Peer Collaborative Learning for Online Knowledge Distillation Guile Wu and Shaogang Gong Queen Mary University of London 2021 AAAI Du Shangchen 2021/03/17 # Knowledge Distillation (KD)^[1] ## Online KD - self-distillation - mutual/ collaborative learning #### Online KD - self-distillation / teacher-free distillation - self-distillation^[2] - born-again network^[3] ## Online KD - self-distillation - mutual/ collaborative learning - DML[4] - CL[5] - ONE[6] - OKDDip[7] peer 1 logits #### Problems - collaborative learning and mutual learning fail to construct an online high-capacity teacher - online ensembling ignores the collaboration among branches and its logit summation impedes the further optimisation of the ensemble teacher. #### Methods - a multi-branch network (each branch is a peer) - assemble the features from peers with an additional classifier as the peer ensemble teacher - employ the temporal mean model of each peer as the peer mean teacher ## Peer Ensemble Teacher | | former work | innovation | |--------------|---|--| | augmentation | applying random augmentation only once | m times | | ensemble | logits: logits from multiple networks / branches are usually summed | features: concatenate the features from peers and use an additional fully connected layer for classification | | loss | fixed weight | weight ramp-up function to control the gradient magnitude. | #### Peer Mean Teacher use temporal mean models of each peer as the peer mean teacher for peer collaborative distillation. $$\begin{cases} \theta_{l,g}^{t} = \phi(g) \cdot \theta_{l,g-1}^{t} + (1 - \phi(g)) \cdot \theta_{l,g} \\ \theta_{h,j,g}^{t} = \phi(g) \cdot \theta_{h,j,g-1}^{t} + (1 - \phi(g)) \cdot \theta_{h,j,g} \end{cases}$$ $$\phi(g) = min(1 - \frac{1}{g}, \beta)$$ l – low level h – high level j – j-th classifier g – epoch beta - smoothing coefficient function #### Problems collaborative learning and mutual learning fail to construct an online high-capacity teacher Peer Ensemble Teacher online ensembling ignores the collaboration among branches and its logit summation impedes the further optimisation of the ensemble teacher. Peer Mean Teacher # Experiments Table 1. Comparisons with the state-of-the-arts on CIFAR-10. Top-1 error rates (%). | Network | DML [28] | CL [21] | ONE [13] | FFL-S [10] | OKDDip [1] | Baseline | PCL(ours) | |---------------------------|---------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------| | ResNet-32 | 6.06±0.07 | 5.98 ± 0.28 | 5.80 ± 0.12 | 5.99 ± 0.11 | 5.83 ± 0.15 | 6.74±0.15 | 5.67 ± 0.12 | | ResNet-110 | 5.47±0.25 | 4.81 ± 0.11 | 4.84 ± 0.30 | 5.28 ± 0.06 | 4.86 ± 0.10 | 5.01 ± 0.10 | 4.47 ± 0.16 | | VGG-16 | 5.87±0.07 | 5.86 ± 0.15 | 5.86 ± 0.23 | 6.78 ± 0.08 | 6.02 ± 0.06 | 6.04 ± 0.13 | 5.26 ± 0.02 | | DenseNet-40-12 | 6.41 ± 0.26 | 6.95 ± 0.25 | 6.92 ± 0.21 | 6.72 ± 0.16 | 7.36 ± 0.22 | 6.81 ± 0.02 | 5.87 ± 0.13 | | WRN-20-8 | 4.80±0.13 | 5.41 ± 0.08 | 5.30 ± 0.14 | 5.28 ± 0.13 | 5.17 ± 0.15 | 5.32 ± 0.01 | 4.58 ± 0.04 | | ResNeXt-29-2 \times 64d | 4.46±0.16 | 4.45 ± 0.18 | 4.27 ± 0.10 | 4.67 ± 0.04 | 4.34 ± 0.02 | 4.72±0.03 | 3.93 ± 0.09 | Table 2. Comparisons with the state-of-the-arts on CIFAR-100. Top-1 error rates (%). | Network | DML [28] | CL [21] | ONE [13] | FFL-S [10] | OKDDip [1] | Baseline | PCL(ours) | |------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------| | ResNet-32 | 26.32±0.14 | 27.67 ± 0.46 | 26.21 ± 0.41 | 27.82 ± 0.11 | 26.75 ± 0.38 | 28.72±0.19 | 25.86±0.16 | | ResNet-110 | 22.14 ± 0.50 | 21.17 ± 0.58 | 21.60 ± 0.36 | 22.78 ± 0.41 | 21.46 ± 0.26 | 23.79 ± 0.57 | 20.02 ± 0.55 | | VGG-16 | 24.48 ± 0.10 | 25.67 ± 0.08 | 25.63 ± 0.39 | 29.13 ± 0.99 | 25.32 ± 0.05 | 25.68 ± 0.19 | 23.11 ± 0.25 | | DenseNet-40-12 | 26.94 ± 0.31 | 28.55 ± 0.34 | 28.40 ± 0.38 | 28.75 ± 0.35 | 28.77 ± 0.14 | 28.97 ± 0.15 | 26.91 ± 0.16 | | WRN-20-8 | 20.23 ± 0.07 | 20.60 ± 0.12 | 20.90 ± 0.39 | 21.78 ± 0.14 | 21.17 ± 0.06 | 21.97 ± 0.40 | 19.49 ± 0.49 | | ResNeXt-29-2×64d | 18.94 ± 0.01 | 18.41 ± 0.07 | 18.60 ± 0.25 | 20.18 ± 0.33 | 18.50 ± 0.11 | 20.57 ± 0.43 | 17.38±0.23 | ## Ablation #### Comparison with Two-Stage Distillation | Dataset | Baseline | ΚD [†] | PCL | |-----------|------------------|------------------|------------------| | CIFAR-10 | 6.74 ± 0.15 | 5.82 ± 0.12 | 5.67 ± 0.12 | | CIFAR-100 | 28.72 ± 0.19 | 26.23 ± 0.21 | 25.86 ± 0.16 | #### • branch num #### augmentation ### Reference - [1] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531, 2015. - [2] L. Zhang, J. Song, A. Gao, J. Chen, C. Bao, and K. Ma, "Be your own teacher: Improve the performance of convolutional neural networks via self distillation," in Proceedings of the IEEE International Conference on Computer Vision, 2019, pp. 3713–3722. - [3] T. Furlanello, Z. C. Lipton, M. Tschannen, L. Itti, and A. Anandkumar, "Born again neural networks," ICML, 2018. - [4] Y. Zhang, T. Xiang, T. M. Hospedales, and H. Lu, "Deep mutual learning," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4320–4328. - [5] Guocong Song and Wei Chai. Collaborative learning for deep neural networks. In *Advances in Neural Information Processing Systems*, pages 1832–1841, 2018. - [6] X. Lan, X. Zhu, and S. Gong, "Knowledge distillation by on-the-fly native ensemble," in *Proceedings of the 32nd International Conference on Neural Information Processing Systems*. Curran Associates Inc., 2018, pp. 7528–7538. - [7] D. Chen, J.-P. Mei, C. Wang, Y. Feng, and C. Chen, "Online knowledge distillation with diverse peers," *Association for the Advancement of Artificial Intelligence*, 2020.