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Abstract

Abstract

For image segmentation, the current standard is to per-
form pixel-level optimization and inference in Euclidean
output embedding spaces through linear hyperplanes. In
this work, we show that hyperbolic manifolds provide a
valuable alternative for image segmentation and propose a
tractable formulation of hierarchical pixel-level classifica-
tion in hyperbolic space. Hyperbolic Image Segmentation
opens up new possibilities and practical benefits for seg-
mentation, such as uncertainty estimation and boundary in-
formation for free, zero-label generalization, and increased
performance in low-dimensional output embeddings.
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1. Introduction

A ubiquitous goal in visual representation learning is to  * Intro%e —EX

btain discriminati d lizabl beddings. Such S o — b 3 AR
visual embeddings are learned in a deep and highly non- 150 PP B L £, 3 L H MI—HIER, JHEAE
. e . E do 13t B A1 Y S 58 (] L

linear fashion. On top, a linear layer separates categories

through Euclidean hyperplanes.[The choice for a zero cur-

vature Euclide.an embedding space, al.though. a de ffzcto o BT ABembedding Spaceﬁﬁ_if%lﬁ'lﬂig’r’_i._,
standard, requires careful re-consideration as it has direct 2 T—Er ¥ fembeddin g space
consequences for how well a task can be optimized given

the latent structure that is inherently present in both the data
and the category space [19,22,29].]
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This work takes inspiration from recent literature advo-
cating hyperbolic manifolds as embedding spaces for ma- ¢ |ntrosf —_E%
chine learning and computer vision tasks. | Foundational . .
work showedgthat hypell')bolic manifolds arE, able to em- AR R IEMUFICY Ryit &
bed hierarchies and tree-like structures with minimal dis- (—a) 2R +— e JE W w S ey + 7R /e 1 o ST s
tortion [29]. Follow up work has demonstrated the ben-
efits of hyperboles for various tasks with latent hierarchi-
cal structures, from text embedding [42, 55] to graph infer-
ence [, 12,22]. Notably, Khrulkov et al. [19] showed that
hyperbolic embeddings also have profound connections to
visual data, due to latent hierarchical structures present in
vision datasets. This connection has brought along early hy-
perbolic success in computer vision for few-shot and zero-
shot learning [15, 19, 23], unsupervised learning [32, 46],
and video recognition [25,40].]
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Common amongst current hyperbolic computer vision
works is that the task at hand is global, i.e. an entire im-
age or video is represented by a single vector in the hy-
perbolic embedding space [3, 19,23, 25]. Here, our goal
is to take hyperbolic deep learning to the pixel level. This
generalization is however not trivial. The change of mani-
fold brings different formulations for basic operations such
as addition and multiplication, each with different spatial
complexity.[ Specifically, the additional spatial complexity
that comes with the Mobius addition as part of the hyper-
bolic multinomial logistic regression makes it intractable to
simultaneously optimize or infer all pixels of even a sin-
gle image.] [Here, we propose an equivalent re-formulation
of multinomial logistic regression in the Poincaré ball that
bypasses the explicit computation of the Mobius addition,
allowing for simultaneous segmentation optimization on
batches of images in hyperbolic space.][We furthermore
outline how to incorporate hierarchical knowledge amongst
labels in the hyperbolic embedding space, as previously
advocated in image and video recognition [23, 25].] The
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proposed approach is general and can be plugged on top ﬁ;& /s
of any segmentation architecture. The code is available o
at https://github.com/MinaGhadimiAtigh/ IEﬂ RE
HyperbolicImageSegmentation.
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We perform a number of analyses to showcase the ef-

fect and new possibilities that come with Hyperbolic Im- Intro mER
age Segmentation. We present the following: (i) Hyper- X
bolic embeddings provide natural measures for uncertainty ¢ M =T E BRI TLEA
estimation and for semantic boundary estimation in image
segmentation, see Figure 1. Different from Bayesian un-
certainty estimation, our approach requires no additional
parameters or multiple forward passes, i.e. this informa-
tion comes for free. (ii): Hyperbolic embeddings with hi-
erarchical knowledge provide better zero-label generaliza-
tion than Euclidean counterparts, i.e. hyperboles improve
reasoning over unseen categories. (iii): Hyperbolic em-
beddings are preferred for fewer embedding dimensions.
Low-dimensional effectiveness is a cornerstone in hyper-
bolic deep learning [29]. We find that these benefits extend
to image segmentation, with potential for explainability and
on-device segmentation [3]. We believe these findings bring
new insights and opportunities to image segmentation.



Hyperbolic Geometry

* The Poincare ball model
D? = {x € R": ¢||z|| < 1}

* ¢ :a hyperparameter governing the curvature and radius of
the ball

* different operation in D :
* Euclidean metric: g¥ = I"

Riemannian metric: gPe — (AC)2gF =
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Hyperbolic Geometry

* A hyperplane in the Poincare ball:
H¢ = {zij = ]DZ’, <—p D zz-j,w) = O}
* offset: p

* orientation: w
* exponential map of the network output at pixel location (i, j):

Zij = eXPo(f(X)z'j)

|
de(zij, Hy)) = % sinh™? ((
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Issue of spatial complexity

* Euclidean space: 0.5 GB
* Hyperbolic space: 132 GB
* Alternative operations in Hyperbolic space : 1.1 GB
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Hierarchical Hyperbolic Class Embedding

* Preset a tree structure for all classes
* y:aclass

« Ay : the ancestors of y

* Hy = {y}UA,

* Sp : the siblings of h

p(§ =ylzi;) = || p(hlAw, 2;)
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Experiment

* Dataset:
* COCO-Stuff-10K(10k images, 171 classes)
* Pascal VOC(12k images, 21 classes)
* ADEZ20K(22k images, 150 classes)

* Backbone:
* DeeplabV3+ with a ResNet101 backbone
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Experiment

* Zero-label generalization
* unseen classes In training phase: replace them with an ignore label

COCO-Stuff-10k
Manifold Hierarchical Class Acc Pixel Acc mlIOU

R 0.44 0.33 0.23
R v 3.29 48.65 18.53
D v 3.46 51.70 21.15
Pascal VOC
Manifold Hierarchical Class Acc Pixel Acc mlIOU
R 4.88 10.84 2.59
R v 7.80 31.04 16.15

D v 12.15 47.92 34.87




Experiment

* Uncertainty and boundary information for free

* Hyperbolic uncertainty: the distance to the origin of each pixel in the hyperbolic embedding
space

Hyperbolic Segmentation  Hyperbolic Uncertainty Bayesian Uncertainty
1 pass 1000 passes
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summary

Hyperbolic Class Embedding space:
+ A new representation space

+ Some geometric properties different from Euclidean space

- Additional computational cost

- An effective format for the visual task is needed to explore



