Bootstrap Your Own Latent A New Approach to Self-Supervised Learning

Jean-Bastien Grill^{*,1} Florian Strub^{*,1} Florent Altché^{*,1} Corentin Tallec^{*,1} Pierre H. Richemond^{*,1,2} Elena Buchatskaya¹ Carl Doersch¹ Bernardo Avila Pires¹ Zhaohan Daniel Guo¹ Mohammad Gheshlaghi Azar¹ Bilal Piot¹ Koray Kavukcuoglu¹ Rémi Munos¹ Michal Valko¹ ¹DeepMind ²Imperial College

arxiv.org/abs/2006.07733

Self-supverised Representation Learning

also called Unsupervised Representation Learning

The goal is to learn features that:

- Map similiar sematics closer
- Transferrable to downstream tasks

The key is to generate 'labels' from the data by *pretext tasks*:

- Predictive Pretext Tasks (Rotation, Jigsaws, Colorization, etc)
- Constrative Pretext Tasks (Instance discrimination)

Minimize the distance between positive pairs Maintain the distance between negative pairs

Query	Positive	Negative
Image A	Augmented Image A	Image B
Patch A	Tracked Patch A in Video	Random Patch B
Image A Channel A	Image A Channel B	Image B Channel B

Minimize the distance between positive pairs Maintain the distance between negative pairs

Query	Positive	Negative
Image A	Augmented Image A	Image B
Patch A	Tracked Patch A in Video	Random Patch B
Image A Channel A	Image A Channel B	Image B Channel B

Avoid collapse Suppose a constant representation

Query	Positive	Negative
Image A	Augmented Image A	Image B
Patch A	Tracked Patch A in Video	Random Patch B
Image A Channel A	Image A Channel B	Image B Channel B

BYOL achieves a new state-of-the-art without using negative pairs.

Minimize the distance between positive pairs Maintain the distance between negative pairs

Query	Positive	Negative
Image A	Augmented Image A	Image B
Patch A	Tracked Patch A in Video	Random Patch B
Image A Channel A	Image A Channel B	Image B Channel B

Minimize the distance between positive pairs Maintain the distance between negative pairs

And no collapse! Like magic...

BYOL achieves a new state-of-the-art without using negative pairs.

f are CNNs, g and q are MLPs, sg is stopping gradient

MSE Loss between normalized 'features'

$$\mathcal{L}_{\theta}^{\mathtt{BYOL}} \triangleq \left\| \overline{q_{\theta}}(z_{\theta}) - \overline{z}_{\xi}' \right\|$$

Mean teacher as target network

$$\xi \leftarrow \tau \xi + (1 - \tau)\theta.$$

Use f_theta as learned representation

Randomly initialized network: 1.4% accuracy on ImageNet

Randomly initialized network: 1.4% accuracy on ImageNet

Randomly initialized network as target: 18.8% accuracy on ImageNet

Randomly initialized network: 1.4% accuracy on ImageNet

Randomly initialized network as target: 18.8% accuracy on ImageNet

Training a new network to predict a given target will produce enhenced representation...

So ...

Randomly initialized network: 1.4% accuracy on ImageNet

Randomly initialized network as target: 18.8% accuracy on ImageNet

Training a new network to predict a given target will produce enhenced representation...

So what if build a sequence of representation, using the current network as the target of the subsequent network?

Randomly initialized network: 1.4% accuracy on ImageNet

Randomly initialized network as target: 18.8% accuracy on ImageNet

Training a new network to predict a given target will produce enhenced representation...

So what if build a sequence of representation, using the current network as the target of the subsequent network?

A >> B >> C >> D >> ...

Randomly initialized network: 1.4% accuracy on ImageNet

Randomly initialized network as target: 18.8% accuracy on ImageNet

Training a new network to predict a given target will produce enhenced representation...

So what if build a sequence of representation, using the current network as the target of the subsequent network?

A >> B >> C >> D >> ...No experiment for this, Maybe hard to tune...

Randomly initialized network: 1.4% accuracy on ImageNet

Randomly initialized network as target: 18.8% accuracy on ImageNet

Training a new network to predict a given target will produce enhenced representation...

So what if build a sequence of representation, using the current network as the target of the subsequent network?

A >> B >> C >> D >> ...No experiment for this, Maybe hard to tune...

Use mean teacher as the target.

Sadly, why no collapse is not explained...

Figure 1: Performance of BYOL on ImageNet (linear evaluation) using ResNet-50 and our best architecture ResNet-200 ($2\times$), compared to other unsupervised and supervised (Sup.) baselines [8].

Method	Top-1	Top-5	Method	Architecture	Param.	Top-1	Te
Local Agg.	60.2	-	SimCLR [8]	ResNet-50 $(2\times)$	94M	74.2	Ş
PIRL [32]	63.6	-	CMC [11]	ResNet-50 $(2\times)$	94M	70.6	8
CPC v2 [29]	63.8	85.3	BYOL (ours)	ResNet-50 $(2\times)$	94M	77.4	9
CMC [11]	66.2	87.0	CPC v2 [29] ResNet-161	305M	71.5	9
SimCLR [8]	69.3	89.0	MoCo [9]	ResNet-50 $(4 \times)$	375M	68.6	
MoCo v2 [34]	71.1	-	SimCLR [8]	ResNet-50 $(4\times)$	375M	76.5	9
InfoMin Aug. [12]	73.0	91.1	BYOL (ours)	ResNet-50 $(4\times)$	375M	78.6	9
BYOL (ours)	74.3	91.6	BYOL (ours)	ResNet-200 (2×)	250M	79.6	9

(a) ResNet-50 encoder.

Table 1: Top-1 and top-5 accuracies (in %) under linear evaluation on ImageNet.

(b) Other ResNet encoder architectures.

Method	Top-1		Top-5		Method	Method Architecture Param.		Top	Top-5		
	1%	10%	1%	10%				1%	10%	1%	1
Supervised [64]	25.4	56.4	48.4	80.4	CPC v2 [29]	ResNet-161	305M	-	-	77.9	g
					SimCLR [8]	ResNet-50 $(2\times)$	94M	58.5	71.7	83.0	9
InstDisc	-	-	39.2	77.4	BYOL (ours)	ResNet-50 $(2\times)$	94M	62.2	73.5	84.1	9
PIRL [32]	-	-	57.2	83.8	SimCLR [8]	ResNet-50 $(4\times)$	375M	63.0	74.4	85.8	ç
SimCLR [8]	48.3	65.6	75.5	87.8	BYOL (ours)	ResNet-50 $(4\times)$	375M	69.1	75.7	87.9	Q
BYOL (ours)	53.2	68.8	78.4	89.0	BYOL (ours)	ResNet-200 $(2\times)$	250M	71.2	77.7	89.5	9

(a) ResNet-50 encoder.

Table 2: Semi-supervised training with a fraction of ImageNet labels.

(b) Other ResNet encoder architectures.

Method	Food101	CIFAR10	CIFAR100	Birdsnap	SUN397	Cars	Aircraft	VOC2007	DTD	Pets	Caltech-101	Flowers
Linear evaluation:												
BYOL (ours) SimCLB (repro)	75.3	91.3 90.5	78.4 74.4	57.2	62.2	67.8	60.6 49.8	82.5 81.4	75.5 75 7	90.4 84.6	94.2 89.3	96.1 92.6
SimCLR [8]	68.4 72.3	90.6	71.6	37.4	58.8	50.3	50.3	80.5	74.5	83.6	90.3	91.2 04.7
Fine-tuned	12.3	93.0	78.3	53.7	61.9	00.7	61.0	82.8	74.9	91.5	94.5	94.7
1 me-maca.												
BYOL (ours)	88.5	97.8	86.1	76.3	63.7	91.6	88.1	85.4	76.2	91.7	93.8	97.0
SimCLR (repro)	87.5	97.4	85.3	75.0	63.9	91.4	87.6	84.5	75.4	89.4	91.7	96.6
SimCLR [8]	88.2	97.7	85.9	75.9	63.5	91.3	88.1	84.1	73.2	89.2	92.1	97.0
Supervised-IN [8]	88.3	97.5	86.4	75.8	64.3	92.1	86.0	85.0	74.6	92.1	93.3	97.6
Random init [8]	86.9	95.9	80.2	76.1	53.6	91.4	85.9	67.3	64.8	81.5	72.6	92.0

Table 3: Transfer learning results from ImageNet (IN) with the standard ResNet-50 architecture.

Method	AP_{50}	mIoU		Lower	better			
Supervised-IN [9]	74.4	74.4	Method	pct.<1.25	pct.<1.25 ²	pct.<1.253	rms	rel
MoCo [9]	74.9	72.5	Supervised-IN [70]	81.1	95.3	98.8	0.573	0.127
SimCLR (repro)	75.2	75.2	SimCLR (repro)	83.3	96.5	99.1	0.557	0.134
BYOL (ours)	77.5	76.3	BYOL (ours)	84.6	96.7	99.1	0.541	0.129

(a) Transfer results in semantic segmentation and object detection.

Table 4: Results on transferring BYOL's representation to other vision tasks.

(b) Transfer results on NYU v2 depth estimation.

(a) Impact of batch size

epochs, under linear evaluation on ImageNet.

8h x 512 TPUs...

(b) Impact of progressively removing transformations Figure 3: Decrease in top-1 accuracy (in % points) of BYOL and our own reproduction of SimCLR at 300

Comment:

- Simple, Effective, maybe Delicate
- Unsupervised learning is the *near* future
- Augmentation matters

Guess why no collapse:

1) The initialization is closer to the better representation than the collapsed one. Deep image prior.

Good representation = Deep image prior + Ignorng non-semantics?

2) The mean teacher provides a super delicate balance to avoid collapse. Initialization is not collapsed and mean teacher maintains it well.

3) Batch norm scatters samples. 4) Bless of dimensionality.