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Online KD

* self-distillation
* mutual/ collaborative learning



Online KD

* self-distillation / teacher-free distillation
* self-distillation!?!
* born-again network!3!
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Online KD

e self-distillation

* mutual/ collaborative learning

 DML[4]
e CL[5
 ONE[6]

* OKDDip[7]
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Problems

* collaborative learning and mutual learning fail to construct an online
high-capacity teacher

* online ensembling ignores the collaboration among branches and its
logit summation impedes the further optimisation of the ensemble
teacher.
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Methods

* a multi-branch network (each

branch is a peer)

* assemble the features from peers
with an additional classifier as the

peer ensemble teacher

* employ the temporal mean model of
each peer as the peer mean teacher
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Peer Ensemble Teacher

augmentation applying random m times
augmentation only once

ensemble logits: logits from multiple features: concatenate the
networks / branches are  features from peers and
usually summed use an additional fully

connected layer for
classification

loss fixed weight weight ramp-up function
to control the gradient
magnitude.



Peer Mean Teacher

* use temporal mean models of each peer as the peer mean teacher for
peer collaborative distillation.
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Problems

* collaborative learning and

mutual learning fail to construct ‘
an online high-capacity teacher

Peer Ensemble Teacher

* online ensembling ignores the

collaboration among branches
and its logit summation impedes ‘ Peer Mean Teacher

the further optimisation of the

ensemble teacher.



Experiments

Table 1. Comparisons with the state-of-the-arts on CIFAR-10. Top-1 error rates (%).

Network DML [28] CL [21] ONE [13] FFL-S[10] OKDDip [1] Baseline = PCL(ours)
ResNet-32 6.061+0.07 5.984+0.28 5.80+0.12 5.9940.11 5.83+0.15 | 6.744+0.15 5.67+0.12
ResNet-110 5.47+0.25 4.81+0.11 4.84+0.30 5.284+0.06 4.86+0.10 | 5.01+0.10 4.47+0.16
VGG-16 5.87+£0.07 5.86+0.15 5.86+0.23 6.7840.08 6.024+0.06 | 6.04+0.13 5.2610.02
DenseNet-40-12 6.41+0.26 6.954+0.25 6.92+0.21 6.7240.16 7.364+0.22 | 6.81+0.02 5.87+0.13
WRN-20-8 4.80+0.13 541+0.08 5.30+0.14 5.28+0.13 5.17+£0.15 | 5.324+0.01 4.58+0.04
ResNeXt-29-2x64d | 4.464+0.16 4.454+0.18 4.274+0.10 4.674+0.04 4.3440.02 | 4.72+0.03 3.93+0.09
Table 2. Comparisons with the state-of-the-arts on CIFAR-100. Top-1 error rates (%).
Network DML [28] CL [21] ONE [13] FFL-S [10] OKDDip [1] Baseline PCL(ours)
ResNet-32 26.324+0.14 27.674+0.46 26.21+041 27.824+0.11 26.754+0.38 | 28.72+0.19 25.86+0.16
ResNet-110 22.1440.50 21.174£0.58 21.60+0.36 22.78+0.41 21.464+0.26 | 23.79+0.57 20.02+0.55
VGG-16 24.48+0.10 25.6740.08 25.63+0.39 29.13+0.99 25.3240.05 | 25.68+0.19 23.11+0.25
DenseNet-40-12 26.9440.31 28.554+0.34 28.40+0.38 28.754+0.35 28.774+0.14 | 28.97+0.15 26.91+0.16
WRN-20-8 20.234+0.07 20.60+0.12 20.90+0.39 21.78+0.14 21.174+0.06 | 21.97+0.40 19.49+0.49
ResNeXt-29-2x64d | 18.94+0.01 18.41+0.07 18.60+0.25 20.18+0.33 18.50+0.11 | 20.57+0.43 17.38+0.23




Ablation

* Comparison with Two-Stage Distillation

Dataset Baseline KDT PCL
CIFAR-10 6.74+0.15 5.82+4+0.12 5.67+0.12
CIFAR-100 | 28.724+0.19 26.234+0.21 25.86+0.16
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