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Abstract. Automated skin lesion segmentation is essential to assist doctors in
diagnosis. Most methods focus on lesion segmentation of dermoscopy images,
while a few focus on clinical images. Nearly all the existing methods tackle the bi-
nary segmentation problem as to distinguish lesion parts from normal skin parts,
and are designed for diseases with localized solitary skin lesion. Besides, the
chararcteristics of both the dermoscopy images and the clinical images are four-
fold: (1) Only one skin lesion exists in the image. (2) The skin lesion mostly ap-
pears in the center of the image. (3) The backgrounds are similar between differ-
ent images of same modality. (4) The resolution of images isn’t high, with an av-
erage of about 1500x 1200 in several popular datasets. In contrast, this paper fo-
cuses on a four-class segmentation task for Cutaneous T-cell lymphomas(CTCL),
an extremely aggressive skin disease with three visually similar kinds of lesions.
For the first time, we collect a new dataset, which only contains clinical images
captured from different body areas of human. The main characteristics of these
images differ from all the existing images in four aspects: (1) Multiple skin le-
sion parts exist in each image. (2) The skin lesion parts are widely scattered in
different areas of the image. (3) The background of the images has a large vari-
ety. (4) All the images have high resolutions, with an average of 3255 x 2535.
According to the characteristics and difficulties of CTCL, we design a new Multi
Knowledge Learning Network (MKLN). The experimental results demonstrate
the superiority of our method, which meet the clinical needs.
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1 Introduction

Skin disease is one of the most common type of disease in the world, with nearly 5 mil-
lion new cases estimated every year [18, 15]. In recent years, more and more computer-
aided methods are devoted to segmenting the lesion areas in order to assist doctors in
the diagnosis process. Normally, there’re two modalities of imaging: clinical images
and dermoscopy images. Clinical images are captured by standard digital camera and
can provide a global representation in view, angle and lighting, as for a better under-
standing and observation of the disease. In contrast, dermoscopy images are obtained
by a microscope using incident light and oil immersion to make subsurface structures of
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Fig. 1. Existing clinial images. Fig.2. CTCL clinical image. Fig. 3. CTCL dataset.

a small skin region accessible, which permit a more detailed inspection of skin lesions.
Most of the existing segmentation methods are designed for dermoscopy images [11, 4,
2,21,5,20,9]. In this work, we focus on clinical image segmentation.

There are also a few methods for clinical image segmentation [17, 1, 6, 10, 7]. The
authors in [7] propose a texture-based method to learn the representative texture distri-
butions, as for a better localization of lesion area. For deep-learning based methods, a
FCN-based method is introduced in [17], with an extra critic module for better predic-
tions of boundaries. To tackle the disturbing factors such as illumination variations from
skin surface, the method in [1] proposes a zoom-out window to capture local and global
information for accurate extraction of lesion regions. However, nearly all the above ex-
isting methods are designed for the binary segmentation task to distinguish between
lesion area and skin area. Besides, the datasets mainly contain diseases with localized
soliatary skin lesions, which means only one lesion area appeared and is usually located
in the center of the images.

In this work, we aim at a new four-class segmentation task for a supremely aggres-
sive skin disease called Cutaneous T-cell lymphomas (CTCL), on clinical images with
totally different characteristics from existing ones. CTCL is a severe group of extranodal
non-Hodgkin lymphomas [19, 8], which is a skin cancer with an increasing incidence
rate in recent years. Survival declines dramatically as the disease progresses [16]. The
unique manifestation of CTCL is three types of lesions on the skin: patches, plaques
and tumors, which are increasing in severity and change at the disease progress [14, 3].
Thus, for auxiliary diagnosis, four-class segmentation is needed. Meanwhile, an impor-
tant clinical application called “mSWAT Score Evaluation” is needed for this disease,
which is implemented by the modified Severity Weighted Assessment Tool to calculate
the percentage of the area of each skin lesion type over the area of whole body to track
the clinical response for the treatments [13]. However, in clinical work, due to irregular
skin lesions, it’s difficult for doctors to make accurate and repeatable estimates during
calculations. Thus, involving computers to automatically calculate the area will be very
beneficial to improve the accuracy. For a better area evaluation result, segmenting all the
lesion parts correctly first by the computer is important. So this four-class segmentation
task is significant and the fundation of the automated mSWAT Score Evaluation.

However, there’re several difficulties and uniqueness of this task, comparing to pre-
vious tasks. Firstly, the visual difference within different lesion parts or between one
lesion part and a normal skin part could all be very similar. Next, multiple and con-
nected skin lesions could appear throughout the body. Thus, for this disease, clinical,
instead of dermoscopy images, are needed to captured from different parts of body sur-
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Table 1. Comparasion between the existing skin lesion segmentation task and our task.

Attribute Previous problem Our problem
Number of classes 2 (Only lesion and normal skin) 4 (Three visually similar lesions)
Disease With localized solitary skin lesion With generalized skin lesion
Image Modality Mostly dermoscopy, few clinical Clinical
(1) Only one skin lesion part (1) Multiple skin lesion parts
Characteristics | (2) Lesion part appears in the center |(2) Lesion parts are widely scattered
of images (3) Similar background (3) Large variety of background
(4) Low to medium resolution (4) High resolution

face area. Besides, high-resolution images are needed for accurate estimation of lesion
areas. Fig. 1 contains examples of existing clinical images. Fig. 2 contains an example
of CTCL image and an annotation map of all the lesion areas. In the map, yellow, blue
and red denote patch, plaque and tumors, respectively. As we can see, the CTCL image
is different from existing clinical images no matter from the characteristics and number
of lesion types. Besides, the three types of lesions could concurrently appear in a single
lesion area and are visually similar. Table 1 is the comparasion between our task and the
previous task. To sum up, the main uniqueness and challenges for this task are: (1) It is
a four-class segmentation task and the visual difference between different classes could
be very similar, no matter between different lesion types within a lesion area or between
lesion parts and normal skin parts. (2) The clinical images all have very high resolution
and have distributed lesion parts existing in different parts, making the task more dif-
ficult. (3) The clinical images suffer from a large variety of backgrounds since they’re
captured in different body areas. However, to the best of our knowledge, there’s no any
previous work to solve the segmentation task for CTCL on clinical images. Therefore,
this task is challenging yet has a great clinical application and research value.

In order to solve the above problems, for the first time, we collect a dataset, which
contains 57 clinical images for CTCL, with full annotation for each lesion area and the
corresponding lesion type in every image. Then, we design a novel two-branch Multi
Knowledge Learning Network (MKLN), with a Lesion Area Learning Module for each
branch and a Feature Co-Learning Module. One branch resizes the image to obtain
global information, called “global branch”; the other branch crops the image to obtain
detailed local information, called “local branch”. The Lesion Area Learning Module
is equipped by each branch to tackle the two challenges: large background variety and
visual similarity between lesion part and normal skin part. It utilizes multi-level feature
to perform binary segmentation and provide an attention map, as for a better learning
of lesion edge knowledge. The Feature Co-Learning Module is designed to deal with
the other challenges, including high resolution and visual similarity between different
lesion types within a lesion area. It takes the output features of the two branches, learns
an attention map for each branch, and enables them to mutually facilitate and learn
knowledge from each other. Our method effectively addresses the difficulties of CTCL
and achieves good experimental results on our dataset, meeting clinical needs.
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Fig. 4. The overall architecture of the MKLN is illustrated in (a). (b),(c) are the architecture of the
Upscale Block and the Learning Block in Lesion Area Learning Module, (d) is the architecture
of the Co-learning Block in Feature Co-learning Module.

Our contributions are two-fold: (1) The first paper to focus on the segmentation
task for CTCL and a new dataset with clinical images is collected; (2) A new method
is designed based on the characteristics of CTCL and achieves state-of-the art results,
meeting clinical needs.

2 Dataset

We collaborate with the hospital and collect 57 clinical images, which can be called
“CTCL dataset”. The images are captured by the Nikon D800 Camera. Three experi-
enced dermatologists participated in annotating. Each lesion area and the corresponding
lesion type are annotated in every image. Several examples of our dataset are showed in
Fig. 3. The collected clinical images are sampled from patients with different sex and
wide age range, which is from 30 to 60 years old. The images include totally 12 human
body regions, containing head, neck, anterior trunk, arms, forearms, hands, posterior
trunk, buttocks, thighs, legs, feet and groin. Thus the background of the images suffer
from a large variety. Resolution of the images is very high, with an average of 3255 x
2535. The largest resolution is 6000 x 2921. More examples of the CTCL dataset can
be found in supplementary material.

3 Method

The whole architecture of MKLN is illustrated in Fig. 4, which is a two-branch network
and is primarily based on an encoder-decoder network [12] with two other modules. The
global branch takes the resized image as the input and the local branch takes the ran-
domly cropped image, which has the same size as resized image, as the input. The first
module is Lesion Area Learning Module, which is equipped by each branch. It takes the
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feature from the first encoding block and the last decoding block as the input, generates
an attention map containing the lesion edge feature and obtains a binary segmentation
result which distinguish between lesion areas and non-lesion areas. To enable the net-
work to take the advantage of both the global and local branch, the Feature Co-learning
Module takes the output feature of last decoding block from each branch and gener-
ates an attention map for each branch, containing the learned knowledge from the other
branch.
Lesion Area Learning Module As stated in Sec. 1, the background of CTCL clinical
images has a large diversity since the images are captured from different body areas.
Besides, the visual difference between lesion areas and normal skin areas is similar, for
example between patches and normal skin in Fig. 2. Meanwhile, the lesion parts could
also look similar to the background. Thus, adding additional constraint and supervision
between lesion parts and other parts is really appealing and compelling for a better
result. Therefore, we designed this module as an extra regularization for each branch.
For a better distinction between skin lesions and non-skin lesions, which is a binary
segmentation task, edge and texture information are required. The low-level feature
contains rich edge and texture information, meanwhile the high-level feature contains
rich semantic information, which are all helpful for the binary segmentation. Thus, the
output features of the first encoding block and the last decoding block are taken as
input, denoted as Iy and F; respectively. Iy goes through an upscale block and the
upscaled feature F} will be obtained. Meanwhile, F; will go through two 3x3 conv

layers and concatenated with F}, denoted as Fjy. A learning block is applied to Fjy,
which will output the binary segmentation result and an attention map P with rich
edge and boundary features. The architecture of the upscale block and learning block
is illustrated in Fig. 4(b) and Fig. 4(c) respectively. The prediction result of the binary
segmentation is supervised through binary cross-entropy loss, as illustrated in Eqn. (1):

Loce = — Y _(ilog(5s) + (1 = yi)log(1 — i) 6]

%

where y; denotes the groundtruth of each pixel and ; is the predicted results. Mean-
while, an element-wise multiplication between P and Fj is applied. The result will be
multiplied by a learnable factor o and then applied a matrix sum calculation to F;.

With the extra supervision, the learned lesion area knowledge is better able to guide
the extraction of discriminative features in high-level layers to learn a better edge and
texture representation and knowledge for each lesion area.

Feature Co-learning Module The global branch resizes the image, and captures more
global information and comprehensive semantic information and generates a better
overall segmentation result. But the loss of detailed local and texture information leads
to inaccurate classification between different classes of lesions, especially when differ-
ent lesion types appear in a same lesion part. In contrast, the local branch crops the
image, and captures more detailed local information, including boundary and texture
information. Within each lesion area, the classification between different lesion types
performs better. But due to the lack of global semantic information, the performance
is also limited. However, since the resolution of images in our dataset is too high, with
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an average of 3255 x 2535, neither of the single branch performs good. Therefore,
we propose to combine the information of two branches and design this module as a
connection between the two branches.

The module takes Fj; and Fj, as the input, which contains high-level semantic in-
formation, and concatenates them together firstly. Then, the concatenated features will
go through a co-learning block, the architecture of which is illustrated in Fig. 4(d). Fi-
nally, an attention map () for each branch will be generated. For the global branch, the
generated attention map is expected to contain more detailed local information from the
local branch for complementary. Similarly for the local branch, the generated attention
map is expected to contain more global semantic knowledge for facilitation. Finally, an
element-wise multiplication between () and Fj is performed. The result will be mul-
tiplied by a learnable factor 5 and then applied a summation to F;. The final output
feature of these two modules is obtained by Eqn. (2):

Fa=a-(P-F)+6-(Q -F)+F ()

where “-” means element-wise multiplication.

After that, the output feature of each branch passes a 3 x 3 convolutional output
layer to obtain the four-class segmentation result, which is supervised by cross-entropy
loss L, as illustrated in Eqn. (3):

Lee = — Z Z(ymlog@m) 3)

TR

where y;; denotes whether pixel ¢ belongs to label j and 4j;; means the classification
score of class j for pixel 7.

This module automatically mines and exchanges the knowledge that each branch
has learned, enabling them to facilitate each other. To the best of our knowledge, we
are the first to take advantage of both of the two strategies and enable them to facilitate
each other in the skin lesion segmentation task. To be mentioned, our method is totally
different from [1] in the perspective and definition of “global” and “local”, which results
to a different design of the network architecture. Method in [1] just uses a slightly bigger
window with the same center of local patch as global structure which still ignores the
general information of the full image, and ignores to utilize the two branches to facilitate
each other. But we successfully capture global information of the whole image, and
directly exchange the information and knowledge from two branches to benefit each
other.

A hybrid loss function is used as the final loss of each branch, which is weighted
sum of two cross-entropy loss. It’s illustrated in Eqn. (4) :

L = Lpce + ALce )

where ) is a hyper-parameter to linearly combine two losses in order to balance them.

4 Experiments

4.1 Implementation Details

The proposed method is evaluated on the newly introduced clinical dataset. Five-fold
cross-validation is used for our experiments. Each image is resized and randomly cropped
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to 608 x 608. At the training phase, the batch size is set to 2 on two NVIDIA GTX
1080Ti GPUs. At the testing phase, after each branch gets the four-class segmentation
result for the whole image, the average probabilistic score of the two branches is cal-
culated as the final segmentation result. The learning rate is initialized to 0.001 and
decayed by 0.1 every 20 epochs. In Eqn. (4), A is set to 1. We think both losses are
equally important. The learnable factor « and S are trained together with the network.
Four evaluation metrics are used in the experiments, including Accuracy(ACC), Dice
Similarity Coefficient(DSC), Sensitivity(SE) and Specificity(SP).

4.2 Ablation Study

We conduct the ablation study on CTCL dataset to investigate the impact of the pro-
posed two modules of our method on the performance. The specific performance is
listed in Table 2. In the table, “R” and “C” mean the resize and crop strategy for
the experimentes respectively. “L” denotes Lesion Area Learning Module and “F”
represents Feature Co-learning Module. We first conduct experiments using baseline
model [12] for each branch, denoted as “MKLN(R)” and “MKLN(C)” in the first
two columns. Then we add Lesion Area Learning Module to each branch, denoted as
“MKLN(RL)” and “MKLN(CL)”. The performance of all the four metrics improves.
Compared to the baseline, MKLN(RL) yields an DSC of 0.695 and MKLN(CL) yields
an DSC of 0.636, which are 4.1% and 1.7% higher than the baseline respectively. The
Accuracy is improved by 3.1% and 2.1% respectively, which all verify the effectiveness
and necessity for the Lesion Area Learning Module.

After that, Feature Co-learning Module is adopted to the network, the perfor-
mance of two branch is denoted as “MKLN(RLF)” and “MKLN(CLF)”. The per-
formance of MKLN(RLF) is better than MKLN(R) and MKLN(RL). The DSC is
further increased to 0.769, with a gain of 11.7% comparing to MKLN(R), and 7.4%,
comparing to MKLN(RL). Compared to MKLN(C) and MKLN(CL), the DSC im-
proves 5.3%and 3.6% respectively. Besides, results of the other three metrics all have
a growth. The improvement of adopting Feature Co-learning Module is larger than the
Lesion Area Learning Module, which further proves the effectiveness and advance-
ment of this module, since no other methods have been utilized the knowledge from
two branchs. Finally, a weighted sum is applied to combine the probabilistic score of
MKLN(RLF) and MKLN(CLF) for a final segmentation result, which is denoted as
“MKLN(Full)”. The performance of the full model on all the four metrics is the best,
further demonstrates the effectiveness of introducing two branch and combining both
of their knowledge. Besides, global branch has a better performance than local branch,
we surmise it happens because the cropped image loses too much global semantic in-
formation, due to the high resolution of the whole image. To sum up, the encouraging
results show the advantage of our method.

4.3 Comparison with other Methods

Since no any other related method are designed for this problem, we choose the most
related work [17] and [1] to compare the results. Both [17] and [1] have similarities to
our method in perspective of solving the segmentation task. As introduced in Sec. 1,
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Table 2. Four-class segmentation performance by baseline methods, our method and other meth-
ods for comparasion on the CTCL dataset.

MKLN|[MKLN|MKLN|MKLN [MKLN|MKLN|MKLN][[ Izadi | Jafari

®R) | (© | (RL) | (CL) | (RLF) | (CLF) | (Full) ||etal.[17]] etal[1]
ACC | 0.643 | 0.656 | 0.678 | 0.667 | 0.715 | 0.683 | 0.725 || 0.663 | 0.652
DSC | 0.652 | 0.619 | 0.695 | 0.636 | 0.769 | 0.672 | 0.801 || 0.716 | 0.709
SE | 0.624 | 0.701 | 0.721 | 0.761 | 0.881 | 0.778 | 0.884 || 0.844 | 0.825
SP | 0.593 | 0.598 | 0.645 | 0.640 | 0.736 | 0.707 | 0.776 || 0.680 | 0.673

Method

(c) MKLN(R) (d) MKLN(RL) (e) MKLN(RLF) (c) lzadi et al. [12] (d) Jafari et al. [13] (e) Ours

Fig. 5. Visualization results of the two modules.  Fig. 6. Visualization results of three methods.

they are both deep-learning based method on clinical images. Besides, [17] produces
a more accurate results on lesion boundary by introducing a critic network, and [1]
also utilizes global and local information. The source codes for these two methods are
not publicly available, so we implemented them based on our best understanding and
obtained the results by same five-fold cross-validation setting.

The results of our method, [17] and [1] are shown in the last three columns of Table
2. The performance on ACC, DSC, SE and SP is evaluated. Our method achieve the best
result in all the metrics, with an DSC of 0.801, which exceeds [17] by 8.5% and [1] by
9.2%. Our ACC, SE and SP all perform the best.

4.4 Visualization Results

In addition to quantitative results, qualitative segmentation results are also provided.
Fig. 5 demonstrates the effectiveness of the two modules. The comparison illustrated
by yellow circles proves that with the lesion area learning module, the details and lesion
boundaries and edges are clearer. The cyan circles areas demonstrates some misclassi-
fied lesion parts are corrected classified, resulting to a better global segmentation result.
The results comparation between our method and the other two methods are shown in
Fig. 6. The encircled areas by yellow circles have a better boundary and edge classi-
fication result. The areas encircled by cyan circle achieve a better classification result
of lesion parts. So that our results are more close to the groundtruth. Fig. 7 visualizes
the attention maps of the two modules. Compared to the activation of original feature
map, the attention map of L successfully focuses on the edges of lesion parts, and the
attention map of F further focuses on the detailed lesion parts.
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(a) Original (b) Activation of c) Output attention (d) Output attention
Image Original feature map map by L map by F

Fig.7. Visualization of attention maps of L and F.

5 Conclusion

In this paper, we focus on a new four-class segmentation problem for Cutaneous T-cell
lymphomas(CTCL), an extremely severe skin disease with three types of visually sim-
ilar and decentralized skin lesions. For the first time, we collect a new dataset which
contains clinical images with high resolutions from different body areas. Then we pro-
pose a novel Multi Knowledge-Learning Network(MKLN), including a Lesion Area
Learning Module and a Feature Co-Learning Module to address this problem, which
achieves very good performance and meets the clinical needs.
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