as inputs, then predicts the distortion and
the image quality score. The loss is constructed to contain



both classification loss and regression loss:

LMGCN = Lquality(q, q̂) + λLclassify(c, ĉ) (1)

where Lquality is the mean square error between the predicted
quality score q̂ and the ground-truth score q of the image, and
Lclassify is the cross entropy between the predicted distortion
type ĉ and the ground-truth type c of the image.

3.1. Encoder

To perform relational feature learning on tri-partite networks,
[6, 13] propose the multiplicative interactions between three
variables zk =

∑
ij wijkxiyj . This can be seen as variable

x modulating the parameter W = (wijk) that connects vari-
able z and variable y or vice versa. In the case where x, y
correspond to the reference image and the distorted image re-
spectively, we can think of the pixels in one image as gating
the parameters of a standard feature learning model applied
to another image. As [6] claims, learning the factored gated
feature learning model has the ability to find appropriate sets
of filter pairs that can detect the rotations in feature space. So
the hidden variable z may be viewed as the representation of
various distortions and the gated model learns to capture the
transformation between reference and distorted images.

The GAE works in a way similar to a standard auto-
encoder but the model parameter W is a linear function of
x or y. The encoding and decoding are written as follows:
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where F is the number of the units in the factor layer.
During the pre-training, we feed the GAE on 5× 5 patch

pairs sampled from reference images and distorted images.
By minimizing the symmetric reconstruction cost
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where N is the number of patch pairs. We expect that the
GAE learns to capture the transformation between images.

In MGCN, the encoder module is initialized by the
encoder in the GAE. Note that, the original gated auto-
encoder [6, 13] is designed as fully connected layers oper-
ating on vectors. To work on images, we design the encoder
module taking the form of convolutional layers. The gated
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Fig. 2. In the view of sampling, the abstractor module first
uniformly samples 196×196 patches, and randomly discards
fix ratio of patches. The remained patches are colored in red.

encoder shares the ability of the GAE capturing the transfor-
mation and benefits from the pre-train by unsupervised learn-
ing. It merges two branches and outputs the transformation
feature for subsequent learning process.

Although motivated by [6], we make great improvement
to adapt the GAE with the FR-IQA problem. [6] explores
to represent correlation patterns across multiple images using
multiplicative interactions. It focuses on the theoretical anal-
ysis of the role that multiplicative interactions play in learning
to encode relations. It only validates the representation power
by illustrating some toy examples and simple affine transfor-
mations. In our work, we validate the representation power in
complex situations, and illustrate that the GAE can not only
learn the distortions between reference and distorted images
but also reconstruct the reference and distorted images simul-
taneously. We further reform the GAE and integrate it into a
deep convolution model so that it can be trained end-to-end.

3.2. Abstractor

The abstractor module is designed as a convolutional net-
work, where convolution layers alternate with pooling layers.
The abstractor module maps the low level features encoded
by the encoder module into high level features shared by the
classification and the regression.

Focusing on the high level feature map in Fig. 1, we ob-
serve that each unit of size (1× 1× channels) summaries the
information of a patch in inputs. The patch corresponds to
the perceptual field in the image. Hence, the convolution and
pooling layers work as a sampler which samples patches uni-
formly in the image. The patch size and the sample interval
depend on the pooling size and stride. See Fig. 2 for illustra-
tion. By introducing the mask code which takes 1 with prob-
ability p otherwise 0, we mask the high level feature map in
the spatial domain. This is equivalent to randomly sampling
a number of patches without redundant computation on the
overlap. Consider n patches with size s× s sampled from the
image with size r× c, we reduce the computation complexity
from O(ns2) to O(rc) by feature sharing. In our experiment,
the perceptual field s is set to 192, and the p is adjusted ac-
cording to the image size in training phase so that we sample



about 48 patches. Hence, we improve the efficiency about 8
times in the case of the image of size 384× 512.

In this way, we can augment datasets implicitly without
inconsistency by sampling different patch sets from one im-
age as long as the patch size and the number of patches are
large enough. Note that p is set to 1.0 in test phase so that
all patches are taken into account for the prediction without
randomness. Compared with dropout which is typically inter-
preted as bagging a large number of models sharing param-
eters and used to avoid over-fitting e.g. WaDIQaM-FR, the
mask in MGCN aims to resolve the inconsistency between
the patch quality score and the image quality score, and to
avoid the redundant computation.

3.3. Predictor

The high level features of multiple patches are not only shared
in computation, but also in distortion classification and qual-
ity regression. The predictor module receives the masked high
level feature map, then identifies the distortion and predicts
the quality score simultaneously as illustrated in Fig. 1. To
classify the distortion, the predictor first evaluates the (unnor-
malized) distribution of all distortion types for each sampled
patch, then averages these distributions over the patches, fi-
nally we apply softmax to obtain the normalized distribution
of all distortion types for the image. As for the regression, the
predictor evaluates the quality score for each sampled patch,
and combine them to predict the image quality score. More
specifically, the image quality score equals to the average or
the weighted average of patch quality scores. Learning the
predictor module can be viewed as a way of learning to rep-
resent the image with a set of patches within it.

4. EXPERIMENTS

We evaluate the performance of MGCN on three well-known
FR IQA datasets, LIVE2 [1], TID2008 [2], TID2013 [3].

4.1. Training strategy and experiment protocol

Some prior works e.g. [18, 5] preprocess images by local con-
trast normalization. This preprocessing hinders the assess-
ment for distortion types such as intensity shift and contrast
variation. According to [6], the training of the GAE requires
that both inputs are contrast-normalized. So we normalize the
input in the same way as [6]. During the pre-training, we em-
ploy Adam [19] to train GAE for 200 epoches. The learning
rate starts with 0.002. The pre-trained GAE is used to ini-
tialize the encoder module in MGCN. In the training phase,
we fine-tune the MGCN end-to-end with learning rate 10−4

for 300 epoches. we simply augment data by flipping images
horizontally without any other augmentation. Batch normal-
ization technique [20] is applied to accelerate convergence.

To quantize the performance, we choose three met-
rics including Spearman Rank-Order Correlation Coefficient
(SROCC), Pearson Linear Correlation Coefficient (PLCC),
and classification accuracy.

MGCN are compared with seven FR IQA methods includ-
ing four non-learning based models (PSNR, MS-SSIM [14],
FSIMc [15], VSI [16]), three learning based models (DOG-
SSIMc [17], WaDIQaM-FR [10], DeepQA [9]), and two
NR IQA methods including IQA-CNN++ [12], MEON [11].
Here, MGCN series contains two subclasses: MGCN-ave av-
erages patch quality scores to predict the image quality score
and MGCN-weight calculates the weighted average. λ is set
as 2.0 for TID2008/TID2013 and 5.0 for LIVE2 in the multi-
task learning framework according to the validation set.

In experiments, we use Monte-Carlo cross validation,
60% data for training, 20% data for validation, and 20%
data for test. The reference images together with the respec-
tive distorted versions are randomly split into three disjoint
groups. Specially there are 17 reference images for training,
6 reference images for validation, and 6 reference images for
test in LIVE2. And there are 15 reference images for train-
ing, 5 reference images for validation, 5 reference images for
test in TID2008/TID2013. We repeat experiments 10 times
and report the median for each metric. Tab. 1 summarizes the
performance of different models in three datasets. It’s worth
mentioning that the data settings and the experiment proto-
cols are different in prior works. For fair comparison, we run
all FR models in the same data setting. For fair comparison
between learning based models and non-learning based mod-
els, we evaluate the performance of the non-learning based
models including PSNR, MS-SSIM, FSIMc, VSI only on the
test set. We train DeepQA using the codes released by the au-
thor and train WaDIQaM-FR1 using the codes implemented
by ourselves in the following experiments.

4.2. Multi-task learning

From Tab. 1, we can see that MGCN (λ = 0) which fo-
cuses on evaluating the image quality achieves the state of
the art performance in quality assessment, but guesses the
type of the distortion randomly. In the multi-task learning
framework, MGCN-ave/MGCN-weight improve the classifi-
cation accuracy dramatically and reach approximate perfor-
mance in quality prediction compared with the corresponding
single task MGCN. This validates the feasibility of MGCN in
the multi-task learning framework. Compared with NR meth-
ods for multi-task learning, MGCN surpasses IQA-CNN++
and MEON across-the-aboard in TID2008 as expected but
wins by a narrow margin in LIVE2. This may be due to
the data preprocessing in LIVE2 where we resize all images
into the same size 512x640. Remember that MGCN oper-
ates on the images but other models take patches as input. So
MGCN suffers from the distortion introduced by resizing in
LIVE2. This may explain why MGCN is worse in terms of
distortion identification on the simple database LIVE2 than
on TID2008/TID2013 where all images have the same size.

When our model is trained with only one label, the re-
sults are shown in Tab. 2 and Tab. 1. The negative sign in

1The author only release the trained models without training codes.



Table 1. Performance comparison of different models. The best results are highlighted in bold. “-” indicates that the results are
not reported in the original paper or the method is not able to identify the distortion. “*” indicates that the metric is evaluated
on the subset. We repeat all FR methods in the same data setting and cite the results of NR methods from the original papers.
Note IQA-CNN++ reports the results of TID2008 on 13 distortions. MEON reports the results of TID2013 on 4 distortions.

Class Models
LIVE2 TID2008 TID2013

SROCC PLCC Accuracy SROCC PLCC Accuracy SROCC PLCC Accuracy
NR IQA-CNN++ [12] 0.950 0.950 0.951 0.870* 0.880* 0.929* - - -

MEON [11] - - - - - - 0.912* 0.912* 0.940*

FR

PSNR 0.905 0.883 - 0.563 0.585 - 0.660 0.696 -
MS-SSIM [14] 0.953 0.759 - 0.855 0.857 - 0.784 0.834 -

FSIMc [15] 0.965 0.859 - 0.879 0.879 - 0.850 0.878 -
VSI [16] 0.956 0.757 - 0.902 0.882 - 0.892 0.900 -

DOG-SSIMc [17] 0.957 0.958 - 0.888 0.896 - 0.857 0.878 -

FR-DL
WaDIQaM-FR [10] 0.960 0.963 - 0.916 0.925 - 0.918 0.924 -

DeepQA [9] 0.977 0.981 - 0.887 0.894 - 0.883 0.893 -

MGCN

MGCN-ave (λ = 0) 0.966 0.965 0.194 0.923 0.920 0.056 0.924 0.916 0.038
MGCN-ave 0.969 0.969 0.950 0.933 0.925 0.985 0.932 0.929 0.979

MGCN-weight (λ = 0) 0.971 0.971 0.196 0.945 0.941 0.055 0.940 0.946 0.043
MGCN-weight 0.966 0.967 0.958 0.940 0.937 0.988 0.934 0.942 0.972

Table 2. Performance of MGCN-weight trained only with the
label of the distortion type.

Dataset SROCC PLCC Accuracy
LIVE2 -0.288 -0.139 0.950

TID2018 -0.170 -0.223 0.985
TID2013 -0.106 -0.074 0.968

SROCC/PLCC indicates that the prediction are contrary to the
ground-truth. When we train the network only with the single
label (the distortion types/the image quality scores), the other
branch in the predictor module is not trained at all, and its
output is meaningless.

4.3. Quality prediction

In LIVE2, most models achieve satisfactory results and are
comparable with each other, due to the limited numbers of
the distortion types, levels and reference images.

In TID2008/TID2013, MGCN and WaDIQaM-FR
surpass other methods and report the state-of-the-art
performance. As stated in the experiment protocol,
TID2008/TID2013 has more data with more distortion types
and levels than LIVE2. Traditional or shallow learning based
methods have limited capacity for modeling data distribution
confined by the models themselves. They don’t benefit from
the increasement of dataset scale but deteriorate due to the
complexity of the dataset. As for the deep learning models
which explicitly augment data by assigning image quality
scores to patch quality scores, the benefit of the increase-
ment of dataset scale is limited because it introduces more
inconsistency between image quality scores and patch quality

scores simultaneously. Instead, MGCN and WaDIQaM-FR
can capture data distribution more accurately and gain the
full boost of performance steming from the increasement of
training data without inconsistency.

Compared with WaDIQaM-FR, MGCN benefits from two
points: 1) WaDIQaM-FR uses 10 convolutional layers to ex-
tract the high level feature for both the reference images and
the distorted images independently, and MGCN uses 4 con-
volutional layers to extract the high level feature from the en-
coded low level feature. MGCN has less parameters and is
more resistant to over-fitting. 2) WaDIQaM-FR fuses the high
level feature which may lose details related to the image qual-
ity while MGCN encodes the transformation of two images in
the pixel space.

4.4. Ablation experiments and efficiency analysis

To quantify the contributions of the encoder module and the
mask separately, we perform the ablation experiments on
TID2008/TID2013. The results are shown in Tab. 3. To
test the contribution of the encoder module, we randomly ini-
tialize the gated encoder, and directly train MGCN end-to-
end without pre-training the GAE by unsupervised learning.
Other settings are kept the same. The results are shown in
the first row “no pretrain”. As for the mask, we set p to 1.0
in training phase, which indicates that all patches are kept to
represent the image. The results are shown in the second row
“no mask”. The last row “pretrain + mask” indicates the per-
formance of the complete MGCN-weight. According to the
results, the encoder module with unsupervised learning con-
tributes more to MGCN than the mask, which proves the rep-
resentation power and effectiveness of extracting distortion
features by the GAE module for IQA.



Table 3. Ablation experiments.
Dataset Setting SROCC PLCC Accuracy

TID2008
no pretrain 0.891 0.863 0.978
no mask 0.915 0.913 0.971

pretrain + mask 0.940 0.937 0.988

TID2013
no pretrain 0.883 0.887 0.946
no mask 0.924 0.931 0.971

pretrain + mask 0.934 0.942 0.972

Table 4. Time and memory cost on TID2013.
Model Train Epochs Test Memory

DeepQA [9] 1.89h 80 0.010s 448MB
WaDIQaM-FR [10] 45.83h 3000 0.019s 4390MB

MGCN-weight 29.87h 300 0.122s 5058MB

Tab. 4 shows the time and memory cost of different
models on TID2013. The epoch numbers of DeepQA and
WaDIQaM-FR are from the original paper. “Train” and
“Test” refer to GPU time for training and testing one image
respectively, and “Memory” refers to GPU memory.

5. CONCLUSION

In this paper, we propose a full reference framework for
evaluating the image quality score and identifying distortions
simultaneously. MGCN makes use of both reference and
distorted images, and addresses the issue of over-fitting by
narrowing the gap between image quality and patch quality.
Comprehensive experiments are conducted to demonstrate
the effectiveness of the proposed method.
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