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Abstract

Human visual perception shows good consistency for

many multi-label image classification tasks under certain

spatial transforms, such as scaling, rotation, flipping and

translation. This has motivated the data augmentation

strategy widely used in CNN classifier training – trans-

formed images are included for training by assuming the

same class labels as their original images. In this paper, we

further propose the assumption of perceptual consistency of

visual attention regions for classification under such trans-

forms, i.e., the attention region for a classification follows

the same transform if the input image is spatially trans-

formed. While the attention regions of CNN classifiers can

be derived as an attention heatmap in middle layers of the

network, we find that their consistency under many trans-

forms are not preserved. To address this problem, we pro-

pose a two-branch network with an original image and its

transformed image as inputs and introduce a new attention

consistency loss that measures the attention heatmap con-

sistency between two branches. This new loss is then com-

bined with multi-label image classification loss for network

training. Experiments on three datasets verify the superior-

ity of the proposed network by achieving new state-of-the-

art classification performance.

1. Introduction

As an important computer vision task, multi-label image

classification [51, 60] aims to tell whether an image con-

tains certain attributes, objects, etc., each of which is de-

noted by a label. Typical applications of multi-label image

classification include human attribute recognition [1, 10, 18,

31, 34, 61], scene understanding [45], multi-object recogni-

tion [6], facial attribute recognition [19], etc. While recent

progress on deep neural networks has improved the perfor-

mance of multi-label image classification significantly, it is

still a very challenging problem due to appearance complex-
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Figure 1. An illustration of attention heatmaps for classifying la-

bels (a) “face mask” and (b) “jeans” from original and horizontally

flipped images, using an existing CNN (the middle row) and the

proposed method (the bottom row).

ities, intra-label variation, and unsatisfactory image quali-

ties [17, 55, 3, 33, 65, 21, 32, 53, 67] .

Human visual perception is consistent for many multi-

label image classification tasks under certain spatial trans-

forms, such as scaling, rotation, flipping and translation.

For example, these transforms usually do not vary human

recognition of “sunglasses” in an image. This consistency

has motivated the data augmentation strategy [26], which

has been widely used in training CNN classifiers – for each

original image with ground-truth labels, we can transform

the image to construct a new training image by assigning the

same ground-truth labels. Data augmentation reduces over-

fitting problem of training CNN models for classification

tasks with perceptual consistency under spatial transforms.

The perceptual consistency assumed in data augmenta-

tion is a high-level representation, at the stage of final clas-

sification. Actually, image classification is usually only rel-

evant to certain attention regions for both human vision (ac-

cording to studies on human cognitive [39, 27] and neuro-

science [11]) and CNN models [66]. In this paper, we fur-

ther assume a new perceptual consistency of visual atten-

tion, a middle-level representation, under the above spatial
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transforms in multi-label image classification and incorpo-

rate it into CNNs for enhancing classifier training. Here, we

define visual attention consistency as: attention regions for

image classification follow the same transform if the image

is spatially transformed. As shown in the top row of Fig. 1,

when the image is flipped horizontally, the human atten-

tion regions are also flipped horizontally to keep focusing

on the face and leg regions to tell the presence for labels of

“face mask” and “jeans”, respectively. The proposed visual

attention consistency can be considered as a visual prop-

erty of “equivariance” [28]. Different from other studies of

equivariance [29, 7, 50, 49, 38, 43, 57, 56, 13], this paper

enforces equivariance at a specific level of CNN attention.

Previous works on CNN classifiers have shown that the

attention regions can be derived as attention heatmaps in

middle layers of the network, with only image-level su-

pervision [66, 41] and can be used to re-weight the ex-

tracted image features to enhance CNN-based image classi-

fication [47, 24, 52, 58, 22]. However, we find that current

CNN classifiers do not preserve the attention consistency

under many of the above spatial transforms, even if training

images are augmented by these transforms. As shown in

the middle row of Fig. 1, the attention regions (in red) are

inconsistent under the horizontal flipping transform using

ResNet50 with training data augmented by flipping. Be-

sides, the CNN attention may also cover regions irrelevant

to the label “face mask” and the label “jeans”, respectively.

Therefore, we expect better visual perceptual plausibility

and better multi-label image classification by considering

visual attention consistency under spatial transforms.

For this purpose, we propose a new network with two

identical branches taking the original and transformed im-

ages as two inputs. The output of each branch is the la-

bel predictions of the input image. In the middle of each

branch, we use Class Activation Mapping (CAM) [66] to

compute the attention heatmaps for each label on the cor-

responding input image. Then, we define a new attention

consistency loss as a distance between the transformed at-

tention heatmaps of the original image and the attention

heatmaps of the transformed image. This loss is then

combined with multi-label image classification loss for net-

work training to improve the visual attention consistency

under image transforms. As illustrated in the bottom row of

Fig. 1, attention regions of the proposed network for both

“face mask” and “jeans” become more consistent under im-

age flipping. Meanwhile, these attention regions are more

label-relevant, focusing on face regions for “face mask” and

leg regions for “jeans”.

We evaluate the proposed method for different multi-

label image classification tasks on three datasets: WIDER

Attribute [34], MS-COCO [35], and PA-100K [36]. The

experiments show that our method achieves state-of-the-art

performances on these datasets. We also conduct ablative

study to verify the significant performance gains by incor-

porating the proposed new attention consistency.

2. Related work

2.1. Multilabel image classification

As reviewed in [51, 60], multi-label classification prob-

lem has been widely explored, with progress on both

label-separate and label-correlated methods. Label-separate

methods use binary relevance strategy [2] to convert multi-

label image classification to multiple binary image classi-

fication problem. With great success of using CNNs [26,

46, 20, 23] for single-label image classification [9], multi-

label image classification has been improved significantly.

Besides, deep convolutional ranking [17] optimizes top-k
ranking loss on convolutional architectures to learn a better

feature representation. Hypotheses-CNN-Pooling [55] ag-

gregates object segmentation hypotheses with max pooling

to generate multi-label predictions.

Much progress has been made on label-correlated multi-

label image classification in recent years. Many methods,

such as matrix completion [3], probabilistic label enhance-

ment [33], RGNN [65], SINN [21], Conditional Graphi-

cal Lasso [32], and CNN-RNN [53] are proposed to model

the semantic correlations between labels for multi-label im-

age classification. Furthermore, Spatial Regularization Net-

work [67] captures both semantic and spatial correlations

between labels. Label balancing [19] is also used for im-

proving multi-label image classification.

In this paper, we propose to enforce consistency of at-

tention regions under certain image transforms to improve

multi-label image classification, which provides a new per-

spective to improve the visual perception plausibility of the

CNNs for promoting the classification performance.

2.2. Attention mechanism for classification

As an intermediate result, attention of CNNs has been

used for various computer vision tasks [63, 58, 24, 47,

52, 22, 40, 5, 4, 54, 12, 62, 25, 44, 14]. For the task

of image classification, attention of CNNs reflects the im-

age regions that CNNs use as the evidence to classify im-

ages [41, 66, 59]. For the multi-label image classification

task, SRN [67] learns attention heatmap to specify spa-

tial relations between labels. But the relevance of atten-

tion regions to each label is not considered by SRN. To ad-

dress this problem, one straightforward idea is to learn accu-

rate attention regions similar to semantic segmentation [37]

and saliency detection [64], which requries infeasible pixel-

level annotations. One potential solution to reduce annota-

tion labors is eye-tracking [42], which is somewhat noisy

and inconsistent from different observers, due to not well

defined label-relevant regions. The attention heatmap can

also be refined [18] by driving it to concentrate on a single
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compact region instead of many fragmented regions, which,

however, is not applicable to labels with multiple relevant

regions in images. In this paper, we propose an indirect way

to focus attention of CNNs on regions more label-relevant

by enforcing consistency of attention regions under certain

image transforms.

3. Proposed Method

In this section, we first describe the background for the

proposed network and then elaborate on the proposed two-

branch network. We construct a set of spatial transforms

under which the visual attention is consistent and embed

them into the proposed network.

3.1. Background

3.1.1 Class activation mapping

Because of its simplicity and capability of visualizing at-

tention regions for classification, we apply class activation

mapping (CAM) [66] to extract attention heatmaps. Typi-

cal CNN architectures, such as ResNet [20], DenseNet [23],

and Inception [48], all start with convolutional layers. A

global average pooling (GAP) is then performed on the fea-

ture maps F ∈ R
C×H×W from the last convolutional layer,

where C, H , W are the number of channels, height, and

width of the feature maps, respectively. The pooled features

are further fed into the final output layer, a fully connected

(FC) layer with weights W ∈ R
L×C (L is the number

of labels), for classification. CAM computes the attention

heatmaps by linearly weighted sum of all channels:

M j(m,n) =

C
∑

k=1

W (j, k)F k(m,n), (1)

where M j(m,n) indicates the attention heatmap at spatial

location (m,n) for label j, W (j, k) represents the weight

corresponding to label j for channel k of feature maps,

F k(m,n) represents the feature maps of channel k from

the last convolutional layer at spatial location (m,n). In

the following, we use M = g(I) to represent the atten-

tion heatmaps of image I . Note that the size of attention

heatmaps in Eq. (1) is H × W , which is smaller than the

input image size. To visualize the attention regions on the

image, bilinear interpolation is used to upsample the atten-

tion heatmaps to the input image size.

3.1.2 Multi-label image classification loss

Several different loss functions have been used for multi-

label image classification in previous works, such as rank

loss [8], cross entropy loss [34, 18, 30, 36, 31], etc. Note

that multi-label classification is formulated as multiple bi-

nary classification problems when using the cross-entropy

loss. For simplicity and effectiveness, in this paper we adopt

the weighted sigmoid cross entropy loss in [30]:

ℓc =−
1

N

N
∑

i=1

L
∑

j=1

ωij

(

yij log
1

1 + e−xij

+(1− yij) log
e−xij

1 + e−xij

)

(2)

ωij =

{

e1−pj if yij = 1

epj if yij = 0
, (3)

where N is the number of images, L is the number of

labels, xij ∈ R is the predicted presence of label j in

image i and it is further normalized to a presence score

1/(1 + e−xij ) ∈ [0, 1], yij ∈ {0, 1} is the ground truth

of the presence of label j in image i, pj is the proportion

of positive samples with label j in the training set and it is

used to define the weight ωij for balancing training samples.

This loss function is modified from cross entropy loss and

has been used in several prior works on multi-label image

classification, such as RAP [31] and HP-Net [36]. In the

later experiments, we use this loss for both baselines and

the proposed methods for fair comparisons, by excluding

the performance difference resulting from the use of differ-

ent loss functions.

3.2. Proposed network

In general, the plausibility of attention heatmaps can re-

flect the performance of the CNN classifier – if the attention

heatmaps highlight the regions that are semantically rele-

vant to the considered labels, we can expect better CNN

classification performance. Two examples are shown in

Fig. 2. With the increase of the training iterations, the pre-

dicted presence score increases (decreases) when the atten-

tion heatmaps highlight the desired relevant regions for pos-

itive (negative) samples. This suggests that “good” attention

regions usually result in “good” classification results.

One straightforward approach to improve the plausibil-

ity of attention heatmaps is to impose explicit supervision

of label-relevant regions in CNN training. However, it is

highly laborious to accurately annotate label-relevant re-

gions on a large set of training images. Besides, label-

relevant regions may not be well defined: different annota-

tors may not have an agreement on the relevant regions for

some labels, such as “Age between 18 and 60” in an image.

In this paper, we propose to improve CNN’s capability to

focus attention on label-relevant regions in an indirect way,

i.e., enforcing CNN attention to be consistent under certain

image transforms. In the following, we first introduce the

proposed network for visual attention consistency and the

considered image transforms will be discussed in detial in

Section 3.3.
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Figure 2. Attention heatmaps for label “sunglasses” in different iterations of CNN (ResNet50) model training, where face is the desired

label-relevant region. The number above each attention heatmap represents the predicted presence score (in [0, 1]) in the corresponding

iteration.
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Figure 3. An illustration of the proposed two-branch network.

As shown in Fig. 3, the proposed network consists of

two identical branches. Each branch starts with convo-

lutional layers and ends with GAP-FC (fully connected

layer after global average pooling) structure (e.g., ResNet,

DenseNet). The parameters of two branches are shared.

The two branches take an image I and the transformed im-

age I
′ = T (I) as inputs, respectively. Feature maps from

the last convolutional layer of two branches are F ,F ′ ∈
R

C×H×W , respectively. The corresponding spatial aver-

ages of feature maps after GAP are used for multi-label

image classification by final fully connected layer (FC)

with weights W ∈ R
L×C . Meanwhile, the attention

heatmaps for each input and each label are extracted by

CAM. Specifically, by expanding feature maps F , F ′ into

shape of 1 × C × H × W , and FC weights W into shape

of L × C × 1 × 1, we conduct channel-wise multiplica-

tion to linearly combine feature maps for each label, and

sum along dimension C of combined feature maps, as in

Eq. (1). The resulting attention heatmaps M = g(I) and

M
′ = g(T (I)), where g(·) represents the process of com-

puting attention heatmap with CAM, are both in shape of

L×H ×W .

Based on our definition of attention consistency, the at-

tention heatmaps, g(I) and g(T (I)), for the original and

the transformed images, respectively, need to be equivari-

ant [28] under the particular image transform, which can be

formulated as:

T (g(I)) = g(T (I)). (4)

Therefore, to enforce the attention consistency, we define

an attention consistency loss using the mean square differ-

ence between the transformed heatmaps M̂ = T (M) =
T (g(I)) of the original image and the heatmaps of the trans-

formed image M
′, i.e.,

ℓa =
1

NLHW

N
∑

i=1

L
∑

j=1

‖M̂ ij −M
′

ij‖2, (5)

where M ij indicates the attention heatmap for image i and

label j. We linearly combine the multi-label image classi-

fication loss in Eq. (2) and the attention consistency loss in

Eq. (5) to train the network:

ℓ = ℓc + λℓa, (6)

where λ is a hyper-parameter for balancing the two losses.

For testing, we only use one branch for multi-label image

classification, since the network parameters are shared by

each branch. The outputs from the last FC layer indicate the

confidence values of the presence of each label. A sigmoid

function is used to normalize the values as presence scores

of each label in range [0, 1]. If the presence score is greater

than 0.5, the label is predicted as being present.

3.3. Image transforms

Different spatial transforms can be considered in the

proposed visual attention consistency, only if they do not

change the human visual perception of the image, i.e.,

the presence of the class labels. We denote the set of

such image transforms as U and any transform in this

set can be embedded in the proposed two-branch network

for enhancing multi-label image classification. Specifi-

cally, we focus on a subset of frequently used transforms
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{translation, rotation, flipping, scaling} ⊂ U in this

paper to justify the effectiveness of the proposed network. It

is quite intuitive that human visual perception of many class

labels keeps unchanged when the input image undergoes

the translation, rotation, flipping and/or scaling transforms.

Certainly, in some extreme cases of these transforms, e.g.,

down-scaling the input image to a very small size, the visual

perception of the image may totally change. In this paper,

we choose appropriate parameters for these transforms to

avoid such extreme cases.

Difference from data augmentation: We can notice that

the above subset of transforms in U can also be used for

data augmentation in training CNN classifiers. However,

data augmentation considers the classification consistency

under these transforms which is imposed on the final output,

a high-level representation, of the network, while the pro-

posed method enforces the attention consistency under the

same transforms on the intermediate result, a middle-level

representation, of the network. In general, enforcing classi-

fication consistency at the high-level representation has less

impact to the network parameters than enforcing attention

consistency at middle-level representation. We will show

in later experiments that the proposed method can train net-

work with better classification performance than data aug-

mentation.

Attention consistency under certain transforms: Any

transform T ∈ U can be embeded in the proposed network.

Let’s take horizontal flipping transform as an example. With

T : I → I
′, we have I

′(m,n) = I(WI − m,n), where

(m,n) indicates spatial location in images, while WI rep-

resents the width of the original image. After computing

the attention heatmaps M = g(I) and M
′ = g(I′) =

g(T (I)), respectively, the same transform T is applied on

M so that M̂(m,n) = M(WM − m,n), where (m,n)
indicates spatial location in attention heatmaps, and WM

represents the width of attention heatmaps. Then Eq. (5)

is used to calculate the attention consistency loss. Similar

procedures can be applied when attention consistency un-

der image translation, rotation, or scaling is considered in

the proposed network.

Besides, since the attention heatmaps computed by CAM

(Eq. (1)) are downsized from the input image size, e.g., 7×7
from 224 × 224 and 6 × 6 from 192 × 192, there is a trick

for embedding scaling in the proposed network. Suppose

the dimensions of attention heatmaps M and M
′ are L ×

HM ×WM and L×HM ′ ×WM ′ , where HM 6= HM ′ and

WM 6= WM ′ . Since HM and WM may not be divisible

by HM ′ and WM ′ , respectively, it may be inappropriate to

re-scale HM × WM to HM ′ × WM ′ directly. To quantify

the inconsistency, we upscale both the attention heatmaps

to the same size based on the lowest common multiples in

width and height dimension, respectively, e.g., upscaled to

height 42 for HM = 7 and HM ′ = 6.

Attention consistency under combined transform: We

can also embed more than one transforms in U to the pro-

posed network. For example, considering two transforms,

T1, T2 ∈ U, the attention consistency loss defined in Eq. (5)

can be simply calculated by

ℓa = ℓa,T1
+ ℓa,T2

(7)

4. Experiments

We adopt ResNet [20] as our base architecture to im-

plement the proposed network because of its excellent per-

formance in image-related recognition tasks. The pro-

posed network is fine-tuned from models pre-trained on

ImageNet [9] using Stochastic Gradient Descent for op-

timization, with initial learning rate 10−3. We evaluate

it for multi-label image classification on three datasets:

WIDER Attribute [34], PA-100K [36], and MS-COCO [35].

WIDER Attribute is proposed for human attribute recog-

nition. It contains 13,789 images with 57,524 annotated hu-

man bounding boxes. Each human in a bounding box is an-

notated with 14 human attributes. The train-val set includes

28,345 human bounding boxes, while the test set includes

29,179 human bounding boxes. PA-100K is a large-scale

pedestrian attribute dataset. It consists of 100,000 pedes-

trian images, each of which is annotated with 26 human at-

tributes. The training, validation and test sets are split with a

ratio of 8 : 1 : 1. MS-COCO is originally collected for ob-

ject recognition tasks in the context of scene understanding.

It is also frequently used for multi-label image classification

task. It contains 82,783 images in training set, and 40,504

images in validation set. Each image is annotated with 80

object labels. Since ground-truth labels of test set are not

available, we train our network on training set and evaluate

on validation set.

Two sets of metrics are introduced in [60] for multi-

label image classification evaluation. 1) Label-based met-

rics include mean Average Precision (mAP), mean accu-

racy (mA), macro and micro precision/recall/F1-score (de-

noted as P-C, R-C, F1-C, P-O, R-O, F1-O, respectively).

Macro metrics (“*-C”) are evaluated by averaging per-label

metrics, while micro metrics (“*-O”) are overall measures,

which count true predictions for all images over all labels,

as in [67]. 2) Example-based metrics [31] include Accuracy

(Acc), Precision (Prec), Recall, and F1-score.

4.1. Ablative analysis

We first conduct experiments to justify that attention

consistency under certain image transforms in the pro-

posed network can benefit multi-label image classification.

We conduct two sets of ablative experiments on WIDER
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Attribute dataset, with ResNet50 (R50) and ResNet101

(R101) as the backbones separately for the proposed

method. The baseline methods use the original ResNet50

and ResNet101 with only weighted sigmoid cross entropy

loss as in Eq. (2). The input images are resized to 224×224.

The hyper-parameter in Eq. (6) is set to 1.

Table 1. Performance (%) on WIDER Attribute dataset in terms of

label-based metrics. The best results are highlighted in bold font

and red color, while the second bests are in blue.
model mAP mA F1-C P-C R-C F1-O P-O R-O

R50 83.4 82.0 73.9 79.5 69.4 79.4 82.3 76.6

R50+t 83.7 83.4 74.1 75.6 72.8 79.5 80.6 78.4

R50+r 83.2 82.8 73.2 75.9 71.1 78.5 81.0 76.1

R50+s 83.9 83.0 74.4 77.7 71.7 79.4 81.3 77.6

R50+f 84.2 82.8 74.6 79.5 70.7 80.0 82.9 76.9

R50+ACt 83.9 84.0 74.2 74.5 74.2 79.2 79.7 78.7

R50+ACr 85.0 83.3 75.1 79.2 71.8 80.2 82.3 77.9

R50+ACs 85.6 82.7 75.3 81.9 70.1 80.6 84.5 77.1

R50+ACf 86.3 84.5 76.4 78.9 74.3 81.2 82.6 79.8

R50+ACfs 86.8 83.7 76.5 82.4 72.1 81.8 84.4 79.3

R101 84.8 83.2 75.5 80.5 71.5 80.6 83.6 77.8

R101+ACt 84.6 83.5 75.3 79.1 71.9 80.1 83.1 77.3

R101+ACr 86.0 84.2 76.2 79.5 73.6 81.2 83.2 79.4

R101+ACs 86.5 83.6 76.5 82.4 71.9 81.6 85.1 78.3

R101+ACf 87.1 84.7 77.4 80.9 74.5 82.1 83.8 80.5

R101+ACfs 87.5 85.0 77.6 81.3 74.8 82.4 84.1 80.7

For experiments using ResNet50 as backbone, the base-

line model is trained from the original ResNet50 without

any data augmentation, denoted as R50. For comparison,

we futher train model R50 by using certain image trans-

forms as data augmentation. These transforms are 32-pixel

translation, 90◦ rotation, down-scaled to 192 × 192, and

horizontal flipping, from which we get the models with

data augmentation as R50+t (translation), R50+r (rotation),

R50+s (scaling), R50+f (flipping), respectively. When us-

ing the proposed method that enforces the attention con-

sistency (AC) under these four image transforms, we get

the trained models: R50+ACt, R50+ACr, R50+ACs, and

R50+ACf , respectively. The testing performance of the

above models in terms of label-based metrics are shown in

the upper part of Table 1.

Comparing models R50+t, R50+r, R50+s, R50+f with

model R50 shows that if the transforms are only used as

data augmentation, there are only minor performance gains.

When the attention consistency is considered in models

R50+ACr, R50+ACs, R50+ACf, the performance is im-

proved significantly, e.g., mAP is improved from 83.5%

for model R50 to 85.0%, 85.6%, and 86.3% for models

R50+ACr, R50+ACs, and R50+ACf, respectively.

To verify that the attention consistency leads to sig-

nificant improvement over data augmentation with the

same transform, we compare models R50+ACr, R50+ACs,

R50+ACf with R50+r, R50+s, R50+f and the gains of mAP

are 1.8%, 1.7%, 2.1%, respectively. Note that the atten-

tion consistency under translation only results in slight per-

formance improvement, e.g., 83.7% mAP for model R50+t

against 83.9% for model R50+ACt. This is due to the fact

Table 2. The quantified at-

tention inconsistency under

flipping and scaling.
models flip scale

baseline 93.23 64.34

proposed 2.85 0.74

Table 3. Performance (%) of

enforcing consistency at differ-

ent levels on R50+ACf.
feature

level

attention

level

label

level

mAP 85.1 86.3 85.4

that most CNNs learn invariant representations to image

translation by using convolution and pooling operations.

Furthermore, as attention consistency under image scal-

ing (model R50+ACs) and flipping (model R50+ACf)

achieves significant performance gains comparing with

baseline model R50 in Table 1, we combine attention con-

sistency under both image scaling and flipping to train

model R50+ACfs. The mAP performance is further im-

proved to 86.8%, which is 3.4% higher than that from the

original ResNet50.

For experiments using ResNet101 as backbone, mod-

els R101, R101+ACt, R101+ACr, R101+ACs, R101+ACf ,

R101+ACfs are trained in a similar way as models R50,

R50+ACt, R50+ACr, R50+ACs, R50+ACf, and R50+ACfs,

respectively. Evaluation results are reported in the lower

part of Table 1. Similar performance gains are obtained by

the proposed method as shown in the upper part of Table 1.

The proposed network using ResNet101 as backbone finally

improves the mAP by 2.7% from the original ResNet101.

For in-depth exploration of performance gains of the

proposed method, we show average precision (AP) gain

for each label achieved by models R50+t, R50+r, R50+s,

R50+f, R50+ACt, R50+ACr, R50+ACs, R50+ACf and

R50+ACfs compared with the baseline model R50 in Fig. 4.

Compared with baseline model R50, models R50+t, R50+r,

R50+s and R50+f use each image transform as data aug-

mentation only without enforcing visual attention consis-

tency. Thus, there is minor AP gain from these models

for each label. As the attention consistency under the im-

age transforms is considered, the AP gains from models

R50+ACr, R50+ACs, R50+ACf and R50+ACfs of the pro-

posed network are significant for most labels. Still, the

AP gain from model R50+ACt for each label is minor

since attention consistency under image translation is al-

ready preserved by the baseline model R50. Besides, the

AP gains from the models R50+ACr, R50+ACs, R50+ACf

and R50+ACfs of the proposed network for label 1, 4, 6,

and 10 are actually limited since the baseline model R50

has already achieved performance of APs around 95% for

these labels and there is not much space for performance

improvement.

To further clarify the effect of attention consistency, we

quantify the attention inconsistency, measured by Eq. (5),

on WIDER test set under flipping and scaling for both base-

line (R50) and the proposed method (R50+ACfs) in Table 2.

By enforcing attention consistency in CNN training, we can

notice that the inconsistency value under each transform of

the proposed method is much lower than that of the base-
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Figure 4. The average precision (AP) gain for each label on WIDER compared to model R50. Legends in the figure: models are the same

a in Table 1. Two sets of APs from model R50 and model R50+ACfs are also displayed under each set of AP gains.The labels 1 to 14 are:

male, long hair, sunglasses, hat, t-shirt, long sleeves, formal, short, jeans, long pants, skirt, face mask, logo and stripe.

line. Besides, to illustrate the advantage of using the con-

sistency at attention level in this paper, we conduct com-

parison experiment by considering consistency at different

levels under image flipping. As shown in Table 3, compar-

ing with enforcing consistency early, e.g., in feature maps

of the last convolutional layer (feature level), or late, e.g., in

the final label prediction (label level), our method of enforc-

ing consistency in the middle level, i.e., attention heatmaps,

leads to the best performance.

4.2. Comparison with state of the arts

To verify that our method can achieve state-of-the-art re-

sults, we compare multi-label image classification perfor-

mance of the proposed network with several state-of-the-art

methods on WIDER, PA-100K, and MS-COCO. Using the

same training strategy as in Section 4.1, we train the pro-

posed network using attention consistency under different

image transforms for each dataset. Different CNN architec-

tures, ResNet50 and/or ResNet101, are used as backbone in

the proposed network for different datasets. Baseline mod-

els are also trained accordingly as in Section 4.1 for each

dataset.

Table 4 shows the label-based evaluation results of the

comparison methods and the proposed method on WIDER.

Prior to our method, VAA [44] achieves the best perfor-

mance on this dataset with an mAP of 86.4%. Note that

VAA uses ResNet101 as backbone and our implementa-

tion of ResNet101, i.e., model R101, achieves an mAP of

84.8%. We can see that even models of the proposed net-

work using ResNet50 as backbone (mAP 86.8% for model

R50+ACfs) can slightly outperform previous state of the

arts. With ResNet101 as the backbone, the mAP of the

proposed method is further increased to 87.1% when con-

sidering horizontal flipping (model R101+ACf), and 87.5%

when considering both horizontal flipping and image scal-

ing (model R101+ACfs).

Table 5 shows the evaluation results of the comparison

methods and the proposed method on PA-100K dataset.

Table 4. Performance (%) of the comparison methods and the pro-

posed method on WIDER in terms of label-based metrics. The

method ResNet101* represents the baseline used in work [67] im-

plemented from the original ResNet101 [20] with multiple data

augmentations.
method mAP F1-C P-C R-C F1-O P-O R-O

R-CNN [15] 80.0 - - - - - -

R*CNN [16] 80.5 - - - - - -

DHC [34] 81.3 - - - - - -

AR [18] 82.9 - - - - - -

ResNet101* [67] 85.0 74.7 - - 80.4 - -

SRN [67] 86.2 75.9 - - 81.3 - -

VAA [44] 86.4 - - - - - -

O
u
rs

R50 83.4 73.9 79.5 69.4 79.4 82.3 76.6

R50+ACs 85.6 75.3 81.9 70.1 80.6 84.5 77.1

R50+ACf 86.3 76.4 78.9 74.3 81.2 82.6 79.8

R50+ACfs 86.8 76.5 82.4 72.1 81.8 84.4 79.3

O
u
rs

R101 84.8 75.5 80.5 71.5 80.6 83.6 77.8

R101+ACs 86.5 76.5 82.4 71.9 81.6 85.1 78.3

R101+ACf 87.1 77.3 80.9 74.5 82.1 83.8 80.5

R101+ACfs 87.5 77.6 81.3 74.8 82.4 84.1 80.7

Table 5. Performance (%) of the comparison methods and the pro-

posed method on PA-100K.

method mA Acc Prec Recall F1-score

DM [30] 72.7 70.39 82.24 80.42 81.32

HP-Net [36] 74.21 72.19 82.97 82.09 82.53

O
u

rs

R50 78.12 75.23 88.47 83.41 85.86

R50+ACs 77.46 78.25 89.96 83.97 86.86

R50+ACf 79.05 79.46 90.21 85.10 87.58

R50+ACfs 79.16 79.44 88.97 86.26 87.59

The prior state-of-the-art performance is achieved by HP-

Net [36]. We use the ResNet50, i.e., model R50 in Table 5,

as our baseline model, which has already outperformed HP-

Net. As the attention consistency under different image

transforms is considered, our models R50+ACs, R50+ACf,

and R50+ACfs achieve better performance of F1-score than

model R50.

On MS-COCO dataset, we show the label-based eval-

uation results of the comparison methods and the pro-

posed method in Table 6. For fair comparison, we eval-

uate these metrics both with and without top-3 label con-

straint, which means top-3 labels with the highest presence
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Table 6. Performance (%) of the comparison methods and the proposed method on MS-COCO dataset with label-based metrics. The method

ResNet101* represents the baseline used in work [67] implemented from the original ResNet101 [20] with complex data augmentations.

Method
All top-3

mAP F1-C P-C R-C F1-O P-O R-O F1-C P-C R-C F1-O P-O R-O

WARP [17] - - - - - - - 55.7 59.3 52.5 60.7 59.8 61.4

CNN-RNN [53] - - - - - - - 60.4 66.0 55.6 67.8 69.2 66.4

ResNet101* [67] 75.2 69.5 80.8 63.4 74.4 82.1 68.0 65.9 84.3 57.4 71.7 86.5 61.3

ResNet101-SRN [67] 77.1 71.2 81.6 65.4 75.8 82.7 69.9 67.4 85.2 58.8 72.9 87.4 62.5

baseline ResNet101 74.9 69.7 70.1 69.7 73.7 73.6 73.7 66.1 77.7 59.8 71.2 82.2 62.8

Ours

ResNet101-ACs 76.8 70.1 83.3 62.1 74.9 85.7 66.5 66.3 87.6 56.3 72.0 89.6 60.1

ResNet101-ACf 77.3 71.9 73.5 71.0 75.7 76.5 74.9 67.9 81.9 61.0 73.0 84.5 64.2

ResNet101-ACfs 77.5 72.2 77.4 68.3 76.3 79.8 73.1 68.0 85.2 59.4 73.1 86.6 63.3

prediction scores are obtained for each image even if their

score values are lower than 0.5, as in [53, 67]. ResNet101-

SRN [67] achieves the state-of-the-art performance of mAP

77.1%, and its baseline model, ResNet101*, achieves mAP

of 75.2% by using multiple data augmentations for train-

ing, including mirror and multi-scale four-corner and cen-

tral crop operations. To achieve comparable baseline per-

formance without such complex data augmentations, we

simply resize the input images to 288 × 288 when train-

ing our baseline model, i.e., R101, using ResNet101. We

train the proposed network using the same strategy as de-

scribed in Section 4.1. Even though our baseline model

R101 (mAP 74.9%) achieves slightly worse performance

than ResNet101* (mAP 75.2%), our models R101-ACs and

R101-ACf of the proposed network achieve comparable

performance to ResNet101-SRN (mAP 77.1%). Further-

more, our model R101-ACfs (mAP 77.5%) of the proposed

network outperforms the previous state-of-the-art methods.

Besides, compared to our baseline model R101, our model

R101+ACfs shows a clear performance improvement by

considering attention consistency – it improves mAP by

2.6%, F1-C by 2.5%, F1-O by 2.6%, F1-C (top-3) by 1.9%,

F1-O (top-3) by 1.9%.

4.3. Qualitative comparison

To verify that the attention heatmaps are refined by at-

tention consistency, we compare the attention heatmaps ex-

tracted from the original, flipped and scaled images for the

same label using baseline model and models of the pro-

posed network. Figure 5 shows an example of attention

heatmaps for the label “T-shirt”. Attention regions from

model R50 are inconsistent under both horizontal flipping

and image scaling transforms. Our model R50+ACf pro-

duces highly consistent attention regions under image flip-

ping, but slightly inconsistent ones under image scaling.

Contrarily, our model R50+ACs produces highly consistent

attention regions under image scaling, but inconsistent ones

under image flipping. By considering attention consistency

under both flipping and scaling, R50+ACfs produces highly

consistent attention regions under both transforms. Com-

paring the attention heatmaps in columns 3, 4, 5 of row 2 to

the one in column 2 of row 2, attention regions produced by

the proposed network are more semantically relevant to the

label “T-shirt”. These qualitative results demonstrate that

the proposed network can focus attention on regions more

label-relevant by enforcing attention consistency under cer-

tain image transforms.
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R50 R50+ACf R50+ACs R50+ACfs

Figure 5. Attention heatmaps for classifying label “T-shirt” from

flipped (row 1), original (row 2), and scaled (row 3) images using

different models.

5. Conclusion

Motivated by the observations that human visual percep-

tion is consistent in classifying images under certain spa-

tial transforms, in this paper we further assumed the con-

sistency of CNN attention regions for image classification

under such transforms, i.e., the attention region for a clas-

sification follows the same transform if the input image is

spatially transformed. We found that such consistency is

usually not well preserved for many CNN classifiers. To ad-

dress this problem, we proposed a two-branch network, as

well as an attention consistency loss, for multi-label image

classification. We conducted experiments on three public

datasets and the experiment results verified the effectiveness

of the proposed method by achieving the new state-of-the-

art performances on all three datasets.
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