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Abstract

Deep neural networks (DNNs) have been demonstrat-

ed to be vulnerable to adversarial examples. Specifical-

ly, adding imperceptible perturbations to clean images can

fool the well trained deep neural networks. In this pa-

per, we propose an end-to-end image compression model to

defend adversarial examples: ComDefend. The proposed

model consists of a compression convolutional neural net-

work (ComCNN) and a reconstruction convolutional neu-

ral network (RecCNN). The ComCNN is used to maintain

the structure information of the original image and puri-

fy adversarial perturbations. And the RecCNN is used to

reconstruct the original image with high quality. In other

words, ComDefend can transform the adversarial image to

its clean version, which is then fed to the trained classifi-

er. Our method is a pre-processing module, and does not

modify the classifier’s structure during the whole process.

Therefore, it can be combined with other model-specific de-

fense models to jointly improve the classifier’s robustness.

A series of experiments conducted on MNIST, CIFAR10 and

ImageNet show that the proposed method outperforms the

state-of-the-art defense methods, and is consistently effec-

tive to protect classifiers against adversarial attacks.

1. Introduction

As we know, deep learning technique [14] plays the lead-

ing role in Artificial Intelligence (AI) area, and has ushered

in a new development climax in the fields such as image

recognition [8], natural language processing [3], and speech

processing [9]. However, Szegedy et al. [19] formally pro-

pose the concept of adversarial examples which bring the

great danger to the neural networks. Specifically, impercep-
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Figure 1. The main idea of our end-to-end image compression

model to defend adversarial examples. The perturbation between

the adversarial image and the original image is very tiny, but the

perturbation is amplified during the high-level representation of

the image classification model. We use ComCNN to remove the

redundant information of the adversarial image and RecCNN to re-

construct the clean image. In this way, the influence of adversarial

perturbations is suppressed.

tible perturbations added to clean images can induce net-

works to make incorrect predictions with high confidence

during the test time, even when the amount of perturba-

tion is very small, and imperceptible to human observers.

What’s more, [12] has proved that adversarial examples al-

so exist in the physical-world scenarios. The existence of

adversarial examples has become a major security concern

in real-world applications of deep networks, such as self-

driving cars and identity recognition, etc.

In recent years, a lot of methods defending the adversar-

ial examples have been proposed. These methods can be

roughly categorized into two classes. The first class is to

enhance the robustness of neural networks itself. Adver-

sarial training [20] is a typical method among them, which

injects adversarial examples into the training data to retrain

the network. Label smoothing [22], which converts one-hot

labels to soft targets, also belongs to this class. The second
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Figure 2. The overview of ComDefend. The ComCNN is used to preserve the main structure information of original images. The original

24 bits map for RGB three channels is compressed into 12 bits map (each channel is assigned 4 bits). And the RecCNN is responsible for

reconstructing the clean-version original images. The gaussian noise is added on the compressed compact representation to improve the

reconstructed quality, and further enhance the defense ability.

one denotes the various pre-processing methods. For exam-

ple, In [18], Song et al. propose the PixelDefend, which

can transform the adversarial images into clean images be-

fore they are fed into the classifier. Similarly, [15] regards

the imperceptible perturbations as the noises, and designs a

high-level representation guided denoiser (HGD) to remove

these noises. HGD wins the first place in the NIPS2017

adversarial vision challenge [13]. Generally speaking, the

latter methods are more efficient because they don’t need to

retrain the neural networks. However, HGD still requires a

lot of adversarial images when training the denoiser . There-

fore, it is hard to get a good HGD in the case of few adver-

sarial images. The main idea of PixelDefend is to simulate

the distribution of image space. When the space is too large,

the result of the simulation will be bad.

Image compression is a low-level image transformation

task. Because there is strong similarity and relevance be-

tween neighbor pixels in the local structure, image com-

pression can help reduce the redundant information of an

image, while retaining the dominant information. Based on

this observation, we devised ComDefend, which utilizes the

image compression to remove adversarial perturbations or

destroy the structure of adversarial perturbations. The basic

idea of ComDefend is listed in Figure 1.

ComDefend consists of two CNN modules. The first C-

NN, called compression CNN (ComCNN), is used to trans-

form the input image into a compact representation. In de-

tails, the original 24-bits pixel is compressed into 12 bits.

The compact representation extracted from the input image

is expected to retain the enough information of the original

image. The second CNN, called reconstruction CNN (Rec-

CNN), is used to reconstruct the original image with high

quality. The ComCNN and RecCNN are finally combined

into a unified end-to-end framework to learn their weight-

s. Figure 2 gives the illustration of ComDefend. Noted

that ComDefend is trained on the clean images. In this

way, the network will learn the distribution of clean im-

ages, and thus can reconstruct a clean-version image from

the adversarial image. Compared with HGD and PixelDe-

fend, ComDefend doesn’t require the adversarial examples

in training phase, and thus reduces the computation cost.

In addition, ComDefend is performed on an image with the

patch-by-patch manner instead of the whole image, which

improve the processing efficiency. The code is released at

https://github.com/jiaxiaojunQAQ/Comdefend.git.

In summary, this paper has the following contributions:

1) We propose the ComDefend, an end-to-end image

compression model to defend adversarial examples. The

ComCNN extracts the structure information of the original

image and removes the imperceptible perturbations. The

RecCNN reconstructs the input image with high quality.

During the whole process, the deployed model is not modi-

fied.

2) We design a unified learning algorithm to simulta-
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neously learn the weights of two CNN modules within

ComDefend. In addition, we find that adding gaussian noise

to the compact representation can help reconstruct better

images, and further improve the defending performance.

3) Our method greatly improves the resilience across

a wide variety of strong attacking methods, and defeats

the state-of-the-art defense models including the winner of

NIPS 2017 adversarial challenge.

The remainder of this paper is organized as follows. Sec-

tion 2 briefly reviews the related work. Section 3 introduces

the details of the proposed ComDefend. Section 4 shows a

series of experimental results. Finally, Section 5 shows the

conclusion.

2. Related work

We investigate the related work from two aspects: Attack

methods to generate adversarial examples, and Defensive

methods to resist adversarial examples.

2.1. Attack methods

In [6], Goodfellow et al. propose the Fast Gradient Sign

Method (FGSM). An adversarial example is produced by

adding increments in the gradient direction of the loss gra-

dient. After that, Basic Iterative Method (BIM) which is

the improved version of the FGSM, is proposed in [12].

Compared with FGSM, BIM performs multiple steps. This

method is also called Projected Gradient Descent (PGD) in

[16]. To deal with the selection of parameters in FGSM,

in [17], Moosavi-Dezfooli et al. propose to use an itera-

tive linearization of the classifier and geometric formulas to

generate an adversarial example. In [1], Carlini-Wagner et

al. design an efficient optimization objective (C&W) to find

the smallest perturbations. The C&W can reliably produce

samples correctly classified by human subjects but misclas-

sified in specific targets by the well-trained classifier.

2.2. Defensive methods

In [20], Adversarial training adds the adversarial images

generated by different attack methods to the training image

dataset. The growth of the training image dataset makes the

image classification model easier to simulate the distribu-

tion of the entire image space. And in [21], Warde-Farley

and Goodfellow propose label smoothing method which us-

es soft targets to replace one-hot labels. The image classifi-

er is trained on the one-hot labels at first, and then the soft

targets are generated by the well-trained image classifier.

In [25], Xu et al. propose to use feature squeezing methods

which include the color bit depth of each pixel and spatial s-

moothing to achieve defend adversarial examples. PiexlDe-

fend is proposed in [18]. The basic idea of PiexlDefend is to

purify input images before they are fed to the image classi-

fier. In [15], the authors propose a high-level representation

guided denoiser(HGD) method to defend adversarial exam-

ples. The proposed model is trained on the training dataset

which includes 210k clean and adversarial images.

3. End-to-end image compression model

3.1. The basic idea of ComDefend

Let us first look back at the reason of adversarial ex-

amples. The adversarial examples are generated by adding

some imperceptible perturbation to the clean images. The

added perturbation is too slight to be perceptible to human-

s. However, when the adversarial examples are fed to a

deep learning network, the effect of the imperceptible per-

turbation increases rapidly along with the deepth of the net-

work. Therefore, the carefully designed perturbation will

fool powerful CNNs. More specifically, from previously

related researches, we can regard the imperceptible pertur-

bation as the noise with the particular structure. Kurakin et

al. in [12] consider that this kind of noise which can fool

powerful CNNs exists in the real world. In other words, the

perturbations do not affect the structure information of the

original image. The imperceptible perturbations can be con-

sidered as the redundant information of the images. From

this point of view, we can use the characteristics of image

redundancy information in image compression model to de-

fend adversarial examples.

In order to remove the imperceptible perturbations or

break up the particular structure of the imperceptible pertur-

bations, we propose an end-to-end image compression mod-

el which not only compresses the input image but also trans-

forms the input image to a clean image. As shown in Figure

2, the image compression model contains the compression

and reconstruction processes. During the compression pro-

cess, the ComCNN extracts the image structure information

and removes the redundant information of the image. Dur-

ing the reconstruction process, the RecCNN reconstructs

the input image without the adversarial perturbations. In

particular, the ComCNN compress the 24-bits pixel image

into 12 bits. That is to say, the 12-bits pixel image removes

the redundancy information of the original image and pre-

serves the main information of the original image. And thus

the RecCNN use the 12-bits pixel image to reconstruct the

original image. During the whole process, we hope that the

12-bits pixel images extracted from the original image and

adversarial example are as same as possible. Therefore, we

can transform the adversarial example into the clean image.

3.2. Structure of the ComCNN

ComCNN consists of 9 weight layers, which can com-

press the input image into the 12-bits pixel image. That is

to say, the main structure information of the input image

is reserved and the redundancy information including the

imperceptible perturbation of the input image is removed.
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Figure 3. The comparison results in ComDefend whether to add gaussian noises. In each subfigure, The top images are original images,

The middle images are the compressed 12bits maps and the bottom images are the reconstructed images. (a) ComDefend reconstructs the

image through the un-binarized 12bits map. (b) Without gaussian noises, ComDefend reconstructs the image through the binarized 12bits

map. (c) With gaussian noises, ComDefend reconstructs the image through the binarized 12bits map. We see the reconstructed quality in

(c) is the same with that in (a). That means the increment information of un-binarized maps are actually noises. Therefore, when gaussian

noises are added on the binarized maps, the better images are reconstructed.

Table 1. Hyperparameters of the ComCNN Layers
layer type output channels input channels filter size

1st layer conv+ELU 16 3 3× 3

2nd layer Conv+ELU 32 16 3× 3

3rd layer Conv+ELU 64 32 3× 3

4th layer Conv+ELU 128 64 3× 3

5th layer Conv+ELU 356 128 3× 3

6th layer Conv+ELU 128 256 3× 3

7th layer Conv+ELU 64 128 3× 3

8th layer Conv+ELU 32 64 3× 3

9th layer Conv 12 32 3× 3

Table 2. Hyperparameters of the RecCNN Layers
layer type output channels input channels filter size

1st layer Conv+ELU 32 12 3× 3

2nd layer Conv+ELU 64 32 3× 3

3rd layer Conv+ELU 128 64 3× 3

4th layer Conv+ELU 256 128 3× 3

5th layer Conv+ELU 128 256 3× 3

6th layer Conv+ELU 64 128 3× 3

7th layer Conv+ELU 32 64 3× 3

8th layer Conv+ELU 16 32 3× 3

9th layer Conv 3 16 3× 3

The combination of convolution and ELU [2] are used in

ComCNN. As shown in Table 1, ComCNN consists of two

components, the first one is used to extract the features of

the original image and generate 256 feature maps. The 1st

to the 4th layers which consist of 32 filters of size 3×3×3,

64 filters of size 3 × 3 × 32, 128 filters of size 3 × 3 × 64
and 256 filters of size 3 × 3 × 128 are the main part of the

first component. And the ELU nonlinearity is used as an

activation function. The second one is used to downscale

and enhance the features of the input image. The 5th to the

9th layers which consist of 128 filters of size 3 × 3 × 256,

64 filters of size 3 × 3 × 128, 64 filters of size 3 × 3 × 64,

32 filters of size 3× 3× 64 and 3 filters of size 3× 3× 32
are the main part of the second component. The ComCN-

N is used to extract the features of the original image and

construct the compact representation.

3.3. Structure of the RecCNN

RecCNN consists of 9 weight layers, which is used to re-

construct the original image without the imperceptible per-

turbation. As shown in Table 2, For the 1st layer to the

9th layers, 32 filters of size 3 × 3 × 12, 64 filters of size

3× 3× 32, 128 filters of size 3× 3× 64, 256 filters of size

3×3×128, 128 filters of size 3×3×256, 64 filters of size

3 × 3 × 128, 64 filters of size 3 × 3 × 64, 32 filters of size

3×3×64 and 3 filters of size 3×3×32 are used, and ELU

is added. The RecCNN makes use of the compact repre-

sentation to reconstruct the output image. The output image

has the fewer perturbations than the input image. That is to
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say, the output image can break up the particular structure

of the perturbations. In this way, the compression model

can defend the adversarial examples.

3.4. Loss functions

As for ComCNN, the goal of the ComCNN is to use

more 0 to encode the image information. Therefore, the

loss function of the ComCNN can be defined as:

L1(θ1) = λ‖Com(θ1, x)‖
2, (1)

where θ1 is the trainable parameter of the ComCNN,

Com() represents the ComCNN, and λ is a super param-

eter which we use a large number experiments to certify.

Please refer to Section 4 for more details.

As for RecCNN, the goal of the RecCNN is expected to

reconstruct the original image with high quality. Therefore,

we use MSE to define the loss function of the RecCNN:

L2(θ2) =
1

2N
Σ‖Rec(θ2, Com(θ1, x) + ϕ)− x‖2, (2)

where Com() is the ComCNN, θ2 represents the trainable

parameter of the RecCNN, Rec() represents the RecCNN,

θ1 represents the trained parameter of the ComCNN. And ϕ

represents the random Gaussian noise.

In order to make the compression model more effective,

we design a unified loss function to simultaneously update

the parameters of ComCNN and RecCNN. It is defined as:

L(θ1, θ2) =
1

2N
Σ‖Rec(θ2, Com(θ1, x) + ϕ)− x‖2

+λ‖Com(θ1, x)‖
2.

(3)

According to this loss function, it is clear that both Com-

CNN and RecCNN work together to resist the noise attack.

The parameters θ1, θ2 are upgraded at the same time during

the model training.

3.5. Learning algorithm

In order to train the compression model, we design a u-

nified learning algorithm for both ComCNN and RecCNN.

The optimization goal for ComDefend is formulated as:

(θ1, θ2) = argmin(
1

2N
Σ‖Rec(θ2, Rec(θ1, x) + ϕ)− x‖2

+‖Com(θ1, x)‖
2),

(4)

where x is the input image. ϕ represents the random Gaus-

sian noise. θ1 and θ2 are the parameters of ComCNN and

RecCNN respectively. Com() represents the ComCNN and

Rec() represents RecCNN.

During the whole process, the ComCNN encodes the in-

put image x into a same size image y with each pixel oc-

cupies 12 floats. Then the sigmoid function is used to limit

Table 3. The experiments versus selection of compression bits
Compressed bits 8 10 12 14 16

PSNR 31.01 31.01 31.78 28.77 30.95

the image y to between 0 and 1. Note that, the sigmoid out-

put makes use of the different shades of gray information to

represent the input image instead of 0 and 1. And RecCNN

can reconstruct the original image through these shades of

gray information. If these shades of gray information are

binarized, the main structure information of original image

is completely lost. In order to deal with this problem, we

propose to use the noise attack.

In particular, we add the random Gaussian noise ϕ (the

mean of the gaussian noise is 0 and the variance of the gaus-

sian noise is ϕ) to the output before the sigmoid function.

The information encoded with 0 and 1 is easier to resist the

noise attack. Therefore, during the training, the compres-

sion model learns to use the binary information to defend

the noise attack. As shown in Figure 3, we can see that

adding the random gaussian noise contributes to improving

the performance of the compression model. In addition, We

choose the compression bits mainly according to the recon-

structed performance. We try different compression bits in

Table 3, and find the 12 bits show the best PSNR recon-

structed performance.

3.6. Network implementation

The weights of the ComCNN and the RecCNN are ini-

tialized by using the method in [7]. We also use Adam

algorithm [10] with parameters setting α = 0.001, β1 =
0.9, β2 = 0.999 and ε = 10−8 to upgrade the weights of

the compression model. After the hyperparameters γ and λ

being confirmed, we train ComCNN and RecCNN for 30 e-

pochs using a batch size of 50. The learning rate is decayed

exponentially from 0.01 to 0.0001 for 30 epochs.

4. Experimental results and analysis

In this section, in order to evaluate the performance

of the proposed method, we conduct several experiments,

which include: generation of adversarial examples, selec-

tion of hyper parameters in neural networks, image classi-

fication with the proposed method, comparisons with other

defensive methods and performance analysis. The proposed

method can significantly perform well against the state-of-

the-art adversarial attacks.

4.1. Datasets for training and testing

In order to clearly verify our proposed method, the Com-

CNN and RecCNN training are based on the 50,000 clean

(not perturbed) images of the CIFAR-10 dataset [11]. For

testing, we use 10,000 testing images in the CIFAR-10

dataset, 10,000 testing images in the Fashion-mnist [23] and
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Table 4. THE SELECTION OF PARAMETERS IN THE OUR PROPOSED METHOD .
ϕ = 1.0 ϕ = 10.0 ϕ = 20.0 ϕ = 25.0 ϕ = 30.0 ϕ = 35.0 ϕ = 40.0 ϕ = 50.0 Average

λ = 0.01 68.39% 90.22% 86.69% 87.52% 86.12% 85.42% 86.22% 86.71% 84.66%

λ = 0.001 88.99% 89.64% 72.23% 90.23% 91.09% 90.41% 90.55% 90.56% 87.96%

λ = 0.0001 89.61% 90.77% 91.82% 90.98% 89.45% 91.24% 90.61% 90.33% 90.60%

λ = 0.00001 89.06% 91.65% 90.99% 91.37% 90.74% 91.05% 90.25% 90.65% 90.72%

λ = 0.0 90.00% 90.39% 91.45% 91.27% 91.01% 90.88% 88.18% 90.10% 90.41%

Average 85.19% 90.53% 86.63% 90.27% 89.88% 89.80% 89.16% 89.67% 88.89%

1000 random images of the imagenet dataset [4]. We also

train ResNet [8] which is one of the state-of-the-art deep

neural network image classifiers in recent years on these

three datasets.

4.2. Adversarial examples

In the literature, three common distance metrics are used

for generating adversarial examples: L0, L2, L∞. L0 rep-

resents the number of the different pixels between the clean

image and adversarial example. L2 measures the standard

Euclidean distance between the clean image and adversari-

al example. L∞ represents the maximum value of the im-

perceptible perturbation in the adversarial example. In [22],

Goodfellow et al. argue to use L∞ to construct the adversar-

ial examples. And the related research literature main use

L2 and L∞ to conduct related researches. Therefore, we

make use of L2 and L∞ to achieve the adversarial attack-

s. In particular, we use the L∞ distance metric to achieve

FSGM, BIM and DeepFool adversarial attacks and the L2

distance metric to achieve C&W adversarial attacks.

4.3. Selection of hyper parameters

There are two hyper parameters in the neural network-

s that need to be determined by a large number of exper-

iments. The first one is the standard normal distribution

gaussian noise parameter ϕ, and the second one is the penal-

ty item parameter λ. In order to improve the performance of

the proposed method, the value of ϕ and λ is depending on

the performance of image classification. Specifically, image

compression discards part of the image information even if

it retains the main structural information of the image. In

order to keep the accuracy of image classifier, we compute

the average accuracy of the well-trained Resnet50 on the

1000 random images of the cifar-10 training dataset. For

more details, please refer to Table 4.

From Table 4, we can see that when the parameter λ is

fixed, the accuracy of the classifier first increases and then

decreases with the increase of parameter ϕ. More specifi-

cally, when parameter λ = 0.0001 and ϕ = 1.0 ∼ 20.0, the

average accuracy increases constantly. But when parameter

λ = 0.0001 and ϕ = 20.0 ∼ 50.0, the average accuracy

decreases constantly. That is, when the noise is too large,

the network is not enough to resist it, resulting in a decline

in network performance and when the noise is too small, the

network learns to use the gray scale information between 0

Figure 4. The classification accuracy of ResNet-50 on adversari-

al images produced by four attacks using the proposed method at

the test time and at training and test time. The dotted line repre-

sents the accuracy of the ResNet-50 model on adversarial images

without any defense.

and 1 to encode the image instead of using 0 and 1. Similar-

ly, when the parameter ϕ is fixed, the accuracy of the clas-

sifier first increases and then decreases with the decrease of

parameter λ. Therefore, the appropriate parameter settings

can protect the accuracy of image classification models. In

accordance with Table 4, λ = 0.0001 and ϕ = 20.0 can

obtain the best performance of the classifier. In addition, In

this paper, the value of the parameter λ is 0.0001 and the

value of the parameter ϕ is 20.0.

4.4. Image classification with the proposed method

Simply detecting adversarial images is not sufficient for

the task of the image classification. It is often critical to

be able to correctly classify adversarial examples. In this

section, there are two scenarios where our proposed method

is used to defend the adversarial attacks. One is using the

image compression at test time, the other is using the image

compression at training and test time.

4.4.1 Image compression at test time

The image classification model has been trained on the

clean images. The test images consist of clean images and
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Table 5. THE RESULT OF COMPARISONS WITH OTHER DEFENSIVE METHODS(CIFAR-10 ,L∞ = 2/8/16)

Network Defensive method Clean FGSM BIM DeepFool C&W

Resnet50

In training time

Normal 92%/92%/92% 39%/20%/18% 08%/00%/00% 21%/01%/01% 17%/00%/00%

Adversarial FGSM 91%/91%/91% 88%/91%/91% 24%/07%/00% 45%/00%/00% 20%/00%/07%

Adversarial BIM 87%/87%/87% 80%/52%/34% 74%/32%/06% 79%/48%/25% 76%/42%/08%

Label Smoothing 92%/92%/92% 73%/54%/28% 59%/08%/01% 56%/20%/10% 30%/02%/02%

Proposed method 92%/92%/92% 89%/89%/87% 84%/47%/40% 90%/90%/90% 91%/90%/90%

In test time

Feature Squeezing 84%/84%/84% 31%/20%/18% 13%/00%/00% 75%/75%/75% 78%/78%/78%

PiexlDefend 85%/85%/88% 73%/46%/24% 71%/46%/25% 80%/80%/80% 78%/78%/78%

Proposed method 91%/91%/91% 86%/84%/83% 78%/41%/34% 88%/88%/88% 89%/87%/87%

Table 6. THE RESULT OF COMPARISONS WITH OTHER DEFENSIVE METHODS(Fashion-mnist ,L∞ = 8/25)

Network
Defensive

Method
Clean FGSM BIM DeepFool C&W

Resnet50

Normal 93%/93% 38%/24% 00%/00% 06%/06% 00%/00%

Adversarial FGSM 93%/93% 85%/85% 51%/00% 63%/07% 67%/21%

Adversarial BIM 92%/91% 84%/79% 76%/63% 82%/72% 81%/70%

Label Smoothing 93%/83% 73%/45% 16%/00% 29%/06% 33%/14%

Feature Squeezing 84%/84% 70%/28% 56%/25% 83%/83% 83%/83%

PiexlDefend 89%/89% 87%/82% 85%/83% 88%/88% 88%/88%

Proposed method 93%/93% 89%/89% 70%/60% 90%/89% 88%/89%

Table 9. Comparison results with ICLR2018 on ImageNet
Network Defensive Method FGSM-8 FGSM-12 Deepfool C&W

IncResV2

Normal 34% 32% 13% 0%

ICLR2018 62% 50% 55% 59%

Our method 62% 61% 60% 61%

adversarial images. They are first compressed and recon-

structed by the proposed method, and then they are fed to

the well-trained classifier. Fig 4 shows the accuracy of im-

age classification model(Resnet50) which are tested on the

adversarial examples produced by the four attacks. The dot-

ted lines show the accuracy of image classification models

tested on the adversarial images with no defense. In this re-

spect, the proposed method using at the test time increases

accuracy on the FGSM strongest attack from 35% to 83%,

the BIM strongest attack from 0% to 31%, the DeepFool

strongest attack from 1% to 89% and the C&W strongest

attack from 0% to 87% for CIFAR-10.

4.4.2 Image compression at training and test time

There is another way to defend the adversarial examples,

that is to say, we apply the proposed method during the

training and test time. In particular, During the training

time, we train the image classification models on trans-

formed cifar-10 training images. We first use the ComCNN

to compress the input image into the compact representa-

tion, and then use the RecCNN to reconstruct the input im-

age before feeding it to the network. As for the test time,

the test image is transformed by the proposed method be-

fore being fed to the well-trained classifier. As shown in Fig

4, we can see that the proposed method at training and test

time increases accuracy on the FGSM strongest attack from

35% to 83%, the BIM strongest attack from 0% to 31%, the

DeepFool strongest attack from 1% to 89% and the C&W

strongest attack from 0% to 87% for CIFAR-10.

4.4.3 Comparisons with other defensive methods

In order to quantitatively measure the performance of our

proposed method, we compare the proposed method with

other conventional schemes under the L∞ distance metric.

The result of the comparison on the Cifar-10 image dataset

is shown in Table 5. During training and test time, com-

pared with these methods, our proposed method achieves

huge performance improvement. In particular, it achieves

nearly 90% accuracy on the FGSM, DeepFool and C&W

attack methods. Compared with the image classification

model on the clean images, the accuracy of the model on the

adversarial examples does not decline a lot. As for defense

applied in test time, the proposed method can achieve about

85% accuracy on the FGSM, DeepFool and C&W attack

methods. As for BIM attack, the performance is improved

by using our proposed method. And Table 6 shows the re-

sult of the comparison with other defensive methods on the

Fashion-mnist image dataset. The performance is improved

a lot by using the proposed method on FGSM, DeepFool

and C&W attack methods. More importantly, we do com-

parison experiment with HGD and ICLR2018[24] method

on the imagenet dataset. As shown in Table 7, the pro-

posed method improves the performance of defending the

FGSM, DeepFool and C&W attack methods. And to test

more attacking methods, we add the deepfool and C&W

methods. The results are shown in Table 8. We see that

the proposed method achieves the higher defensive accura-

cy against FGSM, DeepFool, MI-FGSM [5] and C&W, and

the competitive accuracy against IFGSM compared with

HGD, which demonstrates the effectiveness of the proposed

method. Note that the ǫ for IFGSM is set to 3 and 5, rather 8

and 16, because we find when the attack is too strong (when

L∞ >= 8), the noises are perceptible to human eyes. And

thus, the adversarial examples can be easily distinguished
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Table 7. THE RESULT OF COMPARISONS WITH OTHER DEFENSIVE METHODS(Imagenet ,L∞ = 8/13/20)

Network
Defensive

Method
Clean FGSM BIM DeepFool C&W

Resnet101

Normal 76%/76%/76% 03%/03%/03% 00%/00%/00% 01%/01%/01% 00%/00%/00%

HGD 54%/54%/54% 51%/50%/50% 36%/36%/36% 52%/52%/52% 51%/51%/51%

Proposed method 67%/67%/67% 56%/56%/56% 12%/12%/10% 53%/53%/52% 54%/54%/53%

Table 8. Comparison results with HGD on ImageNet (L∞ = 8/16)

Network Defense Clean FGSM IFGSM(3/5) MI-FGSM Deepfool C&W

IncResV2

Normal 86% 34%/30% 10%/5% 13%/7% 13%/11% 0%/0%

HGD 54% 47%/48% 42%/42% 46%/44% 48%/48% 48%/48%

Our method 77% 62%/61% 51%/42% 50%/40% 60%/60% 61%/63%

IncV3

Normal 83% 20%/18% 57%/49% 57%/50% 12%/11% 0%/0%

HGD 70% 60%/60% 62%/61% 62%/62% 60%/60% 59%/59%

Our method 74% 62%/61% 64%/60% 69%/64% 60%/60% 60%/60%

IncV4

Normal 88% 28%/26% 6%/1% 4%/1% 17%/15% 0%/0%

HGD 64% 56%/56% 51%/50% 57%/52% 59%/59% 59%/59%

Our method 74% 58%/56% 50%/46% 50%/40% 60%/60% 61%/60%

by human beings, and the defense methods are not neces-

sary. In fact, the core advantage of our method is that

we train our network on the clean images rather than

adversarial images. In this way, we don’t need to use at-

tacking methods to generate adversarial examples, and

thus the training data set is much smaller than HGD,

and the training time is also much less than HGD. Be-

sides, our method performes the compression based on

the patch rather than the entire image, therefore, the

testing time is reduced (the HGD takes 2.7 seconds to

process an image. But the proposed method only takes

1.2 seconds to process the same image). We give the com-

parison results with [24] in Table 9. The results shows that

our method can achieve the higher accuracy against deep-

fool, C&W, and FGSM with ǫ = 8, 12 than [24], which

verifies the effectiveness of our method. Furthermore, our

proposed method does not depend on attacking methods and

classifiers. And it can be combined with other defensive

methods.

4.5. Analysis for the proposed method

For the test time, the proposed method transforms the in-

put image to a clean image. And it breaks up the particular

structure of the perturbations in the adversarial examples.

Specifically, the ComCNN encode the input image into a

compact representation. During this process, the impercep-

tible perturbations do not affect the result of the compact

representation. In other words, the output images of the

clean image and adversarial image are as same as possi-

ble. Because during the training of the network, the network

learns to resist the stronger gaussian noise attack to encode

the input images. For the training and test time, the pro-

posed method compresses the space of the real samples. For

the uncompressed space, there are 32×32×28×28×28 im-

ages in this space. But for the compressed space, there only

are 32×32×24×24×24 images in this space. In this way,

the proposed method makes the existing image classifica-

tion models easier to simulate the image distribution. The

mezzanine is between the decision surface trained by the

classifier and the real surface of the sample data becomes

smaller. That is to say, the probability of the adversarial

example occurrence becomes smaller than before.

5. Conclusion

In this paper, we propose an end-to-end image compres-

sion model to defend adversarial examples. ComDefend

can be used in test time and in training and test time. As for

test time, it defends the adversarial examples by destroying

the structure of adversarial perturbations in the adversarial

image. As for training and test time, it achieves defense by

compressing the image space. In this way, it reduces the

search space available for an adversary to construct adver-

sarial examples. ComDefend can achieve higher accuracy

on FGSM, DeepFool and C&W attack methods compared

with the state-of-the-art defense methods. And the perfor-

mance on BIM attack also improves by using our proposed

method. More importantly, ComDefend is performed on an

image with the patch-by-patch manner instead of the whole

image, which is taken less time to deal with the input image.

Our work demonstrates that the performance of classifying

the adversarial examples is dramatically improved by using

the proposed method.
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