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Motivation
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Cross levels information transfer

Student

[\

a

Teacher

[\

stage4

a

4

stage4

stage3

4

4

stage3

stage2

4

5

stage?2

stagel

4

Student Teacher
[\ [\
A A
stage4 |«—— staged
4 4
stage3 |«—— stage3
A 4
stage2 «— stage2
4 4
stagel «—— stagel
(c)

stagel




Method

Knowledge Review Student Teacher
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Method

Review Mechanism

1.Symbols

input image X

teacher network 1

student network & divided into (&, &, *++, &

Y, = &(X) is the logit of the student
Y, =& .08, 008 (X)

Intermediate features (Fi, e, F?), F;
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3. multiple-layers knowledge distillation
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1€1
4. single-layer knowledge distillation with review mechanism

Loxpr= Y D (M (FL), M (F)))
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Method

Attention based fusion (ABF)

1.The higher level features are first resized to the same
shape as the lower level features.

1X1Conv

2.Then two features from different levels are s
concatenated together to generate two H x W ® X)
attention maps.

3.These maps are multiplied with two features,
respectively. Finally, the two features are added. ®

ABF
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Hierarchical context loss (HCL) function

Pyramid Pooling

» L2 distance is only effective to transfer information
between features from the same level.

» Spatial pyramid pooling
fully-connected layers (fcg, fcs)
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fixed-length representation
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Experiments

Classification
Teacher ResNet56 ResNetl1l0 ResNet32x4 WRN40-2 WRN40-2 VGGI3
Distillation Acc 72.34 74.31 79.42 75.61 75.61 74.64
SERCIN— Student ResNet20  ResNet32  ResNet8x4 ~WRN16-2 WRN40-1 VGG8
Acc 69.06 71.14 72.50 73.26 71.98 70.36
Logits KD [9] 70.66 73.08 73.33 74.92 73.54 72.98
Single Layer FitNet [25] 69.21 71.06 73.50 73.58 72.24 71.02
Single Layer PKT [27] 70.34 72.61 73.64 74.54 73.54 72.88
Single Layer RKD [22 69.61 71.82 71.90 73.35 72.22 71.48
Single Layer CRD [2%] 71.16 73.48 75.51 75.48 74.14 73.94
Multiple Layers AT [35] 70.55 72.31 73.44 74.08 72.77 71.43
Multiple Layers VID [1] 70.38 72.61 73.09 74.11 73.30 71.23
Multiple Layers OFD (%] 70.98 73.23 74.95 75.24 74.33 73.95
Review Ours 71.89 73.89 75.63 76.12 75.09 74.84

Table 1. Results on CIFAR-100. The teacher and student have architectures of the same style.



Experiments

Classification
Setting Teacher Student KD [Y] AT |[3%] OFD[¥] CRD [2%] Ours
) Top-1 76.16 68.87 68.58 69.56 71.25 71.37 72.56
(2 Top-5  92.86 88.76 88.98 89.33 90.34 90.41 91.00
(b) Top-1 73.31 69.75 70.66 70.69 70.81 71.17 71.61
Top-5 91.42 89.07 89.88 90.01 89.98 90.13 90.51

Table 3. Results on ImageNet. (a) MobileNet as student, ResNet50 as teacher. (b) ResNet18 as student, ResNet34 as teacher.



Experiments

Object Detection

student: Mask R-CNNISI teacher: from Detectron2!4
dataset: COCQO2017

Method mAP AP50 AP75 APl APm APs

Teacher Faster R-CNN w/ R101-FPN | 42.04 62.48 45.88 54.60 45.55 25.22
Student Faster R-CNN w/ R18-FPN 33.26 53.61 35.26 43.16 35.68 18.96
w/ KD [9] 33.97 (+0.61) 54.66 36.62 44.14 36.67 18.71

w/ FitNet [25] 34.13 (+0.87) 54.16 36.71 44.69 36.50 18.88

w/ FGFI [31] 35.44 (+2.18) 55.51 38.17 477.34 38.29 19.04

w/ Our Method 36.75 (+3.49) 56.72 34.00 49.58 39.51 19.42

Teacher Faster R-CNN w/ R101-FPN | 42.04 62.48 45.88 54.60 45.55 25.22
Student Faster R-CNN w/ R50-FPN 37.93 58.84 41.05 49.10 41.14 22.44
w/ KD [9] 38.35 (+0.42) 59.41 41.71 4948 41.80 22.773

w/ FitNet [25] 38.76 (+0.83) 59.62 41.80 50.70 42.20 22.32

w/ FGFI [31] 39.44 (+1.51) 60.27 43.04 51.97 42.51 22.89

w/ Our Method 40.36 (+2.43) 60.97 44.08 52.87 43.81 23.60




Experiments

Instance Segmentation

student: Mask R-CNNISI teacher: from Detectron2!4
dataset: COCQO2017

Method mAP AP50 AP75 API APm APs

Teacher Mask R-CNN w/ R101-FPN | 38.63 60.45 41.28 55.29 41.33 19.48
Student Mask R-CNN w/ R18-FPN 31.25 51.07 33.10 45.53 32.80 14.18
+ Our Method 33.62 (+2.37) 53.91 35.96 50.30 35.31 15.03

Teacher Mask R-CNN w/ R101-FPN | 38.63 60.45 41.28 55.29 41.33 19.48
Student Mask R-CNN w/ R50-FPN 35.24 56.32 37.49 50.34 37.71 17.16
+ Our Method 36.98 (+1.74) 58.13 39.60 53.19 39.57 17.54

Teacher Mask R-CNN w/ R50-FPN 37.17 58.60 39.88 53.30 390.49 18.63
Student Mask R-CNN w/ MV2-FPN | 28.37 47.19 29.95 41.70 29.01 12.09
+ Our Method 31.56 (+3.19) 50.70 33.44 47.39 32.44 12.76
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Experiments
Ablation Study

student: WRN16-2 RM RLF ABF HCL  Accuracy (Variance)
. ) 74.3 (5e-2)
teacher: WRN40-2 y 752 (6o-2)
dataset: CIFAR-100 v v 75.6 (6e-2)
v v v 76.0 (6e-2)
teacher - 75.61 v Vv v 75.8 (5e-2)
v Vv v Vv 76.2 (4e-2)

Table 7. RM: The proposed review mechanism (Section 3.1). RLF:

Residual learning frame work (Section 3.2). ABF: Attentation
based fusion module (Section 3.3). HCL: Hierarchical context loss
function (Section 3.3).
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