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Abstract. Surgical skill assessment is important for surgery training
and quality control. Prior works on this task largely focus on basic sur-
gical tasks such as suturing and knot tying performed in simulation set-
tings. In contrast, surgical skill assessment is studied in this paper on
a real clinical dataset, which consists of fifty-seven in-vivo laparoscopic
surgeries and corresponding skill scores annotated by six surgeons. From
analyses on this dataset, the clearness of operating field (COF) is identi-
fied as a good proxy for overall surgical skills, given its strong correlation
with overall skills and high inter-annotator consistency. Then an objec-
tive and automated framework based on neural network is proposed to
predict surgical skills through the proxy of COF. The neural network
is jointly trained with a supervised regression loss and an unsupervised
rank loss. In experiments, the proposed method achieves 0.55 Spearman’s
correlation with the ground truth of overall technical skill, which is even
comparable with the human performance of junior surgeons.
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1 Introduction

Surgical skill assessment is crucial for the improvement of surgeons’ competency
during both training and practice [16]. Traditionally, surgical skills are evaluated
by experts with onsite observation, which is prone to subjective biases. Although
OSATS [13] can reduce such subjectivity to some extent, it requires intensive
efforts from experts for manual grading. Thus computer-aided approaches, which
provide objective and scalable skill predictions, draw increasing attention from
the community. This paper works on computer-aided surgical skill assessment.

Prior works on this task [11, 20, 17, 19, 6, 8, 7, 21, 18, 15, 1] have been mainly
set up on simulated datasets such as JIGSAWS [3], in which basic suturing/tying
tasks are performed on benchtop models. Although some benchtop models can
have high fidelity of human anatomy and accurate imitation of procedure steps,
there is still a large gap between simulated scenarios and real-world clinical ones
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in terms of varying patient condition, working dynamics, stress level and so on.
Only few studies [4, 12, 2, 14] have been conducted on clinical data. As for surgery
type, clinical open surgeries have been studied in [4, 2] and laparoscopies in [12,
14]. The modality of these clinical datasets can be surgery videos [4, 12] or the
data from external sources [2, 14]. The limitations of the two existing clinical
video datasets are that [4] only targets at short suturing/tying clips manually
segmented from long surgeries and [12] annotates only four videos with skill
labels. Different from previous works, we construct a new clinical laparoscopic
video dataset, which consists of fifty-seven long procedures.

On the other hand, from the perspective of assessment method, most of
the existing works are motion-based. In these works, surgical skills are deter-
mined with hand/tool/eye motions, obtained from robotic kinematics [11, 17,
19, 8, 1] or external sensors [20, 7, 2, 14] or visual tracking/interest points [4, 12,
20, 21, 18, 15]. However, acquiring motion trajectories is difficult for clinical data
because that 1) robotic kinematics are restricted to only robotic surgeries 2)
external sensors interrupt normal workflows and are hard to implement in oper-
ating rooms 3) visual tracking is not robust enough and often involves manual
corrections. Unlike these prior works, we utilize the clearness of operating field
(COF) rather than motion for skill assessment. The COF reflects the amount of
bleeding and the visibility of anatomy landmarks. Prediction of the COF relies
on appearance information carried in surgery videos, which is more obtainable
and robust than motions in clinical settings. Statistical analyses on our clinical
dataset identify that the COF is a good skill proxy, for its strong correlation
with overall skills and high consistency across annotators. For a detailed review
of previous studies, please refer to this survey [16].

In this paper, a new clinical dataset is collected, which includes fifty-seven
videos of laparoscopic gastrectomy conducted in operating rooms (OR). Six sur-
geons annotate the videos with not only technical OSATS scores but also newly
designed procedural scores and the COF score. Then we propose an objective
video-based method to predict surgical skills via the proxy of COF. A neural
network taking in color and semantic features is trained with a supervised re-
gression loss and an unsupervised rank loss collectively. The proposed method
outputs skill scores at frame-level to provide feedback. Experiments show that
predicting overall skills via the proxy of COF performs better than predict-
ing them directly without proxy. The Spearman’s correlation between predicted
overall technical skill and ground truth ratings is 0.55, which is promising and
even comparable with the human performance of junior surgeons. In summary,
our contributions are three-fold: 1) An in-vivo clinical dataset collected from
real operating rooms. 2) The identification of COF as a good skill proxy. 3) A
video-based method without extra equipment and intensive human efforts.

2 Dataset

Data. The dataset includes videos of 57 in-vivo laparoscopic gastrectomy surg-
eries for gastric cancer. Videos are captured by the built-in camera (Karl Storz,
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Table 1. Skill Metrics

ID General Metrics ID Procedure-specific Metrics
1 Gentleness 7 Dissection in Correct Planes
2 Time and Motion 8 Vessel Exposure and Transection
3 Instrument Handling 9 Venous Breakpoint Selection
4 Flow of Operation 10 Arterial Breakpoint Selection
5 Tissue Exposure 11 Infrapyloric Artery Exposure
6 Overall Technical Skill (OTS) 12 Care for Adjacent Organs
14 Clearness of Operating Field 13 Overall Procedural Skill (OPS)

Fig. 1. Example frames from cases with good or poor COF scores.

Olympus or Sony) and are formatted to 960×540 and 25 fps. The procedures
are performed by one surgeon. It is assumed that the performance of a same
primary surgeon can vary across cases, due to different case complexity, fatigue
condition, team members, operating time and so on. To lighten the annotation
burden, the infrapyloric area [10], which is one of the four major parts of gas-
trectomy, is used for skill assessment in this study. The duration of infrapyloric
procedure ranges from 8 to 57 minutes and the average is 26 minutes. Surgical
skills are annotated by 6 surgeons on 14 metrics with the Likert scale of 1-5. The
6 surgeons include 3 senior surgeons with more than 8 years experience and 3
junior surgeons with less than 4 years experience. For each metric, the ground
truth is defined as the mean score of the three seniors.
Skill Metrics. As listed in Table 1, the surgeries are evaluated on 14 metrics,
including technical OSATS metrics, procedural metrics, and the COF metric.
For OSATS metrics (ID 1-6), a modified version from [5] is employed. Since
OSATS metrics only measure the general surgical technique and are procedure-
independent, we also design 7 new procedure-specific metrics (ID 7-13) according
to [10] to provide fine-grained ratings of surgeons’ compliance with gastrectomy
instructions. In addition, based on the suggestion of surgeons, the COF metric
(ID 14) is proposed to represent how much the bleeding and burned tissues
impact on the identification of anatomical structures. Examples are shown in
Fig. 1. In cases with good COF, there is no obvious bleeding and the anatomical



4 D. Liu et al.

Fig. 2. Metric analyses. Left: Correlation with overall skills. Middle: Inter-senior
consistency. Right: Senior-junior consistency. COF (ID 14) is a good skill proxy.

planes and landmarks can be recognized clearly, while in poor cases the bleeding
is excessive and severely affects the recognition of planes and landmarks.
Analysis. As shown in Fig. 2, skill metrics are analyzed statistically on all
57 cases in terms of correlation with overall surgical skills and inter-annotator
consistency. In the following analyses, rim denotes the 57 scores from surgeon i
on metric m. S and J denote the sets of seniors and juniors respectively. And
srocc(·, ·) is the function of Spearman’s rank correlation coefficient (SROCC).

Correlation with overall skills. We consider the correlations with both overall
technical skill (OTS) and overall procedural skill (OPS). Concretely, the corre-
lation with overall skills for a non-overall metric m is defined as:

CORRm = 1
2×|S|

∑
i∈S

∑
k∈{6,13} srocc(rim, rik) m /∈ {6, 13} (1)

where the SROCC between this metric and either OTS or OPS is computed,
and the results from three seniors are averaged. This value is the largest when
m = 14, indicating that COF has the best correlation with overall skills.

Inter-senior consistency. This value reflects how seniors agree on a metric.
Specifically, the inter-senior consistency for metric m is defined as the averaged
SROCCs between the scores of this metric from each two seniors:

ISCm = 1
|S|×(|S|−1)

∑
i,j∈S,i6=j srocc(rim, rjm). (2)

The higher this value is, the metric is less affected by subjective biases. Among
the 14 metrics, the COF achieves the highest inter-senior consistency.

Senior-junior consistency. To examine whether juniors and seniors have a
similar understanding of each metric m, we define senior-junior consistency as
the SROCC between the ground truth and the mean scores of the three juniors:

SJCm = srocc( 1
|S|

∑
i∈S rim, 1

|J |
∑

j∈J rjm). (3)

A high value means that this metric can be correctly understood by juniors and
can thus provide effective feedback to juniors. The COF gives the best value.

In addition to the above reasons, the assessment of COF only relies on appear-
ance information carried in video data. Hand/tool motions and extra devices are
not involved. Therefore the COF is identified as a good proxy for overall skills.
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3 Method

In this section, an objective video-based method is devised to regress surgical
skills via the proxy of COF. The proposed approach takes a video as input and
predicts its COF score, which is directly regarded as overall surgical skills.
Preprocessing. The input video is first downsampled to 1 fps to reduce data
redundancy. Then extra-abdominal views are removed manually. Note that this
can be efficiently done by non-professionals.
Feature Extraction. Since the COF is a measure for bleeding amount and
anatomical recognition, we extract color features to describe the severity of bleed-
ing and semantic features to provide anatomy information. For color features,
color histograms in RGB space, HSV space, and Red-ratio space (R/G and R/B)
are computed in every video frame. In our dataset, videos can have inconsistent
color distributions due to different recording devices and patient conditions. Thus
the color features are normalized using the first 30% of each video, given the ob-
servation that the first 30% is unlikely to contain heavy bleeding and should
be of similar color and COF across cases. In detail, for each video, the mean
color feature of the first 30% is subtracted from the color feature of each frame.
As for the semantic features, the ResNet-101 [9] pretrained on ImageNet is em-
ployed in each frame. Then the two types of features are concatenated. After
feature extraction, the video is transformed into a feature sequence, denoted by
X ∈ RT×D. T is the number of frames and D is the feature dimension.
Model. A neural network model is designed for automated skill assessment,
which consists of a score branch to evaluate frame quality and a weight branch
to provide frame importance. Both of the branches are frame-wise multilayer
perceptrons (MLP). Given the feature of a video frame, the score branch pro-
duces a score of this frame, while the weight branch outputs a frame weight. In
this way, the feature sequence X of the input video is transformed into a score se-
quence denoted by A ∈ RT×1 and a weight sequence represented by U ∈ RT×1.
The weight branch is additionally followed by a softmax function so that the
weights of all frames sum to one. Then the video-level score q is obtained by the
weighted sum of frame-level scores: q =

∑T
t=1 UtAt.

Loss. The loss function comprises a supervised regression loss and an unsuper-
vised rank loss. The regression loss is a standard L1 loss: Lreg = |y − q|, where
y denotes the ground truth COF score and q is the predicted score. In addition,
we devise a rank loss based on the observation that the quality of COF decreases
over time as the bleeding accumulates. It is assumed that the COF is better at
the start of the surgery than in the end. As recommended by surgeons, we define
the start section as the first 30% of the surgery and the end section as 60% to
90%. The last 10% is not used for the end section because surgeons commonly
clean the operating field thoroughly when finishing. Then the rank loss is pro-
posed to enforce the score of the start section to be higher than the end section
by a margin:

Lrank = max(0, 1− (qs − qe)) (4)
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Table 2. Performance of COF Prediction

Method Feature PLCC SROCC
Baseline Red 0.164 0.130
Baseline Saturation 0.233 0.178
Baseline Duration 0.229 0.191
Lreg Color + ResNet 0.580 0.595
Lrank Color + ResNet 0.433 0.457

Lreg + Lrank Color 0.447 0.446
Lreg + Lrank ResNet 0.622 0.601
Lreg + Lrank Color + ResNet 0.641 0.647
Junior Surgeon - 0.670 0.657
Senior Surgeon - 0.880 0.869

Table 3. Performance of Overall Skills Prediction

Method PLCC (OTS/OPS) SROCC (OTS/OPS)
No Proxy (Lreg) 0.46 / 0.18 0.47 / 0.18

No Proxy (Lreg + Lrank) 0.45 / 0.21 0.45 / 0.24
With Proxy (Lreg + Lrank) 0.56 / 0.40 0.55 / 0.41

Junior Surgeon (COF) 0.56 / 0.61 0.56 / 0.60
Junior Surgeon (OTS/OPS) 0.42 / 0.64 0.41 / 0.62

Senior Surgeon (COF) 0.74 / 0.74 0.73 / 0.73
Senior Surgeon (OTS/OPS) 0.82 / 0.84 0.82 / 0.83

where qs =
∑0.3T

t=1 UtAt is the predicted score for the start section and qe =∑0.9T
t=0.6T UtAt is for the end section. This rank loss is only applied to the training

cases with COF score no more than 3, since in good cases the COF quality might
stay high through the whole surgery. Note that frame weights U are normalized
with softmax within the defined ranges when computing qs and qe. Then the
neural network is trained with the regression loss and the rank loss jointly.

4 Experiments

The proposed method is evaluated on the newly introduced clinical dataset.
We repeat three-fold cross-validation 15 times, with 45 runs in total. In each
run, 38 videos are chosen randomly for training and the rest 19 videos are for
testing. We report the Spearman’s rank correlation coefficient (SROCC) and the
Pearson linear correlation coefficient (PLCC) between the ground truth and the
prediction, which are averaged over all 45 runs. Results of COF prediction and
overall skills prediction are both presented.
COF Prediction. Results of COF prediction are provided in Table 2. First,
three baselines are tested, which simply depend on the mean red value, the mean
saturation value, or duration of the video. Then ablation studies are performed to
investigate the impact of feature and loss design. At last, human performances of
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Fig. 3. Frame-level COF scores for a test surgery. The scores have been normalized.

senior and junior surgeons are computed by using annotations of each individual
surgeon as the prediction and then averaging the results over juniors or seniors.
Our full model surpasses the baselines and the ablated models, which is even
comparable with junior surgeons.
Overall Skills Prediction. For overall skills, both OTS and OPS are predicted
with or without the proxy of COF. When with the proxy, the predicted overall
skills are set the same as the predicted COF. When without proxy, same models
are trained to regress overall skills directly by setting the OTS or OPS as the
learning target y in the loss. To facilitate the comparison between the proposed
method and human performances, performances of surgeons are also computed
with proxy (COF as overall skills) or without the proxy. As the results in Table
3, predicting overall skills via the proxy is better than directly regressing them
without proxy, which further validates that COF is a good skill proxy. For OTS,
the SROCC is 0.55, which is promising and comparable with the human perfor-
mance of junior surgeons. For OPS, the SROCC is 0.41, which can be improved
in the future by explicitly modeling the procedure steps. Note that previous
works are not applicable due to different data modality and surgery setting.
Feedback. As shown in Fig. 3, the proposed method generates frame-level scores
to indicate which parts are of low quality and frame-level weights to identify
which parts should receive more attention. In this test example, the score drop
(the 2nd image) corresponds to an error move that the surgeon needs to improve,
and the increase of weight (the 4th image) corresponds to the vessel transection
that the surgeon should perform with special care. Video demos are provided in
the supplementary. The quantification of such feedback is left for future research.

5 Conclusion and Future Work

In this work, a clinical dataset for surgical skill assessment is compiled. Statis-
tical analyses and empirical results both show that the clearness of operating
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field is a good skill proxy. A video-based objective model is proposed to predict
overall skills via this proxy, which achieves promising results in experiments.
The limitation of this work is that the dataset only includes gastrectomy pro-
cedures performed by a single surgeon. The generalizability to other procedures
and across surgeons needs to be further validated. Future works should also focus
on 1) temporal structure modeling 2) incorporating more domain knowledge 3)
explicitly modeling the surgery steps and human anatomy.
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