# Distilling Knowledge via Knowledge Review

Pengguang Chen<sup>1</sup> Shu Liu<sup>2</sup> Hengshuang Zhao<sup>3</sup> Jiaya Jia<sup>1,2</sup>

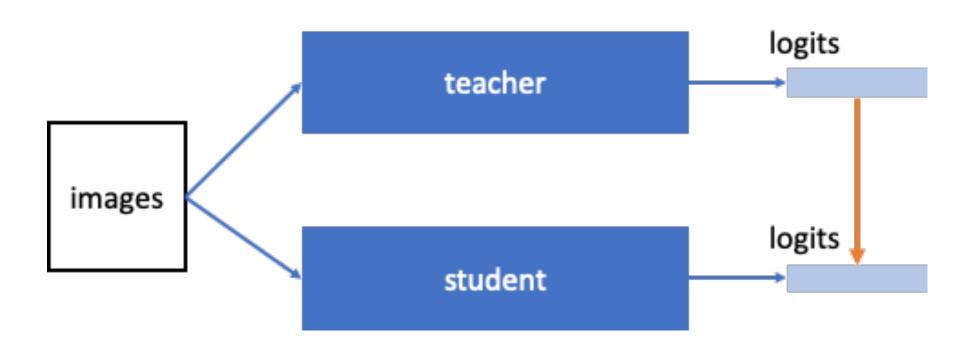
The Chinese University of Hong Kong<sup>1</sup> SmartMore<sup>2</sup> University of Oxford<sup>3</sup>

## Review

#### Knowledge distillation

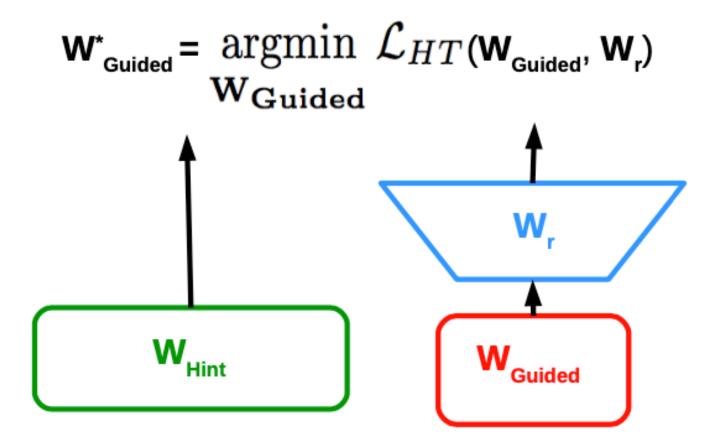
1.Traditional teacher-student distillation<sup>[1]</sup>

$$D_{KL}(\boldsymbol{p}||\boldsymbol{q}) = \mathcal{H}(\boldsymbol{p},\boldsymbol{q}) - \mathcal{H}(\boldsymbol{p})$$
$$= -\sum_{i} p_{i} \log q_{i} - (-\sum_{i} p_{i} \log p_{i}).$$

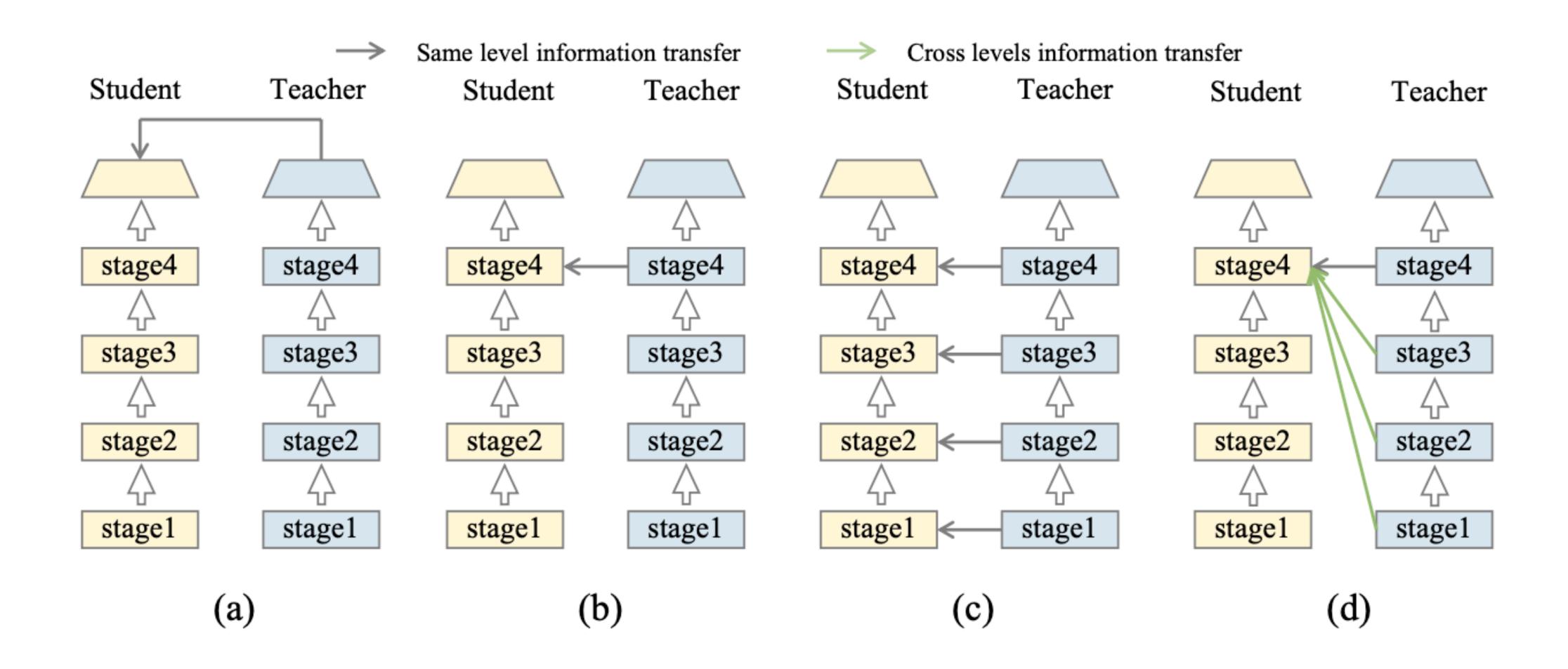


2. Fitnets (Hints)<sup>[2]</sup>

$$\mathcal{L}_{hint} = \frac{1}{2} ||\boldsymbol{Z}^t - r(\boldsymbol{Z}^s)||^2$$

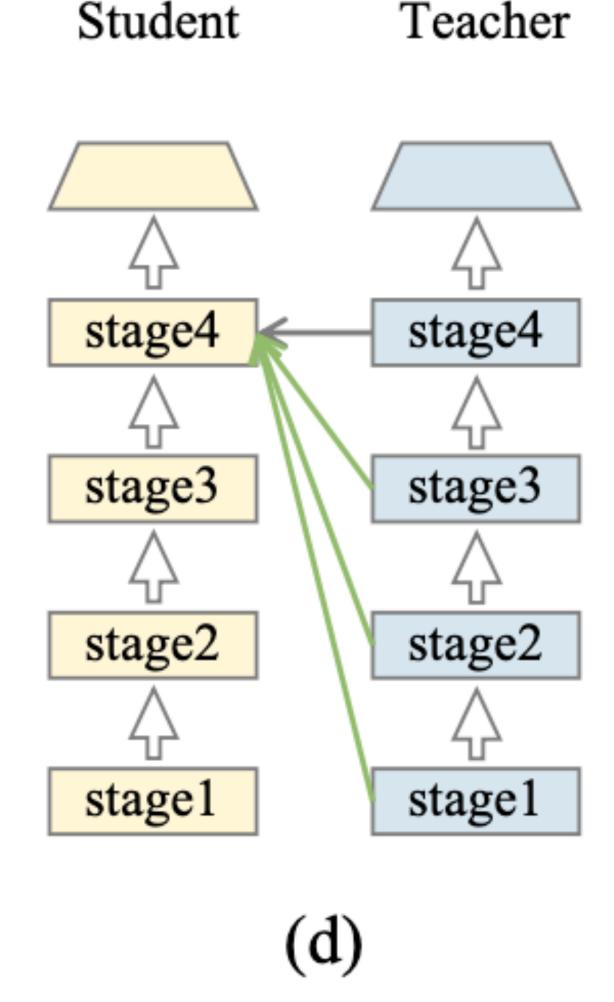


## Motivation



## **Knowledge Review**

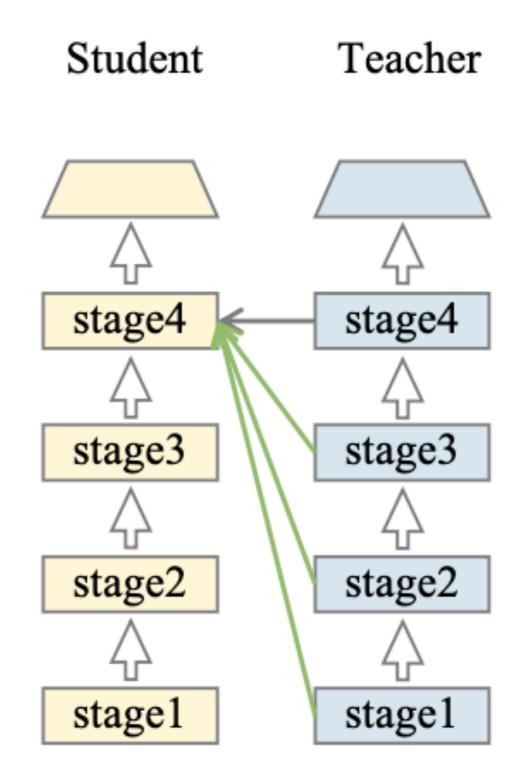
- Definition: use previous (shallower) features (of the teacher) to guide the current (deeper) feature (of the student).
- How to extract useful information from multilevel information from the teacher and how to transfer them to the student



#### **Review Mechanism**

#### 1.Symbols

- input image X
- teacher network  $\Gamma$
- student network  $\mathcal{S}$  divided into  $(\mathcal{S}_1,\mathcal{S}_2,\cdots,\mathcal{S}_n,\mathcal{S}_c)$
- $Y_s = \mathcal{S}(X)$  is the logit of the student
- $Y_s = \mathcal{S}_c \circ \mathcal{S}_n \circ \cdots \circ \mathcal{S}_1(X)$
- Intermediate features  $(\mathbf{F}_s^1,\cdots,\mathbf{F}_s^n)$ ,  $\mathbf{F}_s^i=\mathcal{S}_i\circ\cdots\circ\mathcal{S}_1(X)$



#### **Review Mechanism**

2. single-layer knowledge distillation

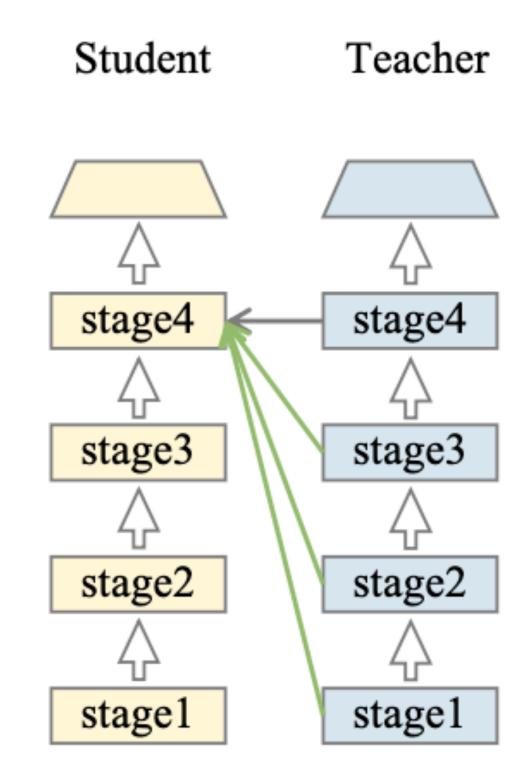
$$\mathcal{L}_{SKD} = \mathcal{D}\left(\mathcal{M}_s^i(\mathbf{F}_s^i), \mathcal{M}_t^i(\mathbf{F}_t^i)\right)$$

3. multiple-layers knowledge distillation

$$\mathcal{L}_{MKD} = \sum_{i \in \mathbf{I}} \mathcal{D}\left(\mathcal{M}_s^i(\mathbf{F}_s^i), \mathcal{M}_t^i(\mathbf{F}_t^i)\right)$$

4. single-layer knowledge distillation with review mechanism

$$\mathcal{L}_{SKD\_R} = \sum_{j=1}^{i} \mathcal{D}\left(\mathcal{M}_{s}^{i,j}(\mathbf{F}_{s}^{i}), \mathcal{M}_{t}^{j,i}(\mathbf{F}_{t}^{j})
ight)$$



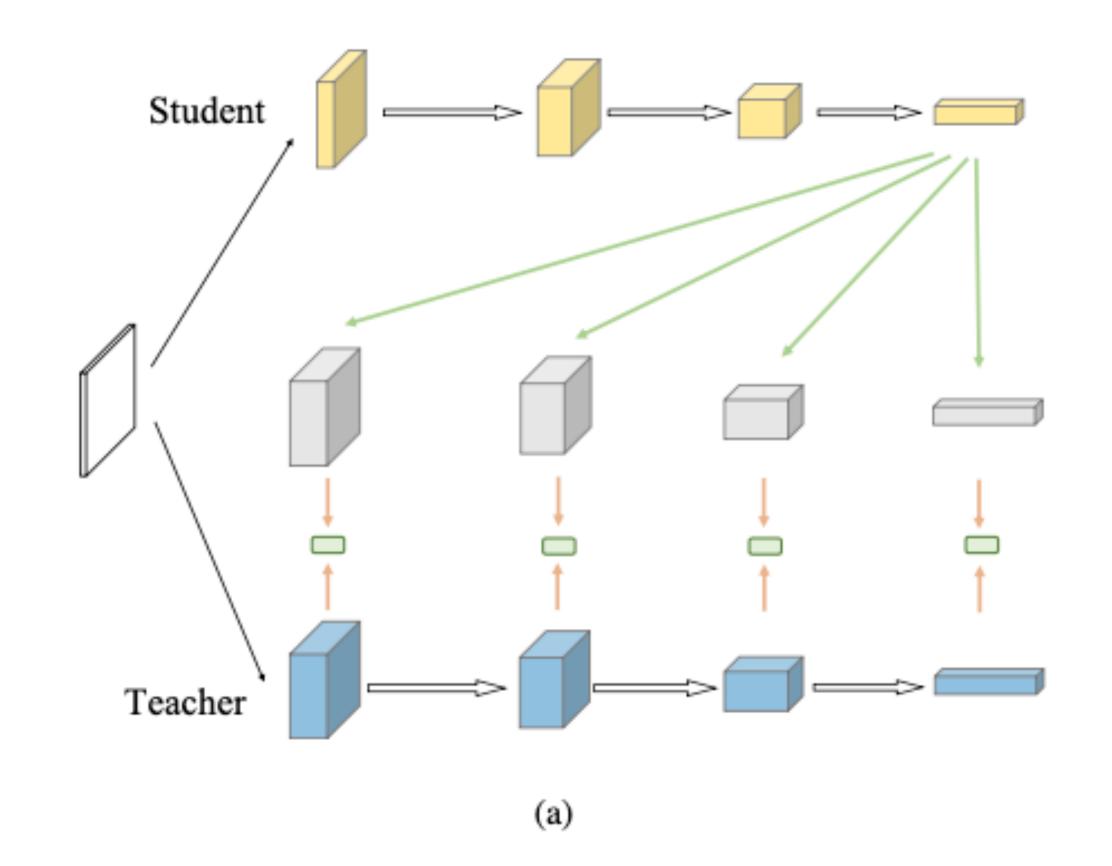
#### **Review Mechanism**

2. single-layer knowledge distillation

$$\mathcal{L}_{SKD} = \mathcal{D}\left(\mathcal{M}_s^i(\mathbf{F}_s^i), \mathcal{M}_t^i(\mathbf{F}_t^i)\right)$$

3. multiple-layers knowledge distillation

$$\mathcal{L}_{MKD} = \sum_{i \in \mathbf{I}} \mathcal{D}\left(\mathcal{M}_s^i(\mathbf{F}_s^i), \mathcal{M}_t^i(\mathbf{F}_t^i)\right)$$



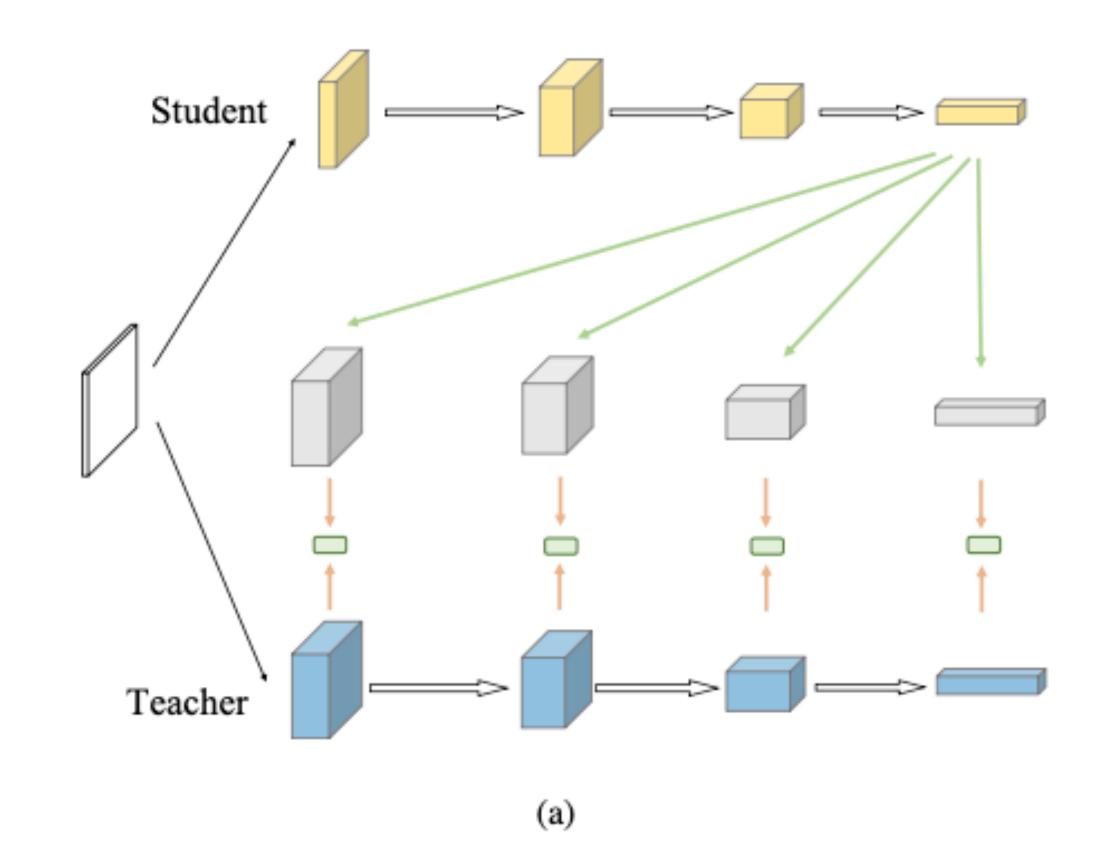
4. single-layer knowledge distillation with review mechanism

$$\mathcal{L}_{SKD\_R} = \sum_{j=1}^{i} \mathcal{D}\left(\mathcal{M}_{s}^{i,j}(\mathbf{F}_{s}^{i}), \mathcal{M}_{t}^{j,i}(\mathbf{F}_{t}^{j})\right)$$

#### **Review Mechanism**

5. multiple-layers knowledge distillation with review mechanism

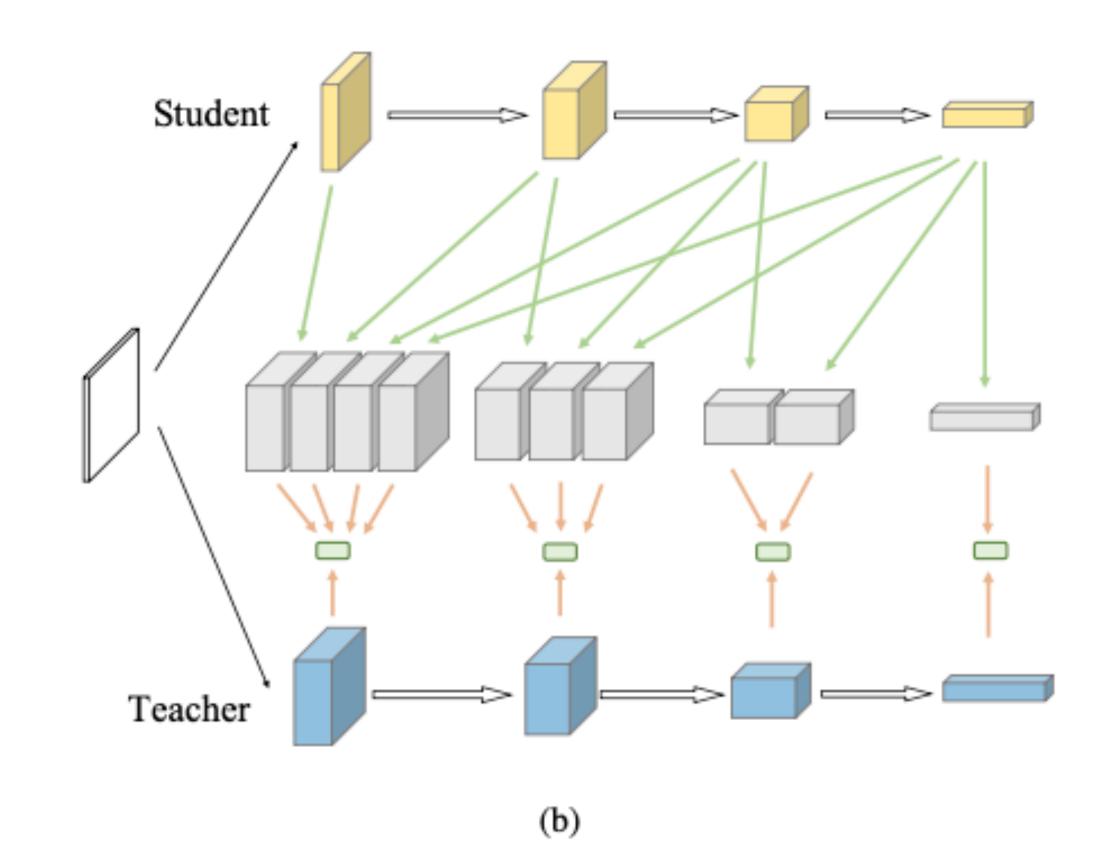
$$\mathcal{L}_{MKD\_R} = \sum_{i \in \mathbf{I}} \left( \sum_{j=1}^{i} \mathcal{D}\left(\mathcal{M}_{s}^{i,j}(\mathbf{F}_{s}^{i}), \mathcal{M}_{t}^{j,i}(\mathbf{F}_{t}^{j})
ight) 
ight)$$



#### **Review Mechanism**

5. multiple-layers knowledge distillation with review mechanism

$$\mathcal{L}_{MKD\_R} = \sum_{i \in \mathbf{I}} \left( \sum_{j=1}^{i} \mathcal{D}\left(\mathcal{M}_{s}^{i,j}(\mathbf{F}_{s}^{i}), \mathcal{M}_{t}^{j,i}(\mathbf{F}_{t}^{j})
ight) 
ight)$$



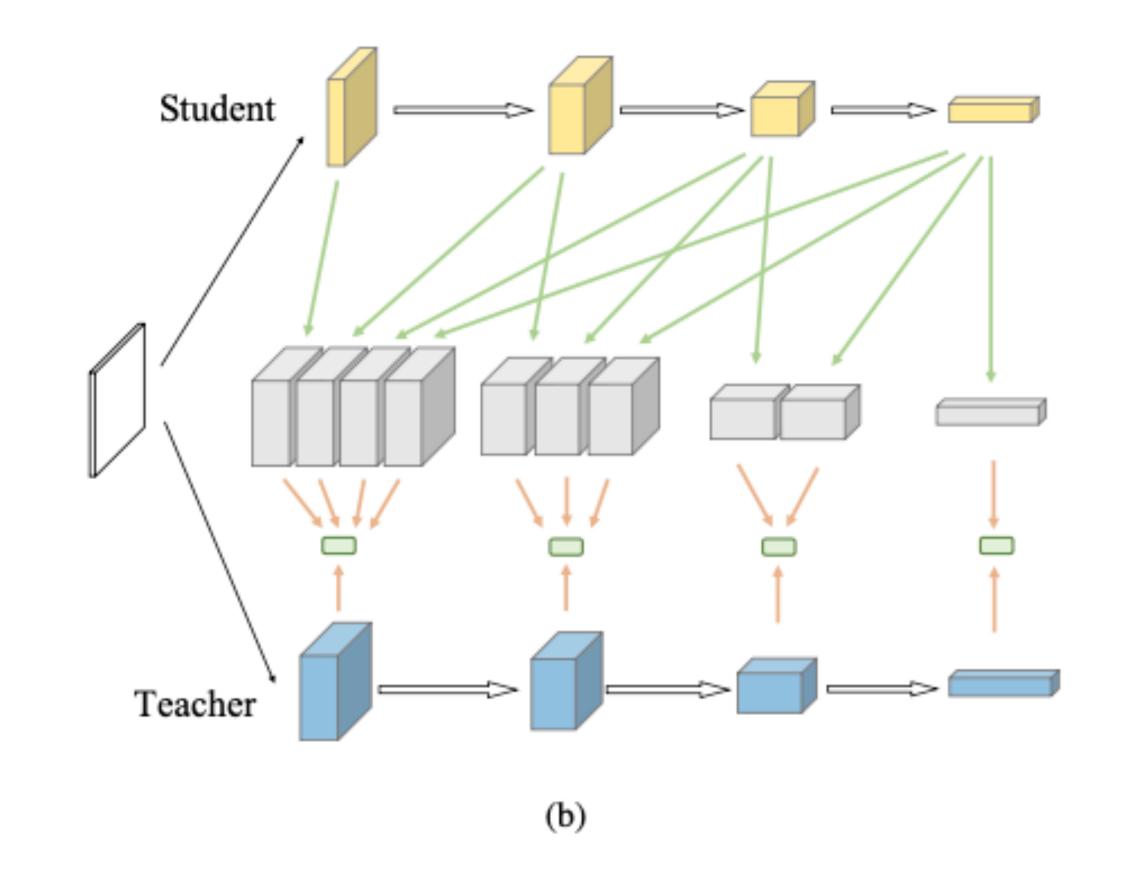
#### **Review Mechanism**

5. multiple-layers knowledge distillation with review mechanism

$$\mathcal{L}_{MKD\_R} = \sum_{i \in \mathbf{I}} \left( \sum_{j=1}^i \mathcal{D}\left(\mathcal{M}_s^{i,j}(\mathbf{F}_s^i), \mathcal{M}_t^{j,i}(\mathbf{F}_t^j) 
ight) 
ight)$$



$$\mathcal{L}_{MKD\_R} = \sum_{i=1}^{n} \left( \sum_{j=1}^{i} \mathcal{D}\left(\mathbf{F}_{s}^{i}, \mathbf{F}_{t}^{j}
ight) 
ight)$$



$$\mathcal{L}_{MKD\_R} = \sum_{j=1}^{n} \left( \sum_{i=j}^{n} \mathcal{D}\left(\mathbf{F}_{s}^{i}, \mathbf{F}_{t}^{j}
ight) 
ight)$$

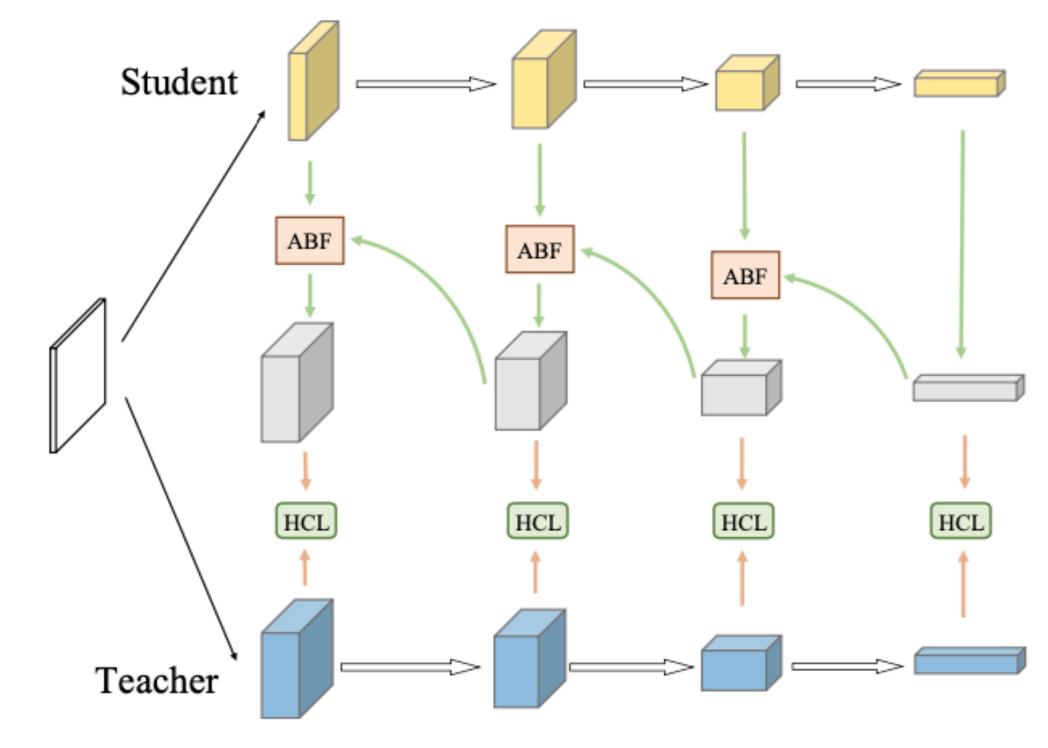
## Residual Learning Framework

Fusion of features

$$\mathcal{L}_{MKD\_R} = \sum_{j=1}^{n} \left( \sum_{i=j}^{n} \mathcal{D}\left(\mathbf{F}_{s}^{i}, \mathbf{F}_{t}^{j}
ight) 
ight)$$

$$\sum_{i=j}^{n} \mathcal{D}\left(\mathbf{F}_{s}^{i}, \mathbf{F}_{t}^{j}\right) \approx \mathcal{D}\left(\mathcal{U}(\mathbf{F}_{s}^{j}, \cdots, \mathbf{F}_{s}^{n}), \mathbf{F}_{t}^{j}\right)$$

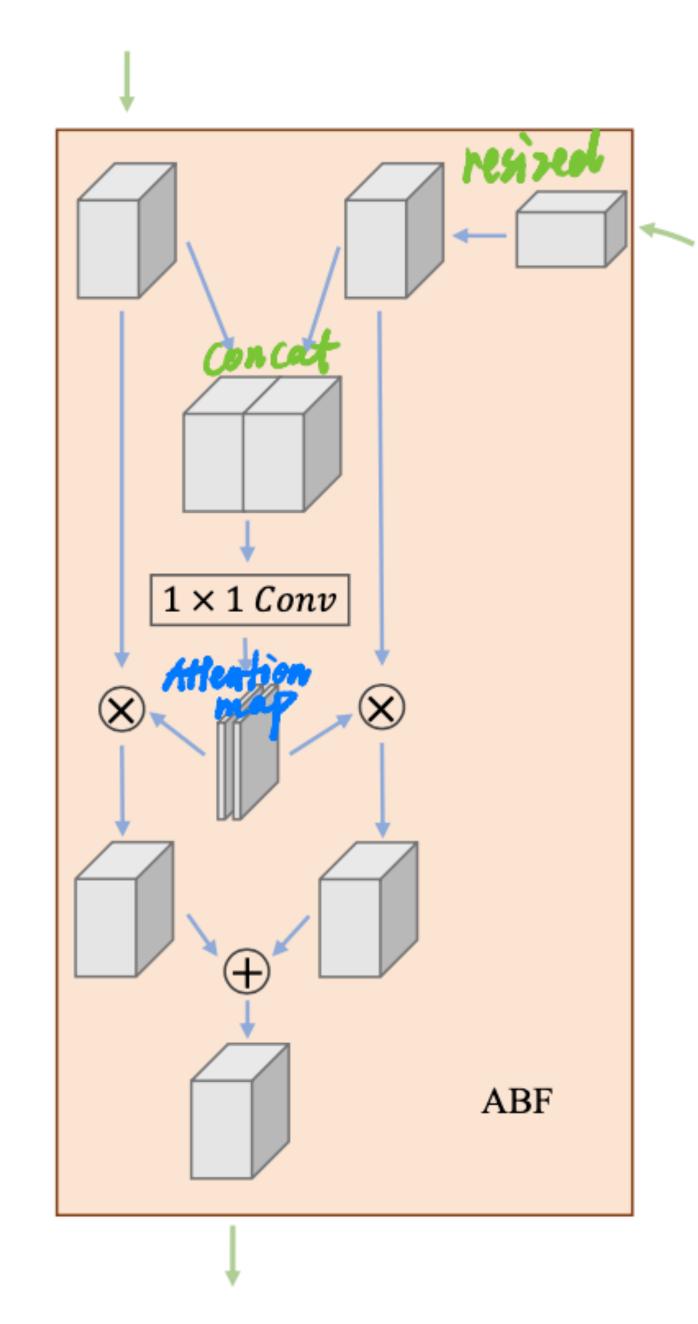
$$\mathcal{L}_{MKD\_R} = \mathcal{D}(\mathbf{F}_s^n, \mathbf{F}_t^n) + \sum_{j=n-1}^{1} \mathcal{D}\left(\mathcal{U}(\mathbf{F}_s^j, \mathbf{F}_s^{j+1,n}), \mathbf{F}_t^j\right)$$



(d)

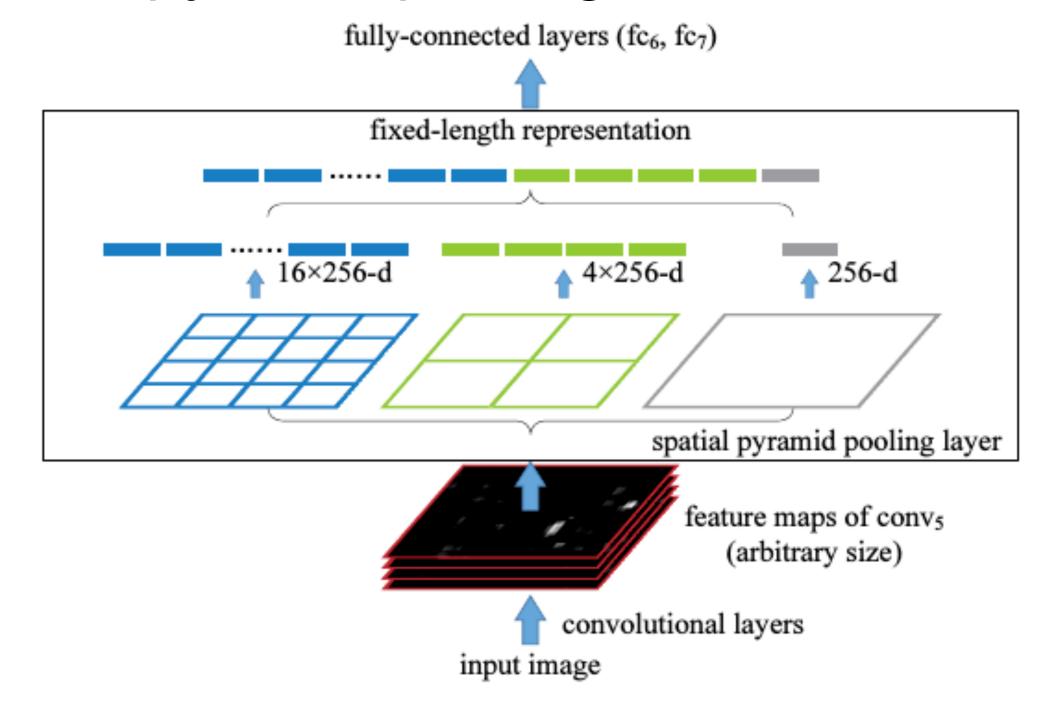
## Attention based fusion (ABF)

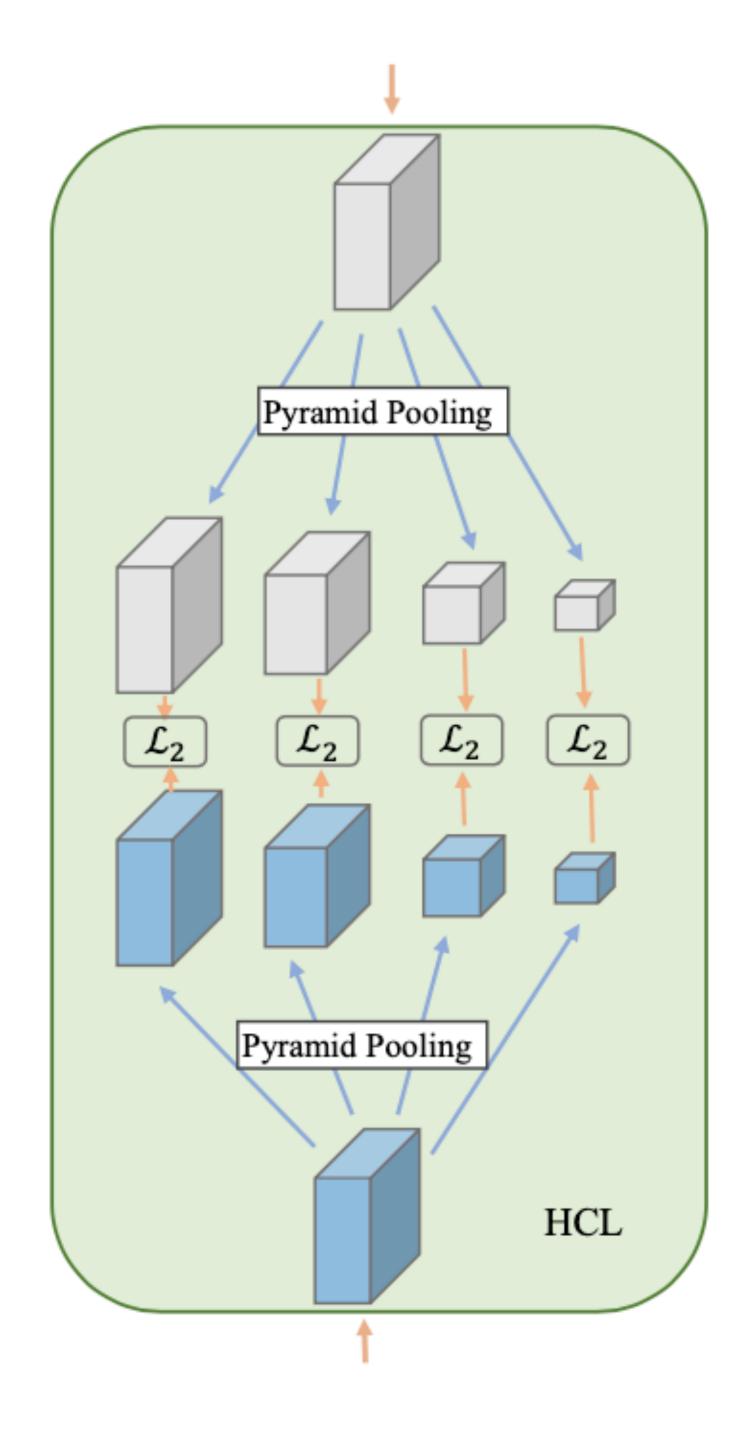
- 1. The higher level features are first resized to the same shape as the lower level features.
- 2. Then two features from different levels are concatenated together to generate two H × W attention maps.
- 3. These maps are multiplied with two features, respectively. Finally, the two features are added.



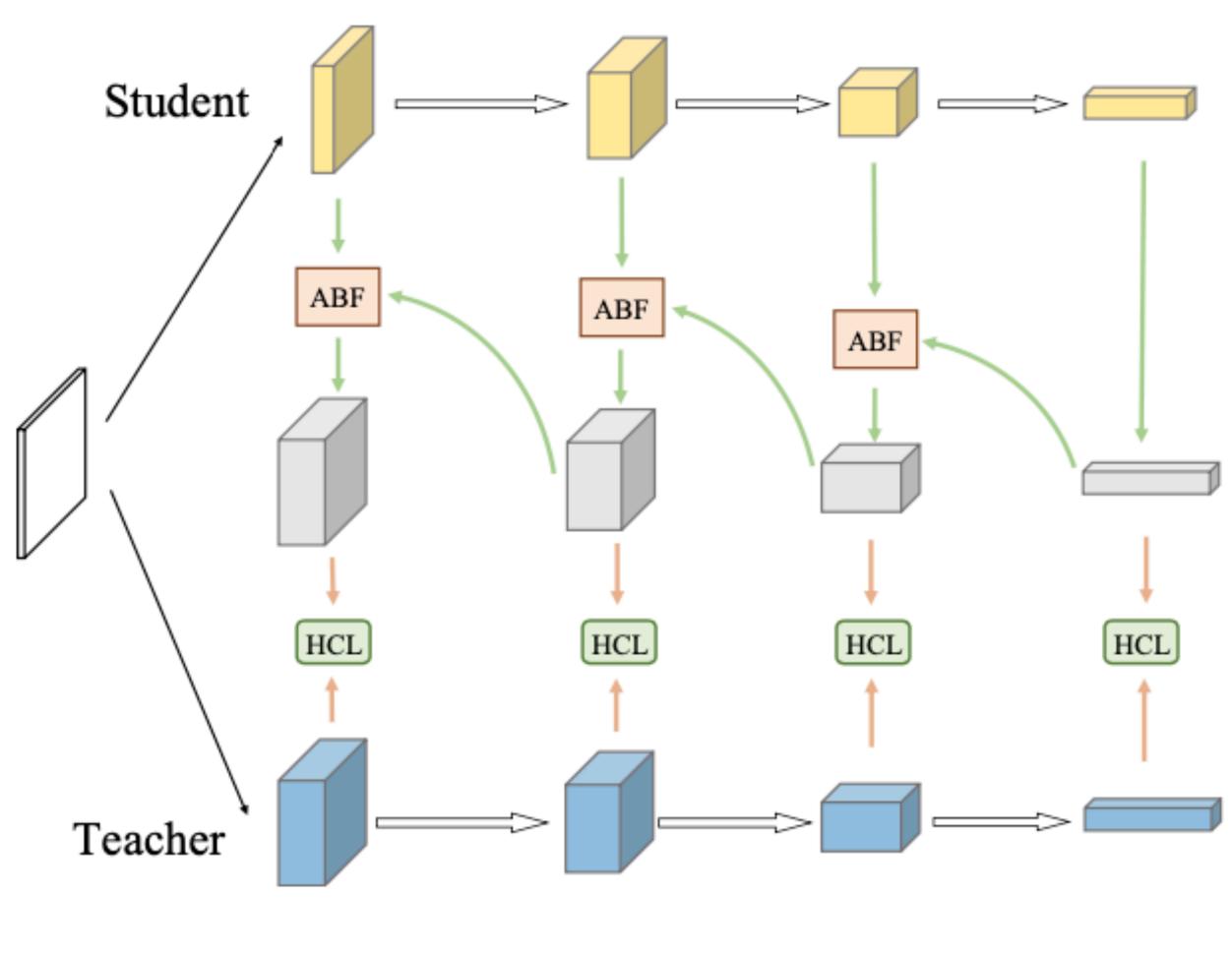
## Hierarchical context loss (HCL) function

- L2 distance is only effective to transfer information between features from the same level.
- Spatial pyramid pooling





#### ReviewKD



#### Classification

| Distillation    | Teacher<br>Acc | ResNet56<br>72.34 | ResNet110<br>74.31 | ResNet32x4<br>79.42 | WRN40-2<br>75.61 | WRN40-2<br>75.61 | VGG13<br>74.64 |
|-----------------|----------------|-------------------|--------------------|---------------------|------------------|------------------|----------------|
| Mechanism       | Student        | ResNet20<br>69.06 | ResNet32<br>71.14  | ResNet8x4<br>72.50  | WRN16-2<br>73.26 | WRN40-1<br>71.98 | VGG8<br>70.36  |
| Logits          | KD [9]         | 70.66             | 73.08              | 73.33               | 74.92            | 73.54            | 72.98          |
| Single Layer    | FitNet [25]    | 69.21             | 71.06              | 73.50               | 73.58            | 72.24            | 71.02          |
| Single Layer    | PKT [23]       | 70.34             | 72.61              | 73.64               | 74.54            | 73.54            | 72.88          |
| Single Layer    | RKD [22]       | 69.61             | 71.82              | 71.90               | 73.35            | 72.22            | 71.48          |
| Single Layer    | CRD [28]       | 71.16             | 73.48              | 75.51               | 75.48            | 74.14            | 73.94          |
| Multiple Layers | AT [38]        | 70.55             | 72.31              | 73.44               | 74.08            | 72.77            | 71.43          |
| Multiple Layers | VID [1]        | 70.38             | 72.61              | 73.09               | 74.11            | 73.30            | 71.23          |
| Multiple Layers | OFD [8]        | 70.98             | 73.23              | 74.95               | 75.24            | 74.33            | 73.95          |
| Review          | Ours           | 71.89             | 73.89              | 75.63               | 76.12            | 75.09            | 74.84          |

Table 1. Results on CIFAR-100. The teacher and student have architectures of the same style.

#### Classification

| Setting |       | Teacher | Student | KD [9] | AT [38] | OFD [8] | CRD [28] | Ours  |
|---------|-------|---------|---------|--------|---------|---------|----------|-------|
| (a)     | Top-1 | 76.16   | 68.87   | 68.58  | 69.56   | 71.25   | 71.37    | 72.56 |
|         | Top-5 | 92.86   | 88.76   | 88.98  | 89.33   | 90.34   | 90.41    | 91.00 |
| (b)     | Top-1 | 73.31   | 69.75   | 70.66  | 70.69   | 70.81   | 71.17    | 71.61 |
|         | Top-5 | 91.42   | 89.07   | 89.88  | 90.01   | 89.98   | 90.13    | 90.51 |

Table 3. Results on ImageNet. (a) MobileNet as student, ResNet50 as teacher. (b) ResNet18 as student, ResNet34 as teacher.

## **Object Detection**

student: Mask R-CNN<sup>[3]</sup> teacher: from Detectron2<sup>[4]</sup>

dataset: COCO2017

|         | Method                   | mAP           | AP50  | AP75  | APl          | APm   | APs   |
|---------|--------------------------|---------------|-------|-------|--------------|-------|-------|
| Teacher | Faster R-CNN w/ R101-FPN | 42.04         | 62.48 | 45.88 | 54.60        | 45.55 | 25.22 |
| Student | Faster R-CNN w/ R18-FPN  | 33.26         | 53.61 | 35.26 | 43.16        | 35.68 | 18.96 |
|         | w/ KD [9]                | 33.97 (+0.61) | 54.66 | 36.62 | 44.14        | 36.67 | 18.71 |
|         | w/ FitNet [25]           | 34.13 (+0.87) | 54.16 | 36.71 | 44.69        | 36.50 | 18.88 |
|         | w/ FGFI [31]             | 35.44 (+2.18) | 55.51 | 38.17 | 47.34        | 38.29 | 19.04 |
|         | w/ Our Method            | 36.75 (+3.49) | 56.72 | 34.00 | 49.58        | 39.51 | 19.42 |
| Teacher | Faster R-CNN w/ R101-FPN | 42.04         | 62.48 | 45.88 | 54.60        | 45.55 | 25.22 |
| Student | Faster R-CNN w/ R50-FPN  | 37.93         | 58.84 | 41.05 | 49.10        | 41.14 | 22.44 |
|         | w/ KD [9]                | 38.35 (+0.42) | 59.41 | 41.71 | 49.48        | 41.80 | 22.73 |
|         | w/ FitNet [25]           | 38.76 (+0.83) | 59.62 | 41.80 | 50.70        | 42.20 | 22.32 |
|         | w/ FGFI [31]             | 39.44 (+1.51) | 60.27 | 43.04 | 51.97        | 42.51 | 22.89 |
|         | w/ Our Method            | 40.36 (+2.43) | 60.97 | 44.08 | <b>52.87</b> | 43.81 | 23.60 |

## **Instance Segmentation**

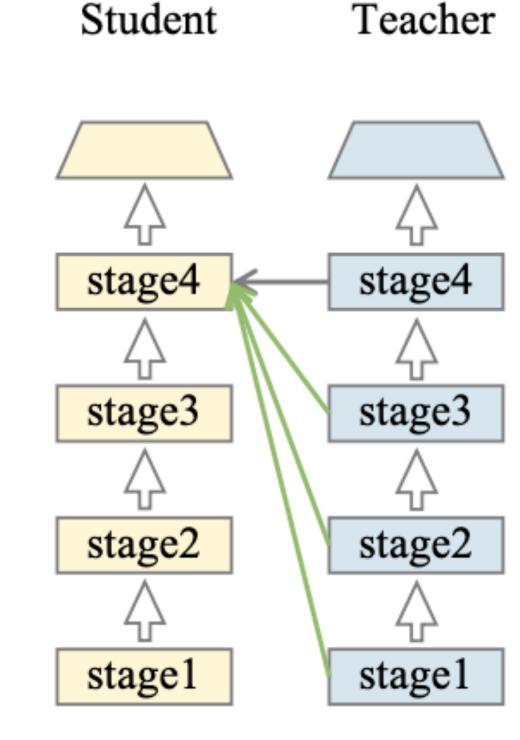
student: Mask R-CNN<sup>[3]</sup> teacher: from Detectron2<sup>[4]</sup>

dataset: COCO2017

|         | Method                 | mAP           | AP50  | AP75  | APl   | APm   | APs   |
|---------|------------------------|---------------|-------|-------|-------|-------|-------|
| Teacher | Mask R-CNN w/ R101-FPN | 38.63         | 60.45 | 41.28 | 55.29 | 41.33 | 19.48 |
| Student | Mask R-CNN w/ R18-FPN  | 31.25         | 51.07 | 33.10 | 45.53 | 32.80 | 14.18 |
| Student | + Our Method           | 33.62 (+2.37) | 53.91 | 35.96 | 50.30 | 35.31 | 15.03 |
| Teacher | Mask R-CNN w/ R101-FPN | 38.63         | 60.45 | 41.28 | 55.29 | 41.33 | 19.48 |
| Student | Mask R-CNN w/ R50-FPN  | 35.24         | 56.32 | 37.49 | 50.34 | 37.71 | 17.16 |
| Student | + Our Method           | 36.98 (+1.74) | 58.13 | 39.60 | 53.19 | 39.57 | 17.54 |
| Teacher | Mask R-CNN w/ R50-FPN  | 37.17         | 58.60 | 39.88 | 53.30 | 39.49 | 18.63 |
| Student | Mask R-CNN w/ MV2-FPN  | 28.37         | 47.19 | 29.95 | 41.70 | 29.01 | 12.09 |
| Student | + Our Method           | 31.56 (+3.19) | 50.70 | 33.44 | 47.39 | 32.44 | 12.76 |

## **Ablation Study**

- ResNet20 as the student and ResNet56 as the teacher on CIFAR100
- The student's baseline result is 69.1
- Red lower than baseline
- Blue higher than baseline



|         |   | Teacher Stage |      |      |      |  |
|---------|---|---------------|------|------|------|--|
|         |   | 1             | 2    | 3    | 4    |  |
| Stage   | 1 | 69.5          | 69.0 | 68.2 | 66.3 |  |
|         | 2 | 69.6          | 69.6 | 61.4 | 61.1 |  |
| Student | 3 | 69.2          | 69.8 | 71.0 | 50.4 |  |
| St      | 4 | 69.2          | 69.3 | 70.3 | 70.3 |  |

# **Experiments**Ablation Study

student: WRN16-2

teacher: WRN40-2

dataset: CIFAR-100

teacher - 75.61

| RM | RLF | ABF | HCL      | Accuracy (Variance) |
|----|-----|-----|----------|---------------------|
|    |     |     |          | 74.3 (5e-2)         |
| ~  |     |     |          | 75.2 (6e-2)         |
| ~  | ~   |     |          | 75.6 (6e-2)         |
| ~  | ~   | ~   |          | 76.0 (6e-2)         |
| ~  | ~   |     | ~        | 75.8 (5e-2)         |
| ~  | ~   | ~   | <b>/</b> | 76.2 (4e-2)         |

Table 7. RM: The proposed review mechanism (Section 3.1). RLF: Residual learning frame work (Section 3.2). ABF: Attentation based fusion module (Section 3.3). HCL: Hierarchical context loss function (Section 3.3).

## Reference

- [1] Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. "Distilling the knowledge in a neural network." *arXiv preprint arXiv:1503.02531* (2015).
- [2]Romero, Adriana, et al. "Fitnets: Hints for thin deep nets." arXiv preprint arXiv:1412.6550 (2014).
- [3] He, Kaiming, et al. "Mask r-cnn." Proceedings of the IEEE international conference on computer vision. 2017.
- [4] Wu, Yuxin, et al. "Detectron2." (2019).