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Recovering Missing Contours for
Occluded Object Detection
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Abstract—One difficult problem in practical applications is
the corrupted or missing data frequently encountered in digital
images. It introduces great challenges to the tasks such as object
detection. This letter provides new methods for recovering missing
object contours and detecting occluded objects. First, we propose
an efficient contour reconstruction approach according to the
Bayesian rule, utilizing global shape prior knowledge. Second, the
contour reconstruction is applied to a robust detection framework
for occluded objects. Based on the observed broken curves we
iteratively recover object contours and propose object candidates.
The experimental results demonstrate the high detection perfor-
mance, localization accuracy and great advantages of our method
for severe occlusion cases.

Index Terms—Missing data recovery, object detection, occlusion,
shape reconstruction.

I. INTRODUCTION

N digital image processing, one frequently encountered

problem is the involvement of corrupted or missing data
due to occlusion, degradation and so on. The incomplete data
increase the difficulties in the applications of image analysis,
object detection, scene understanding, etc. For example, the
contour-based object detection is an active research topic to
find object contours from the cluttered digital signals in real
images. However, in case of large occlusion, the unseen parts
will raise the risk and cost to detect the occluded objects.

In the literature of contour-based object detection, there have
been a large body of researches to recognize and locate target
object outlines in edge maps, by the methods such as contour
grouping [12], voting by parts [16], [24] and shape matching
[13], [19], [22]. However, the problem of detecting incom-
plete objects has not been well solved by the state-of-the-art
approaches. The missing parts, which result in the changes of
object shapes, may greatly degrade the performance of contour
grouping and shape matching, reduce the votes for candidates,
and affect the evaluation of potential objects.
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Fig. 1. Occluded object detection by recovering missing parts. (a) A hand-
drawing target object template. (b) A test image and (c) its edge map. (d) Exam-
ples of three collaborative object candidates recovered based on the edge curves
marked in yellow. (e) A detected object by iteratively combining edge curves of
collaborative candidates and recovering new candidates. (The ‘T’ marks denote
the detected T-junctions suggesting the occlusion boundaries.).

In this letter, we resort to contour recovery to improve object
detection with occlusion. The motivation comes from the pow-
erful reconstruction ability of human vision, which is used to
rapidly recover a whole shape when it is partially occluded [18].
This facilitates object recognition. Inspiringly, it is found that
recovering the missing parts do benefit the detection of target
object contours in challenging situations.

Data reconstruction is involved in a wide range of applica-
tions, e.g. signal reconstruction [1], [5], image super-resolution
[6], [23], surface reconstruction [8], [21], etc.

This letter focuses on the reconstruction of edge curves/object
contours from the edge maps of images. This problem is related
to the curve completion topics studied from several decades ago.
The fundamental problem is to compute the optimal curves that
fill in the missing contour parts. A variety of curves have been
utilized, and some simple generic constraints have been pro-
posed such as isotropy, smoothness, extensibility and locality
[20]. Moreover, a widely used criterion is the curvature-based
constraint, such as the elastica model [15] and Euler spirals
[10]. Although these approaches are good at completing simple
and smooth contours, they are usually not intelligent enough to
recover various contours and curve types, and especially large
portions of missing parts (Fig. 1, 2).

There is another group of studies on the amodal completion,
in which the occluders are blended with the background [9].
The researchers are more concerned about generic visual cues
for grouping, e.g. continuation and proximity, rather than shape
completion. In addition, grouping-based curve completion is
proposed to find salient contour boundaries from cluttered edges
[17]. However they usually deal with small breaks; large occlu-
sion may be difficult to handle.
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Fig. 2. (a) Results of our detected objects and recovered contours. The yellow marked curves are the observed contours in the edge map and the pink, green, blue
contours are the recovered missing parts. ‘T” denotes a detected T-junction, which suggests there is an occlusion boundary. (b) Comparison of results from [19]
(top) and our method (bottom). The small mugs at the left-top of each image show the templates and the correspondences.

There are two main contributions in this work. Firstly, an
efficient contour reconstruction method is proposed under
a Bayesian framework, utilizing stronger global shape prior
knowledge. The optimal complete curve is expected to fit the
observed part as well as possible, and meanwhile satisfy the
prior constraint. Secondly, the contour recovery is applied to
occluded object detection. Complete contours are reconstructed
based on edge curve segments, and considered as object candi-
dates which vote for object locations. The candidates of similar
positions and scales are collected as collaborative ones. And
iteratively, we combine more collaborative curves, reconstruct
object contours and vote for objects. At last occlusion relation
is inferred to finalize the detected objects. Experimental results
demonstrate that contour reconstruction facilitates the detec-
tion, with more robust voting and better detection performance
under occlusion.

II. RECOVERING THE MISSING CONTOURS

Given the observed curve segment P, which is considered
as a part of a complete contour . The purpose is to estimate
(2 in a perceptually consistent manner, i.e. the shape of () is
unexpected to be weird, and should be consistent with P as its
part. This is an under-constraint problem, which is difficult to
solve, especially in the case of severe occlusion. According to
the Bayesian theory, the inference of ¢} can be formulated as a
Maximum a Posteriori (MAP) problem,

max p(Q|P) o max p(P|Q)p(Q) (1

where p( P|@) is the likelihood probability of P being a part of
Q, and p(Q) is the prior term of ().

Theoretically (7 can be any of 2-D curves, but it is almost
computationally intractable. Previous work usually assumes
that the filling-in curves belong to some categories of smooth
curves, i.e. only smooth curves have non-zero priors. However
in real applications, there are always large part of complex
shapes other than simple smooth curves. Therefore traditional
methods have obvious limitations in such situations.

Inspired by human visual experiences, we propose to recon-
struct contours with our knowledge on common object shapes.
For instance, if a partially occluded swan contour is observed,
we can imagine what the rest part would be like with our knowl-
edge of the swan shape. It is unlikely to reconstruct a visually

unexperienced shape. Therefore, our prior assumption is that )
is inside the common object shape space €2g.

mmm:/MMRﬂMﬂﬂ,Te% @

where the template T’ provides the shape priors for reconstruc-
tion, and p(T") follows a uniform distribution. For any consid-
ered reference shape, the reconstruction probability is

p(QIP.T) o p(P|Q. T)p(Q|T) ©)

There are two aspects included in this formulation. (i) The
reconstruction prior p(Q|T") encourages the reconstruction
estimation ) to follow the shape of 7'; and (ii) the likeli-
hood p(P|Q,T) models the consistency between the partial
observation and the global reconstruction. P is considered
corresponding to certain part of 7', hence a hidden variable { is
introduced to indicate the corresponding location on 7.

M@RT%x/MH@TﬁMQWWMﬂﬂ 4

According to the prior constraint, ¢) is modeled as a trans-
formed version of 7', through transforms such as rotation,
scaling, stretching and bending. And the transform cost is
expected to be as small as possible.

Q=uw(T), pQIT)oce E¥ (5)

where 1 represents shape transforms. Inspired by the successful
thin-plate-spline (TPS) model [2], we formulate +/ by rigid and
non-rigid transforms (denoted by A and W respectively).

Y(T)=T - A+ Kr-W, E)=trace(W KrW) (6)

Here K is the kernel matrix defined in the TPS model, each
entry Ki' = |[(wi,u5) — (x5, 95)1Plogl| (s, 53) — (25,95,
where (x, y) is the point coordinates of 7. This model embeds
the point-set’s internal structural relationship to constrain the
non-rigid transforms.

For the likelihood, P corresponds to the part 77, and should
be consistent with the corresponding part of ¢);, where @ =

[QiQ;],
p(P|Q,T.1) = CHBQ=ICET) (7)
Ci(P,Q) =P — Qi + 14 — A|)?
Co(P,Ty) =trace (W] K, W;) (8)
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where A; and W, are the transforms from 7} to P, and J; is
derived from the decomposed form according to (5), (6).

P=T - A+ Kg - W, 9

Ql Tl KT, ] Wl
= -A - 10
[QT AR N R B
Instead of directly inferring (J, our goal is to find the best
correspondence ! and optimal transforms A and W, which are

used to obtain @ by transforming 7" accordingly ((10)). The
optimization problem is to minimize the total energy,

A* * ,* == d i E: i E i s '} s
(A", W* I")=arg Jnin, arg min (aFE(y)+ Cy + BCs)
(11)

The above problem is difficult to solve. However notice that if
[ is known, we can get analytical solutions by the least squares.
Therefore, we first find possible correspondences for which the
matching score of 7; and P is below a predefined threshold. And
then with each candidate /, we compute the optimal transforms
and reconstruct the shape (). Finally we choose the one that
minimizes the energy. The parameters «, (3 balance the energy
terms (a = 5 = 0.1).

In the following section we apply the contour reconstruction
to object detection. A hand-drawing object outline is given as
the target, which just provides the reference template for contour
recovery.

III. DETECTION OF OCCLUDED OBJECTS

As the challenges of discovering targets with missing data,
the proposed reconstruction method is particularly important to
cope with such situations. On one side, to facilitate the detection
of occluded contours, we use the inferred complete contours by
the reconstruction from the original partial curves to vote for
objects. On the other side, to suppress the false positives, a po-
tential occluded object contour should be supported by heuris-
tics such as occlusion boundaries.

The work flow of the proposed detection framework is as fol-
lows. The first step is edge extraction, in which the sophisticated
edge detectors as in [14] is adopted to generate edge maps, and
a number of curve segments are extracted. The second is the
recovery proposals of missing parts. In this step, the curve seg-
ments are taken as potential parts of target object contours. We
perform the reconstruction method as suggested in Section 11,
to recover missing parts given the curve segments as observa-
tions. The reconstructions propose object candidates which may
be occluded. Then thirdly we implement the step voting for oc-
cluded hypotheses. Different from the traditional Hough trans-
form methods (such as in [11]), we combine the reconstruction
into this successful framework.

(O, P|IT) = Z p(01Q;, Pi, T)p(Q4|Ps, T)

= p(01Qi)p(Q:[P:, T) (12)

where O denotes the estimation of object position; it is voted by
a set of reconstructed complete contour proposals (J;, each one
voting independently; ¢J; is recovered from the observed partial
curves P, = {P,,, P,,,..., P, }; T is a given target contour
template. Here p(Q|Q;) is the probabilistic Hough votes. The
voted center and scale are derived from the reconstruction since

we have estimated the transformations as in Section II. Each
vote is weighted by the confidence of the reconstruction, which
is defined by the amount of non-occluded part of the contour.
p(Q;|P;, T) is the reconstruction probability defined in (3).

There is an iterative process of the second and third step to
gradually combine the collaborative parts, whose reconstruc-
tions vote for the same object. Initially only a few curves are
in the set P; to reconstruct €); in the second step. And after the
voting in the third step, we collect those collaborative parts for
the next iteration.

The final step is hypothesis confirmation with occlusion re-
lation interpretation. For each hypothesis, we compute the cov-
erage of the object contour, i.e. the rate of the curve length of
the non-occluded contour part v.s. that of the total contour. If
the coverage C(P) is below a threshold (¢ = 0.8 in our ex-
periments), we assume the hypothesis is a potential occluded
object, and we should check whether there exist reasonable oc-
clusion boundaries. There are two aspects for hypothesis eval-
uation, computed by the reconstruction score and the occlusion
score:

S(x)=S8.(Q)+S,(Q) (13)
5:(Q)=1logp(QIP,T) (14)
So(Q):{;—(zk<1<Jm+1<Jk-,1>—2> if C(P)<# (15

0 otherwise

For an occluded contour segment b;, € {() — P} we check its
two endpoints Ji,, ¢ = 1, 2. An indicator function 1(J,) is
used to describe whether there is a occlusion boundary at the
endpoints. (Those very short b;s are unnecessary for check.)

IV. EXPERIMENTS AND DISCUSSIONS

To the best of our knowledge, there is still not a commonly
used occlusion dataset for the contour-based object detection.
We have collected images with occluded objects from the in-
ternet of four object classes, horses, mugs, swans and giraffes
(approximately 20 images for each class)—just as the categories
of the ETHZ shape datasets [4], which are popularly used but
occlusion seldom included.

The proposed methods provide an efficient way of both oc-
clusion recovery and occluded object detection & localization.
For one thing, large portions of missing contour parts are recov-
ered in a consistent deformation manner as that of the observed
parts (Fig. 2). For another, by simultaneous reconstruction and
detection, our method has obvious advantages compared with
the previous contour-based detection approaches which have
not addressed the occlusion problem.

We compare our method—voting by reconstruction pro-
posals, with one of the state-of-the-art approaches as in
[19]—voting by curve segments (We use the same partial
matching strategy as in [19] to propose a set of potential cor-
respondences between curve segments and the template.) It is
shown in Fig. 2(b) that our method finds much more complete
and accurately localized contours. The detection performance
on our occlusion dataset is greatly improved by our method v.s.
[19], as illustrated by the Precision/Recall (P/R) curve (average
of different classes) in Fig. 3, and the Interpolated Average
Precision (AP) computed from the P/R curves (as in PASCAL
VOC challenge [3]) in Table I. Also our method achieves more
accurate object localizations than [19], according to the average
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Fig. 3. Detection performance by Precision/Recall curve (the dotted pink for
the result of [19] and the solid blue for ours), averaged by all the object classes of
our occluded dataset, the error bars indicating the standard deviation at different
recall rates.

TABLE I
THE INTERPOLATED AVERAGE PRECISIONS (AP) AND AVERAGE BOUNDING
BOX ACCURACY ON OUR OCCLUSION DATASET

Interpolated AP Average BB accuracy

Riemensch- Riemensch-
neider[19] Ours neider[19] Ours
horses 0.6100 0.8131 0.5272 0.6359
swans 0.4240 0.6024 0.6658 0.7782
giraffes 0.5642 0.6560 0.5377 0.6927
mugs 0.5686 0.7395 0.7316 0.8052
mean 0.5417 0.7028 0.6056 0.7280
TABLE II

CONTOUR RECOVERY ERRORS ON SYNTHETIC OCCLUSION DATASET

bottles
0.1294

swans

0.3966

mean

0.2366

applelogos
0.1540

mugs

0.2175

giraffes
0.2856

area rate of the intersection vs. union of the ground-truth and
detected object bounding boxes (BB) (Table I).

Additionally, we experiment on the synthetic occlusion
datasets by randomly placing ellipse boards of random size
and aspect ratio into the test images of ETHZ datasets. Table II
shows the quantitative evaluation of contour recovery errors
measured by the Hausdorff distances of the ground-truth out-
lines and the recovered results (all normalized with the longest
side of BB scaled into [—1, 1]).

The object shape priors enable our method to better deal
with complex shape structures than the traditional methods
with smoothness priors [7]. Whereas our performance depends
on the consistency of the test instance and object prior. Gen-
erally speaking, the more consistency between the two, the
more accurate the recovered contour. In a worst case of totally
unavailable object prior, we can only use general shape prior
such as the smoothness to recover the contour. However the
recovery results based on the general prior are much worse than
those with specific object prior [7].
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V. CONCLUSIONS

Focusing on missing data recovery and occluded object de-
tection, we propose a new contour reconstruction algorithm,
which is able to complete object contours with various shape
deformation, and robust to large portions of occlusion. More-
over, the reconstruction is demonstrated to greatly facilitate the
detection of occluded objects, which achieves high performance
with well localized and recovered object contours.
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