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Abstract

In this work, we revisit the global average pooling layer

proposed in [13], and shed light on how it explicitly enables

the convolutional neural network (CNN) to have remark-

able localization ability despite being trained on image-

level labels. While this technique was previously proposed

as a means for regularizing training, we find that it actu-

ally builds a generic localizable deep representation that

exposes the implicit attention of CNNs on an image. Despite

the apparent simplicity of global average pooling, we are

able to achieve 37.1% top-5 error for object localization on

ILSVRC 2014 without training on any bounding box anno-

tation.We demonstrate in a variety of experiments that our

network is able to localize the discriminative image regions

despite just being trained for solving classification task1.

1. Introduction

Recent work by Zhou et al [34] has shown that the con-

volutional units of various layers of convolutional neural

networks (CNNs) actually behave as object detectors de-

spite no supervision on the location of the object was pro-

vided. Despite having this remarkable ability to localize

objects in the convolutional layers, this ability is lost when

fully-connected layers are used for classification. Recently

some popular fully-convolutional neural networks such as

the Network in Network (NIN) [13] and GoogLeNet [25]

have been proposed to avoid the use of fully-connected lay-

ers to minimize the number of parameters while maintain-

ing high performance.

In order to achieve this, [13] uses global average pool-

ing which acts as a structural regularizer, preventing over-

fitting during training. In our experiments, we found that

the advantages of this global average pooling layer extend

beyond simply acting as a regularizer - In fact, with a little

tweaking, the network can retain its remarkable localization

ability until the final layer. This tweaking allows identifying

easily the discriminative image regions in a single forward-

1Code and models are available at http://cnnlocalization.csail.mit.edu

Brushing teeth Cutting trees

Figure 1. A simple modification of the global average pool-

ing layer combined with our class activation mapping (CAM)

technique allows the classification-trained CNN to both classify

the image and localize class-specific image regions in a single

forward-pass e.g., the toothbrush for brushing teeth and the chain-

saw for cutting trees.

pass for a wide variety of tasks, even those that the network

was not originally trained for. As shown in Figure 1(a), a

CNN trained on object categorization is successfully able to

localize the discriminative regions for action classification

as the objects that the humans are interacting with rather

than the humans themselves.

Despite the apparent simplicity of our approach, for the

weakly supervised object localization on ILSVRC bench-

mark [21], our best network achieves 37.1% top-5 test er-

ror, which is rather close to the 34.2% top-5 test error

achieved by fully supervised AlexNet [10]. Furthermore,

we demonstrate that the localizability of the deep features in

our approach can be easily transferred to other recognition

datasets for generic classification, localization, and concept

discovery.

1.1. Related Work

Convolutional Neural Networks (CNNs) have led to im-

pressive performance on a variety of visual recognition

tasks [10, 35, 8]. Recent work has shown that despite being

trained on image-level labels, CNNs have the remarkable

ability to localize objects [1, 16, 2, 15, 18]. In this work, we

show that, using an appropriate architecture, we can gener-

alize this ability beyond just localizing objects, to start iden-

tifying exactly which regions of an image are being used for
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discrimination. Here, we discuss the two lines of work most

related to this paper: weakly-supervised object localization

and visualizing the internal representation of CNNs.

Weakly-supervised object localization: There have

been a number of recent works exploring weakly-

supervised object localization using CNNs [1, 16, 2, 15].

Bergamo et al [1] propose a technique for self-taught object

localization involving masking out image regions to iden-

tify the regions causing the maximal activations in order to

localize objects. Cinbis et al [2] and Pinheiro et al [18]

combine multiple-instance learning with CNN features to

localize objects. Oquab et al [15] propose a method for

transferring mid-level image representations and show that

some object localization can be achieved by evaluating the

output of CNNs on multiple overlapping patches. However,

the authors do not actually evaluate the localization ability.

On the other hand, while these approaches yield promising

results, they are not trained end-to-end and require multi-

ple forward passes of a network to localize objects, making

them difficult to scale to real-world datasets. Our approach

is trained end-to-end and can localize objects in a single for-

ward pass.

The most similar approach to ours is the work based on

global max pooling by Oquab et al [16]. Instead of global

average pooling, they apply global max pooling to localize

a point on objects. However, their localization is limited to

a point lying in the boundary of the object rather than deter-

mining the full extent of the object. We believe that while

the max and average functions are rather similar, the use

of average pooling encourages the network to identify the

complete extent of the object. The basic intuition behind

this is that the loss for average pooling benefits when the

network identifies all discriminative regions of an object as

compared to max pooling. This is explained in greater de-

tail and verified experimentally in Sec. 3.2. Furthermore,

unlike [16], we demonstrate that this localization ability is

generic and can be observed even for problems that the net-

work was not trained on.

We use class activation map to refer to the weighted acti-

vation maps generated for each image, as described in Sec-

tion 2. We would like to emphasize that while global aver-

age pooling is not a novel technique that we propose here,

the observation that it can be applied for accurate discrimi-

native localization is, to the best of our knowledge, unique

to our work. We believe that the simplicity of this tech-

nique makes it portable and can be applied to a variety of

computer vision tasks for fast and accurate localization.

Visualizing CNNs: There has been a number of recent

works [30, 14, 4, 34] that visualize the internal represen-

tation learned by CNNs in an attempt to better understand

their properties. Zeiler et al [30] use deconvolutional net-

works to visualize what patterns activate each unit. Zhou et

al. [34] show that CNNs learn object detectors while being

trained to recognize scenes, and demonstrate that the same

network can perform both scene recognition and object lo-

calization in a single forward-pass. Both of these works

only analyze the convolutional layers, ignoring the fully-

connected thereby painting an incomplete picture of the full

story. By removing the fully-connected layers and retain-

ing most of the performance, we are able to understand our

network from the beginning to the end.

Mahendran et al [14] and Dosovitskiy et al [4] analyze

the visual encoding of CNNs by inverting deep features

at different layers. While these approaches can invert the

fully-connected layers, they only show what information

is being preserved in the deep features without highlight-

ing the relative importance of this information. Unlike [14]

and [4], our approach can highlight exactly which regions

of an image are important for discrimination. Overall, our

approach provides another glimpse into the soul of CNNs.

2. Class Activation Mapping

In this section, we describe the procedure for generating

class activation maps (CAM) using global average pooling

(GAP) in CNNs. A class activation map for a particular cat-

egory indicates the discriminative image regions used by the

CNN to identify that category (e.g., Fig. 3). The procedure

for generating these maps is illustrated in Fig. 2.

We use a network architecture similar to Network in Net-

work [13] and GoogLeNet [25] - the network largely con-

sists of convolutional layers, and just before the final out-

put layer (softmax in the case of categorization), we per-

form global average pooling on the convolutional feature

maps and use those as features for a fully-connected layer

that produces the desired output (categorical or otherwise).

Given this simple connectivity structure, we can identify

the importance of the image regions by projecting back the

weights of the output layer on to the convolutional feature

maps, a technique we call class activation mapping.

As illustrated in Fig. 2, global average pooling outputs

the spatial average of the feature map of each unit at the

last convolutional layer. A weighted sum of these values is

used to generate the final output. Similarly, we compute a

weighted sum of the feature maps of the last convolutional

layer to obtain our class activation maps. We describe this

more formally below for the case of softmax. The same

technique can be applied to regression and other losses.

For a given image, let fk(x, y) represent the activation

of unit k in the last convolutional layer at spatial location

(x, y). Then, for unit k, the result of performing global

average pooling, F k is
∑

x,y fk(x, y). Thus, for a given

class c, the input to the softmax, Sc, is
∑

k w
c
kFk where wc

k

is the weight corresponding to class c for unit k. Essentially,

wc
k indicates the importance of Fk for class c. Finally the

output of the softmax for class c, Pc is given by
exp(Sc)∑
c
exp(Sc)

.
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Figure 2. Class Activation Mapping: the predicted class score is mapped back to the previous convolutional layer to generate the class

activation maps (CAMs). The CAM highlights the class-specific discriminative regions.

Here we ignore the bias term: we explicitly set the input

bias of the softmax to 0 as it has little to no impact on the

classification performance.

By plugging Fk =
∑

x,y fk(x, y) into the class score,

Sc, we obtain

Sc =
∑

k

wc
k

∑

x,y

fk(x, y) =
∑

x,y

∑

k

wc
kfk(x, y). (1)

We define Mc as the class activation map for class c, where

each spatial element is given by

Mc(x, y) =
∑

k

wc
kfk(x, y). (2)

Thus, Sc =
∑

x,y Mc(x, y), and hence Mc(x, y) directly

indicates the importance of the activation at spatial grid

(x, y) leading to the classification of an image to class c.

Intuitively, based on prior works [34, 30], we expect each

unit to be activated by some visual pattern within its recep-

tive field. Thus fk is the map of the presence of this visual

pattern. The class activation map is simply a weighted lin-

ear sum of the presence of these visual patterns at different

spatial locations. By simply upsampling the class activa-

tion map to the size of the input image, we can identify the

image regions most relevant to the particular category.

In Fig. 3, we show some examples of the CAMs output

using the above approach. We can see that the discrimi-

native regions of the images for various classes are high-

lighted. In Fig. 4 we highlight the differences in the CAMs

for a single image when using different classes c to gener-

ate the maps. We observe that the discriminative regions

for different categories are different even for a given im-

age. This suggests that our approach works as expected.

We demonstrate this quantitatively in the sections ahead.

Figure 3. The CAMs of two classes from ILSVRC [21]. The maps

highlight the discriminative image regions used for image classifi-

cation, the head of the animal for briard and the plates in barbell.

dome

chain saw

Figure 4. Examples of the CAMs generated from the top 5 pre-

dicted categories for the given image with ground-truth as dome.

The predicted class and its score are shown above each class ac-

tivation map. We observe that the highlighted regions vary across

predicted classes e.g., dome activates the upper round part while

palace activates the lower flat part of the compound.

Global average pooling (GAP) vs global max pool-

ing (GMP): Given the prior work [16] on using GMP for

weakly supervised object localization, we believe it is im-

portant to highlight the intuitive difference between GAP

and GMP. We believe that GAP loss encourages the net-
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work to identify the extent of the object as compared to

GMP which encourages it to identify just one discrimina-

tive part. This is because, when doing the average of a map,

the value can be maximized by finding all discriminative

parts of an object as all low activations reduce the output of

the particular map. On the other hand, for GMP, low scores

for all image regions except the most discriminative one do

not impact the score as you just perform a max. We ver-

ify this experimentally on ILSVRC dataset in Sec. 3: while

GMP achieves similar classification performance as GAP,

GAP outperforms GMP for localization.

3. Weakly-supervised Object Localization

In this section, we evaluate the localization ability

of CAM when trained on the ILSVRC 2014 benchmark

dataset [21]. We first describe the experimental setup and

the various CNNs used in Sec. 3.1. Then, in Sec. 3.2 we ver-

ify that our technique does not adversely impact the classi-

fication performance when learning to localize and provide

detailed results on weakly-supervised object localization.

3.1. Setup

For our experiments we evaluate the effect of using

CAM on the following popular CNNs: AlexNet [10], VG-

Gnet [24], and GoogLeNet [25]. In general, for each of

these networks we remove the fully-connected layers be-

fore the final output and replace them with GAP followed

by a fully-connected softmax layer. Note that removing

fully-connected layers largely decreases network parame-

ters (e.g. 90% less parameters for VGGnet), but also brings

some classification performance drop.

We found that the localization ability of the networks im-

proved when the last convolutional layer before GAP had a

higher spatial resolution, which we term the mapping reso-

lution. In order to do this, we removed several convolutional

layers from some of the networks. Specifically, we made

the following modifications: For AlexNet, we removed the

layers after conv5 (i.e., pool5 to prob) resulting in a

mapping resolution of 13 × 13. For VGGnet, we removed

the layers after conv5-3 (i.e., pool5 to prob), result-

ing in a mapping resolution of 14 × 14. For GoogLeNet,

we removed the layers after inception4e (i.e., pool4

to prob), resulting in a mapping resolution of 14 × 14.

To each of the above networks, we added a convolutional

layer of size 3× 3, stride 1, pad 1 with 1024 units, followed

by a GAP layer and a softmax layer. Each of these net-

works were then fine-tuned2 on the 1.3M training images

of ILSVRC [21] for 1000-way object classification result-

ing in our final networks AlexNet-GAP, VGGnet-GAP and

GoogLeNet-GAP respectively.

For classification, we compare our approach against the

2Training from scratch also resulted in similar performances.

original AlexNet [10], VGGnet [24], and GoogLeNet [25],

and also provide results for Network in Network

(NIN) [13]. For localization, we compare against the orig-

inal GoogLeNet3, NIN and using backpropagation [23]

instead of CAMs. Further, to compare average pooling

against max pooling, we also provide results for GoogLeNet

trained using global max pooling (GoogLeNet-GMP).

We use the same error metrics (top-1, top-5) as ILSVRC

for both classification and localization to evaluate our net-

works. For classification, we evaluate on the ILSVRC vali-

dation set, and for localization we evaluate on both the val-

idation and test sets.

3.2. Results

We first report results on object classification to demon-

strate that our approach does not significantly hurt classi-

fication performance. Then we demonstrate that our ap-

proach is effective at weakly-supervised object localization.

Classification: Tbl. 1 summarizes the classification per-

formance of both the original and our GAP networks. We

find that in most cases there is a small performance drop

of 1 − 2% when removing the additional layers from the

various networks. We observe that AlexNet is the most

affected by the removal of the fully-connected layers. To

compensate, we add two convolutional layers just before

GAP resulting in the AlexNet*-GAP network. We find that

AlexNet*-GAP performs comparably to AlexNet. Thus,

overall we find that the classification performance is largely

preserved for our GAP networks. Further, we observe that

GoogLeNet-GAP and GoogLeNet-GMP have similar per-

formance on classification, as expected. Note that it is im-

portant for the networks to perform well on classification

in order to achieve a high performance on localization as it

involves identifying both the object category and the bound-

ing box location accurately.

Localization: In order to perform localization, we need

to generate a bounding box and its associated object cate-

gory. To generate a bounding box from the CAMs, we use a

simple thresholding technique to segment the heatmap. We

first segment the regions of which the value is above 20%

of the max value of the CAM. Then we take the bounding

box that covers the largest connected component in the seg-

mentation map. We do this for each of the top-5 predicted

classes for the top-5 localization evaluation metric. Fig. 6(a)

shows some example bounding boxes generated using this

technique. The localization performance on the ILSVRC

validation set is shown in Tbl. 2, and example outputs in

Fig. 5.

We observe that our GAP networks outperform all the

baseline approaches with GoogLeNet-GAP achieving the

lowest localization error of 43% on top-5. This is remark-

able given that this network was not trained on a single

3It has a lower mapping resolution than our GoogLeNet-GAP.
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Table 1. Classification error on the ILSVRC validation set.
Networks top-1 val. error top-5 val. error

VGGnet-GAP 33.4 12.2

GoogLeNet-GAP 35.0 13.2

AlexNet∗-GAP 44.9 20.9

AlexNet-GAP 51.1 26.3

GoogLeNet 31.9 11.3

VGGnet 31.2 11.4

AlexNet 42.6 19.5

NIN 41.9 19.6

GoogLeNet-GMP 35.6 13.9

Table 2. Localization error on the ILSVRC validation set. Back-

prop refers to using [23] for localization instead of CAM.

Method top-1 val.error top-5 val. error

GoogLeNet-GAP 56.40 43.00

VGGnet-GAP 57.20 45.14

GoogLeNet 60.09 49.34

AlexNet∗-GAP 63.75 49.53

AlexNet-GAP 67.19 52.16

NIN 65.47 54.19

Backprop on GoogLeNet 61.31 50.55

Backprop on VGGnet 61.12 51.46

Backprop on AlexNet 65.17 52.64

GoogLeNet-GMP 57.78 45.26

annotated bounding box. We observe that our CAM ap-

proach significantly outperforms the backpropagation ap-

proach of [23] (see Fig. 6(b) for a comparison of the out-

puts). Further, we observe that GoogLeNet-GAP signifi-

cantly outperforms GoogLeNet on localization, despite this

being reversed for classification. We believe that the low

mapping resolution of GoogLeNet (7 × 7) prevents it from

obtaining accurate localizations. Last, we observe that

GoogLeNet-GAP outperforms GoogLeNet-GMP by a rea-

sonable margin illustrating the importance of average pool-

ing over max pooling for identifying the extent of objects.

To further compare our approach with the existing

weakly-supervised [23] and fully-supervised [25, 22, 25]

CNN methods, we evaluate the performance of GoogLeNet-

GAP on the ILSVRC test set. We follow a slightly different

bounding box selection strategy here: we select two bound-

ing boxes (one tight and one loose) from the class activa-

tion map of the top 1st and 2nd predicted classes and one

loose bounding boxes from the top 3rd predicted class. This

heuristic is a trade-off between classification accuracy and

localization accuracy. We found that the heuristic was help-

ful to improve performances on the validation set. The per-

formances are summarized in Tbl. 3. GoogLeNet-GAP with

heuristic achieves a top-5 error rate of 37.1% in a weakly-

supervised setting, which is surprisingly close to the top-5

error rate of AlexNet (34.2%) in a fully-supervised setting.

While impressive, we still have a long way to go when com-

paring the fully-supervised networks with the same archi-

tecture (i.e., weakly-supervised GoogLeNet-GAP vs fully-

supervised GoogLeNet) for the localization.

Table 3. Localization error on the ILSVRC test set for various

weakly- and fully- supervised methods.

Method supervision top-5 test error

GoogLeNet-GAP (heuristics) weakly 37.1

GoogLeNet-GAP weakly 42.9

Backprop [23] weakly 46.4

GoogLeNet [25] full 26.7

OverFeat [22] full 29.9

AlexNet [25] full 34.2

4. Deep Features for Generic Localization

The responses from the higher-level layers of CNN (e.g.,

fc6, fc7 from AlexNet) have been shown to be very effec-

tive generic features with state-of-the-art performance on a

variety of image datasets [3, 20, 35]. Here, we show that

the features learned by our GAP CNNs also perform well

as generic features, and as bonus, identify the discrimina-

tive image regions used for categorization, despite not hav-

ing being trained for those particular tasks. To obtain the

weights similar to the original softmax layer, we simply

train a linear SVM [5] on the output of the GAP layer.

First, we compare the performance of our approach

and some baselines on the following scene and ob-

ject classification benchmarks: SUN397 [28], MIT In-

door67 [19], Scene15 [11], SUN Attribute [17], Cal-

tech101 [6], Caltech256 [9], Stanford Action40 [29], and

UIUC Event8 [12]. The experimental setup is the same as

in [35]. In Tbl. 5, we compare the performance of features

from our best network, GoogLeNet-GAP, with the fc7 fea-

tures from AlexNet, and ave pool from GoogLeNet.

As expected, GoogLeNet-GAP and GoogLeNet sig-

nificantly outperform AlexNet. Also, we observe that

GoogLeNet-GAP and GoogLeNet perform similarly de-

spite the former having fewer convolutional layers. Overall,

we find that GoogLeNet-GAP features are competitive with

the state-of-the-art as generic visual features.

More importantly, we want to explore whether the lo-

calization maps generated using our CAM technique with

GoogLeNet-GAP are informative even in this scenario.

Fig. 8 shows some example maps for various datasets. We

observe that the most discriminative regions tend to be high-

lighted across all datasets. Overall, our approach is effective

for generating localizable deep features for generic tasks.

In Sec. 4.1, we explore fine-grained recognition of birds

and demonstrate how we evaluate the generic localiza-

tion ability and use it to further improve performance. In

Sec. 4.2 we demonstrate how GoogLeNet-GAP can be used

to identify generic visual patterns from images.

4.1. Finegrained Recognition

In this section, we apply our generic localizable deep

features to identifying 200 bird species in the CUB-200-

2011 [27] dataset. The dataset contains 11,788 images, with

5,994 images for training and 5,794 for test. We choose this
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GoogLeNet-GAP VGG-GAP AlexNet-GAP GoogLeNet NIN Backpro AlexNet Backpro GoogLeNet

agaric

French horn

Figure 5. Class activation maps from CNN-GAPs and the class-specific saliency map from the backpropagation methods.

b)a)
Figure 6. a) Examples of localization from GoogleNet-GAP. b) Comparison of the localization from GooleNet-GAP (upper two) and

the backpropagation using AlexNet (lower two). The ground-truth boxes are in green and the predicted bounding boxes from the class

activation map are in red.

dataset as it also contains bounding box annotations allow-

ing us to evaluate our localization ability. Tbl. 4 summarizes

the results.

We find that GoogLeNet-GAP performs comparably to

existing approaches, achieving an accuracy of 63.0% when

using the full image without any bounding box annotations

for both train and test. When using bounding box anno-

tations, this accuracy increases to 70.5%. Now, given the

localization ability of our network, we can use a similar ap-

proach as Sec. 3.2 (i.e., thresholding) to first identify bird

bounding boxes in both the train and test sets. We then use

GoogLeNet-GAP to extract features again from the crops

inside the bounding box, for training and testing. We find

that this improves the performance considerably to 67.8%.

This localization ability is particularly important for fine-

grained recognition as the distinctions between the cate-

gories are subtle and having a more focused image crop

allows for better discrimination.

Further, we find that GoogLeNet-GAP is able to accu-

rately localize the bird in 41.0% of the images under the

0.5 intersection over union (IoU) criterion, as compared to

a chance performance of 5.5%. We visualize some exam-

ples in Fig. 7. This further validates the localization ability

of our approach.

4.2. Pattern Discovery

In this section, we explore whether our technique can

identify common elements or patterns in images beyond

Table 4. Fine-grained classification performance on CUB200

dataset. GoogLeNet-GAP can successfully localize important im-

age crops, boosting classification performance.

Methods Train/Test Anno. Accuracy

GoogLeNet-GAP on full image n/a 63.0%

GoogLeNet-GAP on crop n/a 67.8%

GoogLeNet-GAP on BBox BBox 70.5%

Alignments [7] n/a 53.6%

Alignments [7] BBox 67.0%

DPD [32] BBox+Parts 51.0%

DeCAF+DPD [3] BBox+Parts 65.0%

PANDA R-CNN [31] BBox+Parts 76.4%

White Pelican Orchard Oriole

Figure 7. CAMs and the inferred bounding boxes (in red) for se-

lected images from four bird categories in CUB200. In Sec. 4.1 we

quantitatively evaluate the quality of the bounding boxes (41.0%

accuracy for 0.5 IoU). We find that extracting GoogLeNet-GAP

features in these CAM bounding boxes and re-training the SVM

improves bird classification accuracy by about 5% (Tbl. 4).

objects, such as text or high-level concepts. Given a set

of images containing a common concept, we want to iden-

tify which regions our network recognizes as being impor-

tant and if this corresponds to the input pattern. We fol-

low a similar approach as before: we train a linear SVM on
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Table 5. Classification accuracy on representative scene and object datasets for different deep features.

SUN397 MIT Indoor67 Scene15 SUN Attribute Caltech101 Caltech256 Action40 Event8

fc7 from AlexNet 42.61 56.79 84.23 84.23 87.22 67.23 54.92 94.42

ave pool from GoogLeNet 51.68 66.63 88.02 92.85 92.05 78.99 72.03 95.42

gap from GoogLeNet-GAP 51.31 66.61 88.30 92.21 91.98 78.07 70.62 95.00

Fixing a carCleaning the floor Cooking TeapotMushroom Penguin

Stanford Action40 Caltech256

RowingPolo

UIUC Event8

CroquetPlayground

SUN397

ExcavationBanquet hall

Figure 8. Generic discriminative localization using our GoogLeNet-GAP deep features. We show 2 images each from 3 classes for 4

datasets, and their class activation maps below them. We observe that the discriminative regions of the images are often highlighted e.g., in

Stanford Action40, the mop is localized for cleaning the floor, while for cooking the pan and bowl are localized and similar observations

can be made in other datasets. This demonstrates the generic localization ability of our deep features.

the GAP layer of the GoogLeNet-GAP network and apply

the CAM technique to identify important regions. We con-

ducted three pattern discovery experiments using our deep

features. The results are summarized below. Note that in

this case, we do not have train and test splits − we just use

our CNN for visual pattern discovery.

Discovering informative objects in the scenes: We

take 10 scene categories from the SUN dataset [28] contain-

ing at least 200 fully annotated images, resulting in a total

of 4675 fully annotated images. We train a one-vs-all linear

SVM for each scene category and compute the CAMs using

the weights of the linear SVM. In Fig. 9 we plot the CAM

for the predicted scene category and list the top 6 objects

that most frequently overlap with the high CAM activation

regions for two scene categories. We observe that the high

activation regions frequently correspond to objects indica-

tive of the particular scene category.

Concept localization in weakly labeled images: Us-

ing the hard-negative mining algorithm from [33], we learn

concept detectors and apply our CAM technique to local-

ize concepts in the image. To train a concept detector for

a short phrase, the positive set consists of images that con-

tain the short phrase in their text caption, and the negative

set is composed of randomly selected images without any

relevant words in their text caption. In Fig. 10, we visualize

the top ranked images and CAMs for two concept detec-

tors. Note that CAM localizes the informative regions for

Informative object:
sink:0.84
faucet:0.80
countertop:0.80
toilet:0.72
bathtub:0.70
towel:0.54

Informative object:
table:0.96
chair:0.85
chandelier:0.80
plate:0.73
vase:0.69
flowers:0.63

Dining room Bathroom
Frequent object:
wall:0.99
chair:0.98
floor:0.98
table:0.98
ceiling:0.75
window:73

Frequent object:
wall: 1
floor:0.85
sink: 0.77
faucet:0.74
mirror:0.62
bathtub:0.56

Figure 9. Informative objects for two scene categories. For the din-

ing room and bathroom categories, we show examples of original

images (top), and list of the 6 most frequent objects in that scene

category with the corresponding frequency of appearance. At the

bottom: the CAMs and a list of the 6 objects that most frequently

overlap with the high activation regions.

the concepts, even though the phrases are much more ab-

stract than typical object names.

Weakly supervised text detector: We train a weakly su-

pervised text detector using 350 Google StreetView images

containing text from the SVT dataset [26] as the positive set

and randomly sampled images from outdoor scene images

in the SUN dataset [28] as the negative set. As shown in

Fig. 11, our approach highlights the text accurately without

using bounding box annotations.

Interpreting visual question answering: We use our

approach and localizable deep feature in the baseline pro-

posed in [36] for visual question answering. It has overall

accuracy 55.89% on the test-standard in the Open-Ended

track. As shown in Fig. 12, our approach highlights the im-
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mirror in lake view out of window

Figure 10. Informative regions for the concept learned from

weakly labeled images. Despite being fairly abstract, the concepts

are adequately localized by our GoogLeNet-GAP network.

Figure 11. Learning a weakly supervised text detector. The text is

accurately detected on the image even though our network is not

trained with text or any bounding box annotations.

What is the color of the horse?
Prediction: brown 

What are they doing?
Prediction: texting

What is the sport?
Prediction: skateboarding

Where are the cows?
Prediction: on the grass

Figure 12. Examples of highlighted image regions for the pre-

dicted answer class in the visual question answering.

age regions relevant to the predicted answers.

5. Visualizing Class-Specific Units

Zhou et al [34] have shown that the convolutional units

of various layers of CNNs act as visual concept detec-

tors, identifying low-level concepts like textures or mate-

rials, to high-level concepts like objects or scenes. Deeper

into the network, the units become increasingly discrimi-

native. However, given the fully-connected layers in many

networks, it can be difficult to identify the importance of

different units for identifying different categories. Here, us-

ing GAP and the ranked softmax weight, we can directly

visualize the units that are most discriminative for a given

class. Here we call them the class-specific units of a CNN.

Fig. 13 shows the class-specific units for AlexNet∗-GAP

trained on ILSVRC dataset for object recognition (top) and

Places Database for scene recognition (bottom). We follow

a similar procedure as [34] for estimating the receptive field

and segmenting the top activation images of each unit in the

final convolutional layer. Then we simply use the softmax

pagodaclassroomlivingroom

Trained on Places Database

Trained on ImageNet 

hen lakeland terrier mushroom

Figure 13. Visualization of the class-specific units for AlexNet*-

GAP trained on ImageNet (top) and Places (bottom) respectively.

The top 3 units for three selected classes are shown for each

dataset. Each row shows the most confident images segmented

by the receptive field of that unit. For example, units detecting

blackboard, chairs, and tables are important to the classification of

classroom for the network trained for scene recognition.

weights to rank the units for a given class. From the figure

we can identify the parts of the object that are most dis-

criminative for classification and exactly which units detect

these parts. For example, the units detecting dog face and

body fur are important to lakeland terrier; the units detect-

ing sofa, table and fireplace are important to the living room.

Thus we could infer that the CNN actually learns a bag of

words, where each word is a discriminative class-specific

unit. A combination of these class-specific units guides the

CNN in classifying each image.

6. Conclusion

In this work we propose a general technique called Class

Activation Mapping (CAM) for CNNs with global average

pooling. This enables classification-trained CNNs to learn

to perform object localization, without using any bounding

box annotations. Class activation maps allow us to visualize

the predicted class scores on any given image, highlighting

the discriminative object parts detected by the CNN. We

evaluate our approach on weakly supervised object local-

ization on the ILSVRC benchmark, demonstrating that our

global average pooling CNNs can perform accurate object

localization. Furthermore we demonstrate that the CAM lo-

calization technique generalizes to other visual recognition

tasks i.e., our technique produces generic localizable deep

features that can aid other researchers in understanding the

basis of discrimination used by CNNs for their tasks.
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