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Motivation

• To improve adversarial robustness: adversarial training 

• Trade-off between adversarial robustness and generalization

• To address such a trade-off: leveraging the redundant capacity for robustness
• Do adversarially trained models have such redundant capacity?
• How to leverage it to improve the generalization and OOD robustness while maintaining 

adversarial robustness?



Method



• Adversarial training (AT):

robust loss

worst-case input perturbation 



• How to character the redundant capacity for robustness?

• For a module 𝑖

where



Step 1: Module robust criticality characterization

• Choose the module with lowest MRC value:

-> Non-robust-critical module



Step 2: Fine-tuning on non-robust-critical modules "𝜽



Step 3: Mitigating robustness-generalization trade-off via interpolation



Experiments

• Network Architecture
• ResNet18
• ResNet34
• WRN34-10

• Dataset
• CIFAR10
• CIFAR100
• Tiny-ImageNet

• Test metric
• Std
• OOD (Using Noise, Blur, … to obtain out-of-distribution images)
• Adv







Summary

• Leveraging the concept of module robust criticality (MRC) to guide the fine-tuning process, 
which leads to improved generalization and OOD robustness

+ A good way to select the module to fine-tune

+ Good performances on Std, OOD, and Adv

• Unknow effect of different network architectures like transformers

• Unknow effect of a single fine-tune without adversarial training



Writing Deep neural networks are susceptible to adversarial examples,
posing a significant security risk in critical applications. Adversarial
Training (AT) is a well-established technique to enhance adversarial
robustness, but it often comes at the cost of decreased generalization
ability. This paper proposes Robustness Critical Fine-Tuning (RiFT),
a novel approach to enhance generalization without compromising
adversarial robustness. The core idea of RiFT is to exploit the
redundant capacity for robustness by fine-tuning the adversarially
trained model on its non-robust-critical module. To do so, we
introduce module robust criticality (MRC), a measure that evaluates
the significance of a given module to model robustness under worst-
case weight perturbations. Using this measure, we identify the
module with the lowest MRC value as the non-robust-critical module
and fine-tune its weights to obtain fine-tuned weights. Subsequently,
we linearly interpolate between the adversarially trained weights
and fine-tuned weights to derive the optimal fine-tuned model
weights. We demonstrate the efficacy of RiFT on ResNet18,
ResNet34, and WideResNet34-10 models trained on CIFAR10,
CIFAR100, and Tiny-ImageNet datasets. Our experiments show that
RiFT can significantly improve both generalization and out-of-
distribution robustness by around 1.5% while maintaining or even
slightly enhancing adversarial robustness. Code is available at
https://github.com/Immortalise/RiFT.

1⃣提高鲁棒性的动机
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2⃣已有方法的问题
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Training (AT) is a well-established technique to enhance adversarial
robustness, but it often comes at the cost of decreased generalization
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Writing The pursuit of accurate and trustworthy artificial
intelligence systems is a fundamental objective in the deep
learning community. Adversarial examples [45, 15], which
perturbs input by a small, human imperceptible noise that
can cause deep neural networks to make incorrect
predictions, pose a significant threat to the security of AI
systems. Notable experimental and theoretical progress has
been made in defending against such adversarial examples
[6, 4, 10, 19, 11, 16, 37]. Among various defense methods
[52, 33, 57, 31, 8], adversarial training (AT) [29] has been
shown to be one of the most promising approaches [4, 11]
to enhance the adversarial robustness. However, compared
to standard training, AT severely sacrifices generalization
on in-distribution data [42, 46, 58, 36, 32] and is
exceptionally vulnerable to certain out-of-distribution
(OOD) exam ples [14, 53, 22] such as Contrast, Bright and
Fog, resulting in unsatisfactory performance.

1⃣介绍深度学习的准
确性和可信性的目标

介绍鲁棒性方面的发展
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已有方法（AT）面临的问题



Writing Prior studies tend to mitigate the trade-off between gen-
eralization and adversarial robustness within the adversarial 
training procedure. For example, some approaches have 
explored reweighting instances [59], using unlabeled data 
[36], or redefining the robust loss function [58, 48, 50, 32]. 
In this paper, we take a different perspective to address such 
a trade-off by leveraging the redundant capacity for 
robustness of neural networks after adversarial training. 
Recent research has demonstrated that deep neural networks 
can exhibit redundant capacity for generalization due to their 
complex and opaque nature, where specific network 
modules can be deleted, permuted [47], or reset to their 
initial values [55, 9] with only minor degradation in 
generalization performance. Hence, it is intuitive to ask: Do 
adversarially trained models have such redundant capacity? 
If so, how to leverage it to improve the generalization and 
OOD robustness  while maintaining adversarial robustness?

2⃣针对解决泛化性和
鲁棒性的trade-off，已
有工作做了哪些尝试

已有方法（AT）面临的问题
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引出本文从模型冗余的鲁
棒能力方面了解决这一
trade-off

通过已有工作对idea进行支撑
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引出下一段具体方法的介绍
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Based on such motivation, we introduce a new concept called Module 
Robust Criticality (MRC) 2 to investigate the redundant capacity of 
adversarially trained models for robustness. MRC aims to quantify the 
maximum increase of robustness loss of a module’s parameters under the 
constrained weight perturbation. As illustrated in Figure 3, we 
empirically find that certain modules exhibit redundant characteristics 
under such perturbations, resulting in negligible drops in adversarial 
robustness. We refer to the modules with the lowest MRC value as the 
non-robustcritical modules. These findings further inspire us to propose 
a novel fine-tuning technique called Robust Critical Fine-Tuning (RiFT), 
which aims to leverage the redundant capacity of the non-robust-critical 
module to improve generalization while maintaining adversarial 
robustness. RiFT consists of three steps: (1) Module robust criticality 
characterization, which calculates the MRC value for each module and 
identifies the non-robust-critical module. (2) Nonrobust-critical module 
fine-tuning, which exploits the redundant capacity of the non-robust-
critical module via finetuning its weights with standard examples. (3) 
Mitigating robustness-generalization trade-off via interpolation, which 
interpolates between adversarially trained parameters and fine-tuned 
parameters to find the best weights that maximize the improvement in 
generalization while preserving adversarial robustness.

3⃣承接上一段，具体
介绍本文方法

回答上一段的问题



Writing
Experimental results demonstrate that RiFT significantly improves both 
the generalization performance and OOD robustness by around 2% while 
maintaining or even improving the adversarial robustness of the original 
models. Furthermore, we also incorporate RiFT to other adversarial 
training regimes such as TRADES [58], MART [48], AT-AWP [50], and 
SCORE [32], and show that such incorporation leads to further 
enhancements. More importantly, our experiments reveal several insights. 
First, we found that fine-tuning on non-robust-critical modules can 
effectively mitigate the trade-off between adversarial robustness and 
generalization, showing that these two can both be improved (Section 
5.3). As illustrated in Figure 1, adversarial robustness increases alongside 
the generalization in the initial interpolation procedure, indicating that the 
features learned by fine-tuning can benefit both generalization and 
adversarial robustness. This contradicts the previous claim [46] that the 
features learned by optimal standard and robust classifiers are 
fundamentally different. Second, the existence of non-robust-critical 
modules suggests that current adversarial training regimes do not fully 
utilize the capacity of DNNs (Section 5.2). This motivates future work to 
design more efficient adversarial training approaches using such capacity. 
Third, while previous study [25] reported that fine-tuning on pre-train 
models could distort the learned robust features and result in poor 
performance on OOD samples, we find that fine-tuning adversarially
trained models do NOT lead to worse OOD performance (Section 5.3).

4⃣介绍实验结果，并
介绍发现的现象
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用大量篇幅介绍实验中得到
的insights



Writing
The contribution of this work is summarized as follows:

1. We propose the concept of module robust criticality and 
verify the existence of redundant capacity for robustness in 
adversarially trained models. We then propose RiFT to 
exploit such redundancy to improve the generalization of 
AT models.

2. Our approach improves both generalization and OOD 
robustness of AT models. It can also be incorporated with 
previous AT methods to mitigate the trade-off between 
generalization and adversarial robustness.

3. The findings of our experiments shed light on the 
intricate interplay between generalization, adversarial 
robustness, and OOD robustness. Our work emphasizes the 
potential of leveraging the redundant capacity in AT 
models to improve generalization and robustness further, 
which may motivate more effective adversarial training 
methods.
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