

Graph Networks for Multiple Object Tracking

Graph Networks D

Background

Most current graph models are static:

- Nodes and edges are fixed.
- The global relationship among objects is not modeled.

Motivation

Make use of the graph network [1] to enable the update of nodes and edges.

Feature Extraction

and missing detection handling.

Inputs

Figure 2. Upper part: The structure of the 4-step graph network. Lower part: The corresponding networks for the four modules.

Figure 3. (a) The structure of the appearance graph network.

Pipeline

We construct a graph:

- Nodes: the objects and the detections.
- Edges: the associations between objects and detections.
- Global variable: the global relationship among objects.

Jiahe Li, Xu Gao, Tingting Jiang (ttjiang@pku.edu.cn) NELVT, Department of Computer Science, Peking University, China

ata Association	Missing Detections Handling			E	xperiments							
	Detection	Dataset	Detection	Methods	МОТА	IDF1	МТ	ML	FP	FN	IDS	FM
2 -	Single Object Tracker	MOT16	Public	LINF [2], <i>ECCV 2016</i>	41.0	45.7	11.6%	51.3%	<u>7896</u>	99224	<u>430</u>	<u>963</u>
2				MHT_bLSTM [3]*, <i>ECCV 2018</i>	42.1	<u>47.8</u>	14.9%	44.4%	11637	93172	753	1156
3	Frame			NOMT [4], <i>ICCV 2015</i>	46.4	53.3	18.3%	41.4%	9753	87565	359	504
4				Ours without SOT	47.4	42.6	14.5%	<u>34.4%</u>	7795	86178	1931	3389
	Outputs			Ours	47.7	43.2	<u>16.1%</u>	34.3%	9518	83875	1907	3376
			Private	Ours without SOT	58.4	54.8	27.3%	23.2%	5731	68630	1454	1730
5		MOT17		MHT_bLSTM [3]*, <i>ECCV 2018</i>	47.5	51.9	18.2%	41.7%	<u>25981</u>	268042	2069	3124
			Public	Ours without SOT	<u>50.1</u>	46.3	<u>18.6%</u>	<u>33.3%</u>	25210	<u>250761</u>	5470	8113
				Ours	50.2	<u>47.0</u>	19.3%	32.7%	29316	246200	<u>5273</u>	<u>7850</u>
		Table 1 Experiments on MOT16 and MOT17 test set. The best result in each metric is highlighted in hold, and the second										

Table 1. Experiments on MOT16 and MOT17 test set. The best result in each metric is highlighted in bold, and the second best result is underlined. * indicates the use of additional training data.

Methods	МОТА	IDF1	MT	ML	FP	FN	IDS	FM
\mathbf{A}^{*}	52.7	56.3	31.5	33.0	1455	28882	1161	913
A*/g	52.6	55.8	31.2	32.9	1545	28819	1174	885
Μ	53.9	61.4	31.9	32.2	1390	28570	690	772
M/g	52.6	60.0	31.6	32.8	1392	28621	1521	802
A^*+M	54.5	63. 7	33.2	32.3	1525	28210	511	683
$A^*/g+M/g$	54.3	62.3	32.9	32.0	1622	28247	517	692

Table 2. Performance of models with/without the global variable. A^* , M and A^*+M denote the appearance graph network, the motion graph network and the merged graph network respectively. A^*/g denotes A^* without the global variable. M/gdenotes **M** without the global variable. $A^*/g+M/g$ denotes A^*+M without the global variable. The best result is highlightted in bold.

Methods	МОТА	IDF1	MT	ML	FP	FN	IDS	FM
$L_{C} + \lambda L_{N}$	52.7	56.3	31.5	33.0	1455	28882	1161	913
	52.5	56.0	32.0	33.9	1539	28811	1253	939
	1 • 1 / • 1		1 7 1	1		1 1.1	1 , 1	

Table 3. Performance of A* trained with/without L_N . L_C and L_N denotes the cross-entropy loss and the node cost loss respectively.

standard Jeviation	1.2 1.0 0.8 0.6 0.4 0.2							
	0.0	ΜΟΤΑ	IDF1	MT	ML			
M		0.7	1.1	0.2	0.3			
M /	g	0.4	0.7	0.1	0.1			
A *		0.1	0.4	0.3	0.2			
	/g	0.1	0.6	0.3	0.2			
A *-	+M	0.1	0.7	0.3	0.2			
A */	/g+M/g	0.1	0.1	0.4	0.2			

Figure 4. Standard deviation and mean of MOTA, IDF1, MT and ML of our methods over five initializations.

1]	Battaglia et
	networks. a

- ECCV, 2018.

(b) The structure of the motion graph network.

The introduction video is available at http://jiaheli.wacv.cc/

Reference

t al. Relational inductive biases, deep learning, and graph arXiv, 2018.

[2] Fagot-Bouquet et al. Improving multi-frame data association with sparse representations for robust near-online multi-object tracking. ECCV, 2016. [3] Kim et al. Multi-object tracking with neural gating using bilinear LSTM.

W. Choi. Near-online multi-target tracking with aggregated local flow descriptor. ICCV, 2015.