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ABSTRACT

The Amodal Instance Segmentation (AIS) task aims to infer
the complete mask of occluded instance. Under many cir-
cumstances, existing methods treat occluded objects as unoc-
cluded ones, and vice versa, leading to inaccurate predictions.
This is because existing AIS methods do not explicitly utilize
the occlusion rates of each object as supervision. However,
occlusion information is critical for the methods to recognize
whether the target objects are occluded. Hence we believe it is
vital for the method to be distinguishable about the degree of
occlusion for each instance. In this paper, a simple yet effec-
tive Occlusion-aware transformer-based model, OAFormer,
is proposed for accurate amodal instance segmentation. The
goal of OAFormer is to learn the occlusion discriminative fea-
tures. Novel components are proposed to enable OAFormer
to be occlusion distinguishable. We conduct extensive exper-
iments on two challenging AIS datasets to evaluate the effec-
tiveness of our method. OAFormer outperforms state-of-the-
art methods by large margins.

Index Terms— Amodal, instance segmentation, occlu-
sion

1. INTRODUCTION

Amodal perception is an innate human ability to imagine the
entire shape of an occluded object. Similarly, the amodal
instance segmentation (AIS) task aims to predict the com-
plete regions of occluded instances, while the visible instance
segmentation task only predicts the visible regions. Occlu-
sion problem exists widely in many computer vision tasks, in-
cluding pedestrian re-identification [1, 2], robotic-arm grasp-
ing [3] and medical image segmentation [4].

At present, the AIS task has drawn great attention from
the community. Several datasets [5, 6, 7, 8, 9] and meth-
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Fig. 1. Typical cases of the occlusion confusing problem.
(a) Occlude bottle is regarded as unoccluded and resulting in
wrong prediction. (b) Unoccluded chocolate is regarded as
occluded and predicted wrongly.

ods [5, 6, 7, 10, 11] have been proposed to tackle the AIS
problem from different perspectives, including directly learn-
ing methods [5, 6, 7, 8, 9, 10, 11, 12], relative-depth-based
methods [13, 14] and shape-prior-based methods [15, 16].
However, all of the existing methods are confused for distin-
guishing whether the object is occluded to some extent. Fig. 1
shows typical errors caused by this occlusion confusing prob-
lem. As shown in Fig. 1(a), the occluded bottle is falsely rec-
ognized as an unoccluded object, leading to the wrong predic-
tion. Besides, as shown in Fig. 1(b), the unoccluded chocolate
is falsely recognized as an occluded object. These mistakes
can be ascribed to the ignorance of the occlusion degree of
each object.

The key to solving the occlusion confusing problem
is to figure out the degree of occlusion. Therefore, it is
necessary for the model to be aware of the occlusion degree
of each object. In this paper, we propose an Occlusion-
aware transformer-based model named OAFormer to alle-
viate the occlusion confusing problem. OAFormer is basedIC
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Fig. 2. Overview of the proposed OAFormer. OAFormer takes an image as the input. After extracting the features by
the Encoder and the Cascaded Global Decoder, the Occlusion Distinguish Module predicts the occlusion rates of each target
objects and embeds occlusion information into the attention masks. Finally, the Amodal Decoder takes the occlusion-aware
attention masks and queries as input, and outputs the predicted amodal masks.

on the transformer-structured network [17], which achieves
superior performance on the visible instance segmentation
task. The original transformer network [17] uses randomly
initialized queries and attention masks, which does not con-
sider learning the occlusion information. In contrast, in this
work, we propose to learn the occlusion information of each
object instance to make the model aware of the occlusion
degree. Specifically, OAFormer incorporates a novel com-
ponent named Occlusion Distinguish Module (ODM). ODM
is designed to enhance the existing transformer model from
two aspects: (1) An occlusion-aware input query is proposed
to learn and embed the occlusion information of each object
in instance-level; (2) An occlusion discriminative attention
mask is introduced to provide the occlusion information in
spatial-level. The effectiveness of our method is evaluated on
the challenging D2SA dataset [7] and COCOA-cls [7] dataset.
Compared with existing methods, OAFormer achieves state-
of-the-art performance.

Our contributions are summarized as follows: (1) To our
best knowledge, OAFormer is the first method proposed to
tackle the occlusion confusing problem. OAFormer is also
the first transformer-based method for the AIS task. (2)
OAFormer outperforms state-of-the-art methods on challeng-
ing AIS datasets, including D2SA and COCOA-cls, with a
large margin, demonstrating the effectiveness of our method.

2. PROPOSED METHOD

In this section, we first introduce the task definition and the
overall architecture. Then the newly proposed components
for learning the occlusion-aware queries and attention masks
are introduced in detail. Finally, the loss functions of the
whole method are described.

2.1. Task Definition

Given an input image I ∈ RH×W×3 containing K objects,
amodal instance segmentation (AIS) task aims to predict the
complete amodal mask MA ∈ {0, 1}H×W and the category
label c ∈ {1, 2, ..., C} for each of the instances, including oc-
cluded and unoccluded ones. For each instance, the ground-
truth amodal mask is defined as Mgt

A , and the ground-truth
category is defined as cgt.

2.2. Overall Architecture

The architecture of the proposed method is shown in Fig. 2.
OAFormer contains three steps: (1) First, for each input
image, the Encoder extracts the features through down-
sampling. Then the Cascaded Global Decoder (CGD) ul-
teriorly learns and mines the global features of all instances
through up-sampling. (2) Next, the core component Occlu-
sion Distinguish Module (ODM) generates occlusion-aware
queries and attention masks, which provides occlusion in-
formation in instance-level and spatial-level, respectively.
(3) Finally, an Amodal Decoder takes the occlusion-aware
queries as input and uses the attention mechanism with the
predicted occlusion-aware attention masks to obtain the em-
bedded query features of instances. Then the embedded query
features are multiplied by the global feature to obtain the pre-
diction of each instance. The basic components, CGD and
Amodal Decoder, are replaceable. We instantiate OAFormer
on the top of Mask2Former [17]. Moreover, our core com-
ponent ODM is suitable for being plugged into the general
transformer-serials models which take queries as input.

2.3. Encoder and Cascaded Global Decoder

The Encoder network aims to comprehend the input image
preliminarily, which takes the image as input and outputs the
features of the image. The Cascaded Global Decoder (CGD)
aims to learn the feature of the image globally. A cascaded-
style multi-level network [17] is employed to mine the output
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feature of the backbone network globally and deeply. The
input feature of CGD is gradually upscaled to recover struc-
tural details like edges and semantic information. The out-
put of CGD is used by two modules, including utilized by
the ODM module to predict the occlusion-aware queries, and
combined with the output of the amodal decoder to predict
the final amodal masks.

2.4. Occlusion Distinguish Module

Occlusion Embedding

Occlusion Prediction

Sigmoid

Mask Embedding

Positional Attention

Occlusion Embedding Module
(OEM)

Cross-attention
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Fig. 3. Detailed Architecture of Occlusion Distinguish
Module. ODM contains three steps: OEM → Transformer
Decoder → OEM. The Occlusion embedding module (OEM)
takes the randomly initialized queries as inputs, and outputs
occlusion rates and attention masks. Transformer decoder
module takes the occlusion attention mask, image features
and randomly initialized query features as inputs, and outputs
the occlusion-aware queries. Best viewed in color.

The Occlusion Distinguish Module (ODM) module is de-
signed to learn occlusion-aware queries and attention masks
to make the network distinguishable to the occlusion degree
of each object, which can alleviate the occlusion confusing
problem in the AIS task. The architecture of the ODM is
shown in Fig. 3 with two components, occlusion embedding
module and transformer decoder module, operating alter-
nately. The ODM contains three steps, as shown below.

First, the initial random queries are fed into the occlusion
embedding module (OEM) and are converted to the occlusion
embedding vectors as shown in Fig. 3 (left). These vectors
are then divided into two streams: 1) predicting the occlu-
sion rates with the MLP and Sigmoid function, 2) combining
the image features of the output of CGD and generating the
occlusion-aware attention masks of the target objects.

Second, the transformer decoder module adopting the
same meta-architecture as Mask2Former [17]. As shown
in Fig. 3 (right), we modify the standard cross-attention by
replacing the binarized mask prediction with the occlusion-
aware attention mask. The transformer decoder module pre-

dicts the new occlusion-aware queries for the target objects
with the query features and image features.

Third, the occlusion-aware queries are re-fed into the oc-
clusion embedding module, and the final occlusion rates and
occlusion attention masks are predicted.

2.5. Amodal Decoder

The Amodal Decoder is employed to predict the final pre-
dictions. The input contains the occlusion-aware queries and
attention masks, and the output contains the feature embed-
dings of all queries. Finally, these feature embeddings are
multiplied with the image features to obtain the final predic-
tions, including amodal masks and class labels.

2.6. Loss Functions

There are three kinds of loss functions used: occlusion loss,
mask loss and classification loss. The occlusion loss Locclusion
optimizes the occlusion rates predicted by ODM through the
smooth L1 loss [18]. The mask loss Lmask is used to super-
vised the prediction of amodal masks. The mask loss consist
of the Cross Entropy loss [19] Lce and the Dice loss [20] Ldice.
The classification loss Lcls is the Cross Entropy loss [19].
When computing the three losses, the ground truth of the oc-
clusion rate, amodal mask and category label of each instance
is used respectively. The final loss function is:

Lall = λ1Locclusion + λ2Lce + λ3Ldice + λ4Lcls (1)

where λ1, λ2, λ3, λ4 are empirically set to 2, 0.5, 0.5, 0.2 to
balance between different losses.

3. EXPERIMENTS

In this section, we first demonstrate the effectiveness of our
proposed method quantitatively on three popular datasets
compared with state-of-the-art methods. Then extensive ab-
lation study is introduced.

3.1. Datasets and Experimental Settings

D2SA [7] and COCOA-cls [7] datasets are used for experi-
ments. The D2SA dataset contains 60 categories and 5600
images for automatic checkout. COCOA-cls contains daily-
life scene and contains 80 categories and 3501 images. The
ground truth of the occlusion rate is contained in the official
annotation of above datasets. The metric for evaluation is the
same with COCO, including APavg , AP50 and AP75. All
reported results are rounded to the first decimal.

For fairness, all methods are trained on the same training
dataset and validated on the same validation dataset. There
is no extra dataset used. The ground-truth occlusion rates are
provided in the official annotation. All methods use the same
Encoder network ResNet-50-FPN [21].
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Table 1. Comparison with state-of-the-art methods on the D2SA and COCOA-cls datasets. For supervision, “bbox” means
amodal bounding box, “mask” means amodal masks, and “cls” means class labels. For each metric, the bold performance is
the best, and the second-best is underlined.

Method Publication Supervision D2SA COCOA-cls
APavg AP50 AP75 APavg AP50 AP75

Mask-RCNN [22] ICCV’19 bbox, mask, cls 63.6 83.9 68.0 33.7 56.5 35.8
ORCNN [7] WACV’19 bbox, mask, cls 64.2 83.6 69.1 28.0 53.7 25.4
SLN [13] ACM MM’19 bbox, mask, cls 25.1 30.8 29.4 14.4 23.6 15.8
BCNet [11] CVPR’21 bbox, mask, cls 50.9 66.9 57.2 22.1 32.3 24.5
ShapeDict [15] AAAI’21 bbox, mask, cls 70.3 85.1 75.8 35.4 56.0 38.7
A3D [16] ECCV’22 bbox, mask, cls 68.5 N/A N/A 34.9 N/A N/A
Ours (w/o ODM) N/A mask, cls 61.7 78.7 63.3 33.9 45.0 35.8
Ours (w/ ODM) N/A mask, cls 72.5 86.5 76.1 37.4 49.7 40.5

3.2. Comparison to Previous Methods

Our method is compared with state-of-the-art methods on the
D2SA and COCOA-cls datasets, as shown in Tab. 1. Mask-
RCNN [22] and BCNet [11] are two visible instance seg-
mentation methods, trained with amodal annotations for com-
parison. The ORCNN [7], SLN [13], ShapeDict [15] and
A3D [16] are amodal instance segmentation methods.

As shown in Tab. 1, the performance of our method out-
performs all previous AIS methods. Moreover, our method
also beats the VIS methods, including Mask-RCNN and BC-
Net. OAFormer outperforms the secondary best method Sha-
pedict by 2.2% APavg on D2SA dataset and 2.0% APavg on
COCOA-cls dataset. It is worth noticing that OAFormer only
needs the ground truth of the amodal masks and class labels
as supervision signals, while all the other methods need the
ground-truth amodal bounding boxes additionally.

3.3. Ablation Study

To quantitatively analyze the effect of the proposed compo-
nents of our OAFormer and verify the effectiveness of differ-
ent factors, ablation study is conducted on the D2SA dataset.
Occlusion Distinguish Module (ODM). The ODM is the
core component in OAFormer. As shown in Tab. 1, our
method with the proposed ODM can outperform our method
without the ODM by 10.8% APavg on the D2SA dataset and
3.5% APavg on the COCOA-cls dataset. The results confirm
the effectiveness of the proposed ODM.
Number of queries. The number of queries in the OAFormer
represents the maximum amount of instances in each image.
As shown in Tab. 2, the performances are improving while
the number of queries increases from 10 to 200. This result
implies that in a particular range, the more queries used in the
OAFormer, the better performance can be obtained. However,
the performance drops from 72.5% AP to 71.2% AP when
the number of queries improves from 200 to 300. The result
denotes that using 200 queries is more suitable than using 300
queries for the OAFormer on the D2SA dataset, because using
300 queries can cause the matching between predictions and
ground truths being difficult.

Table 2. Ablation experiments of using the different number
of queries in OAFormer on the D2SA dataset.

Number of queries APavg AP50 AP75

10 61.8 77.4 64.7
50 64.6 80.4 67.0

100 72.5 86.5 76.1
200 72.5 86.9 76.1
300 71.2 85.7 74.3

Table 3. Ablation experiments of three groups for using dif-
ferent combinations of loss functions for supervision.

Group Lce Ldice Locclusion APavg AP50 AP75

✓ 59.5 77.6 61.41
✓ ✓ 62.9 80.5 65.2

✓ 70.0 85.5 72.72
✓ ✓ 70.7 85.6 73.6
✓ ✓ 71.5 85.9 75.43
✓ ✓ ✓ 72.5 86.5 76.1

Loss functions. Ablation experiments are conducted for three
losses. The prediction of amodal masks are supervised by Lce
and Ldice, and at least one of them needs to be used. The
prediction of occlusion rates are supervised by Locclusion. As
shown in Tab. 3, in all three groups, the performance when
using Locclusion are better than no using Locclusion. The best
performance can be obtained when using all three losses.

4. CONCLUSION

In this paper, we have proposed an end-to-end transformer-
based method named OAFormer, which aims to handle the
occlusion confusing problem in the AIS task. OAFormer con-
tains two novel components that learn and embed each in-
stance’s occlusion information to make the OAFormer oc-
clusion distinguishable. Experiments show that OAFormer
can achieve state-of-the-art performance on the D2SA and
COCOA-cls datasets. We hope that OAFormer will serve as
a strong baseline for the community to handle the occlusion
confusing problem in the AIS task.
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