An Information-Theoretic Definition of Similarity

Dingquan Li

Peking University

dingquanli@pku.edu.cn

December 3, 2018

Paper Information

Dekang Lin, An information-theoretic definition of similarity, ICML, 1998.

- Co-founder, CTO@Naturali
- Senior Staff Research Scientist@Google
- Professor@University of Alberta

- An information-theoretic definition of similarity that is applicable as long as there is a probabilistic model
- Demonstrate how the definition can be used to measure the similarity in a number of different domains

- 2 Definition of Similarity
- 3 Similarity between Ordinal Values
- 4 Feature Vectors
- 5 Word Similarity
- 6 Semantic Similarity in a Taxonomy
 - 7 Comparison between Different Similarity Measures
 - B Conclusion

- 2 Definition of Similarity
- Similarity between Ordinal Values
- 4 Feature Vectors
- 5 Word Similarity
- 6 Semantic Similarity in a Taxonomy
- 7 Comparison between Different Similarity Measures
- 8 Conclusion

- Each of the previous similarity measures are tied to a particular application or assume a particular domain model.
- Their underlying assumptions are often not explicitly stated. Almost all of the comparisons and evaluations are based on empirical results.

- **Universality**: Define similarity in information-theoretic terms, which is applicable as long as the domain has a probabilistic model.
- **Theoretical Justification**: The similarity measure is derived from a set of assumptions about similarity. If the assumptions are deemed reasonable, the similarity measure necessarily follows.

- 2 Definition of Similarity
- 3 Similarity between Ordinal Values
- 4 Feature Vectors
- 5 Word Similarity
- 6 Semantic Similarity in a Taxonomy
- 7 Comparison between Different Similarity Measures
- 8 Conclusion

- The similarity between A and B is related to their commonality. The more commonality they share, the more similar they are.
- The similarity between A and B is related to the differences between them. The more differences they have, the less similar they are.
- The maximum similarity between A and B is reached when they are identical, no matter how much commonality they share.

Assumption 1: The commonality between A and B is measured by

 $I(\operatorname{common}(A, B)),$

where $\operatorname{common}(A, B)$ is a proposition that states the commonalities between A and B; I(s) is the amount of information contained in a proposition s.

In information theory, the information contained in a statement is measured by the negative logarithm of the probability of the statement. Therefore,

$$I(\operatorname{common}(A, B)) = -\log P(\operatorname{common}(A, B)).$$

Assumption 2: The differences between A and B is measured by $I(\operatorname{description}(A, B)) - I(\operatorname{common}(A, B)),$

where description(A, B) is a proposition that describes what A and B are.

Assumption 3: The similarity between A and B, sim(A, B), is a function of their commonalities and differences. That is,

sim(A, B) = f(I(common(A, B)), I(description(A, B))),

where the domain of f is $\{(x, y) | x \ge 0, y > 0, y \ge x\}$.

Assumption 4: The similarity between a pair of identical objects is 1. When A and B are identical, knowing their commonalities means knowing what they are, *i.e.*, I(common(A, B)) = I(description(A, B)). Therefore, the function f must have the property: $\forall x > 0, f(x, x) = 1$. **Assumption 5**: When there is no commonality between A and B, their similarity is 0, no matter how different they are.

 $\forall y > 0, f(0, y) = 0.$

Assumption 6: The overall similarity of the two objects is a weighted average of their similarities computed from different perspectives.

$$\forall x_1 \leq y_1, x_2 \leq y_2, f(x_1 + x_2, y_1 + y_2) = \frac{y_1}{y_1 + y_2} f(x_1, y_1) + \frac{y_2}{y_1 + y_2} f(x_2, y_2).$$

Theorem (Similarity Theorem)

Under the above six assumptions, the similarity between A and B is measured by the ratio between the amount of information needed to state the commonality of A and B and the information needed to fully describe what A and B are:

$$\sin(A, B) = \frac{\log P(\operatorname{common}(A, B))}{\log P(\operatorname{description}(A, B))}$$

Proof.

For y = x, we have $f(x, y) = f(x, x) = 1 = \frac{x}{y}$. For y > x, based on Assumptions 4,5,6, we have

$$f(x,y) = f(x+0, x+(y-x)) = \frac{x}{y}f(x,x) + \frac{y-x}{y}f(0, y-x)$$
$$= \frac{x}{y} \cdot 1 + \frac{y-x}{y} \cdot 0 = \frac{x}{y}$$

3

< 4 → <

Note: If we know the commonality of the two objects, their similarity tells us how much more information is needed to determine what these two objects are.

- 2 Definition of Similarity
- 3 Similarity between Ordinal Values
 - 4 Feature Vectors
 - 5 Word Similarity
- 6 Semantic Similarity in a Taxonomy
- 7 Comparison between Different Similarity Measures
- 8 Conclusion

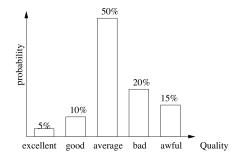


Figure: Example Distribution of Ordinal Values

$$sim(excellent, good) = \frac{\log P^2(excellent \lor good)}{\log P(excellent)P(good)} = 0.72$$

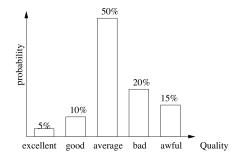


Figure: Example Distribution of Ordinal Values

$$sim(good, average) = \frac{\log P^2(good \lor average)}{\log P(good)P(average)} = 0.34$$

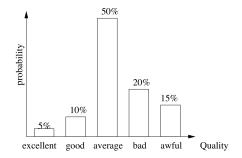


Figure: Example Distribution of Ordinal Values

$$sim(excellent, average) = \frac{\log P^2(excellent \lor good \lor average)}{\log P(excellent)P(average)} = 0.23$$

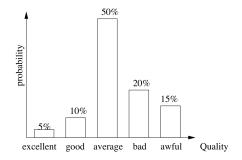


Figure: Example Distribution of Ordinal Values

$$sim(good, bad) = rac{\log P^2(good \lor average \lor bad)}{\log P(good)P(bad)} = 0.11$$

- 2 Definition of Similarity
- Similarity between Ordinal Values
- 4 Feature Vectors
- 5 Word Similarity
- 6 Semantic Similarity in a Taxonomy
- 7 Comparison between Different Similarity Measures
- 8 Conclusion

$$\operatorname{sim}_{\operatorname{edit}}(x, y) = \frac{1}{1 + \operatorname{editDist}(x, y)}$$
$$\operatorname{sim}_{\operatorname{tri}}(x, y) = \frac{1}{1 + |\operatorname{tri}(x)| + |\operatorname{tri}(y)| - 2 \star |\operatorname{tri}(x) \cap \operatorname{tri}(y)|}$$
$$\operatorname{sim}(x, y) = \frac{2 \times \sum_{t \in \operatorname{tri}(x) \cap \operatorname{tri}(y)} \log P(t)}{\sum_{t \in \operatorname{tri}(x)} \log P(t) + \sum_{t \in \operatorname{tri}(y)} \log P(t)}$$

-

Image: A matrix

2

Table 1: Top-10 Most Similar Words to "grandiloquent"

Rank	sim _{edit}		sim _{tri}		sim	
1	grandiloquently	1/3	grandiloquently	1/2	grandiloquently	0.92
2	grandiloquence	1/4	grandiloquence	1/4	grandiloquence	0.89
3	magniloquent	1/6	eloquent	1/8	eloquent	0.61
4	gradient	1/6	grand	1/9	magniloquent	0.59
5	grandaunt	1/7	grande	1/10	ineloquent	0.55
6	gradients	1/7	rand	1/10	eloquently	0.55
7	grandiose	1/7	magniloquent	1/10	ineloquently	0.50
8	diluent	1/7	ineloquent	1/10	magniloquence	0.50
9	ineloquent	1/8	grands	1/10	eloquence	0.50
10	grandson	1/8	eloquently	1/10	ventriloquy	0.42

Let W denote the set of words in the word list and W_{root} denote the subset of W that are derived from the same *root* as the given word w (excluding w). Let (w_1, \dots, w_n) denote the ordering of $W - \{w\}$ in descending similarity to w according to a similarity measure. The precision of (w_1, \dots, w_n) at recall level N% is defined as

$$\max_{k} \quad \frac{|W_{root} \cap \{w_{1}, \cdots, w_{k}\}|}{k},$$

s.t.,
$$\frac{|W_{root} \cap \{w_{1}, \cdots, w_{k}\}|}{|W_{root}|} \ge N\%.$$

The quality of (w_1, \dots, w_n) can be measured by the 11-point average of its precisions at recall levels 0%, 10%, 20%, \dots , and 100%. The average precision values are then averaged over all the words in W_{root}

Table 2: Evaluation of String Similarity Measures

			11-point average precisions		
Root	Meaning	$ W_{root} $	sim _{edit}	sim _{tri}	sim
agog	leader, leading, bring	23	37%	40%	70%
cardi	heart	56	18%	21%	47%
circum	around, surrounding	58	24%	19%	68%
gress	to step, to walk, to go	84	22%	31%	52%
loqu	to speak	39	19%	20%	57%

- 2 Definition of Similarity
- 3 Similarity between Ordinal Values
- 4 Feature Vectors
- 5 Word Similarity
- 6 Semantic Similarity in a Taxonomy
- Comparison between Different Similarity Measures
- 8 Conclusion

Feature	duty	sanction	$I(f_i)$
f_1 : subj-of(include)	Х	Х	3.15
f_2 : obj-of(assume)	Х		5.43
f_3 : obj-of(avert)	Х	Х	5.88
f_4 : obj-of(ease)		Х	4.99
f_5 : obj-of(impose)	Х	Х	4.97
f_6 : adj-mod(fiduciary)	Х		7.76
f_7 : adj-mod(punitive)	Х	Х	7.10
f_8 : adj-mod(economic)		Х	3.70

Table 3: Features of "duty" and "sanction"

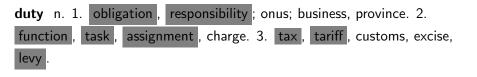
Let F(w) be the set of features possessed by w. F(w) can be viewed as a description of the word w. The commonalities between two words w_1 and w_2 is then $F(w_1) \cap F(w_2)$.

The similarity between two words is defined as follows:

$$\sin = \frac{2 \times I(F(w_1) \cap F(w_2))}{I(F(w_1)) + I(F(w_2))},$$

where I(S) is the amount of information contained in a set of features S. Assuming the features are independent of one another,

 $I(S) = -\sum_{f \in S} log(P(f))$, where P(f) is the probability of feature f.



Respective Nearest Neighbors

Two words are a pair of respective nearest neighbors (RNNs) if each is the others most similar word.

Rank	RNN	Sim
1	earnings profit	0.50
11	revenue sale	0.39
21	acquisition merger	0.34
31	attorney lawyer	0.32
41	data information	0.30
51	amount number	0.27
61	downturn slump	0.26
71	there way	0.24
81	fear worry	0.23
91	jacket shirt	0.22
101	film movie	0.21
111	felony misdemeanor	0.21
121	importance significance	0.20
131	reaction response	0.19
141	heroin marijuana	0.19
151	championship tournament	0.18
161	consequence implication	0.18
171	rape robbery	0.17
181	dinner lunch	0.17
191	turmoil upheaval	0.17
201	biggest largest	0.17
211	blaze fire	0.16
221	captive westerner	0.16
231	imprisonment probation	0.16

Table 4: Respective Nearest Neighbors

Introduction

- 2 Definition of Similarity
- 3 Similarity between Ordinal Values
- 4 Feature Vectors
- 5 Word Similarity
- 6 Semantic Similarity in a Taxonomy
 - 7 Comparison between Different Similarity Measures

8 Conclusion

The semantic similarity between two classes C_1 and C_2 is not about the classes themselves. $sim(C_1, C_2)$ is the similarity between x_1 and x_2 if all we know about x_1 and x_2 is that $x_1 \in C_1$ and $x_2 \in C_2$. Assuming that the taxonomy is a tree, if $x_1 \in C_1$ and $x_2 \in C_2$, the commonality between x_1 and x_2 is $x_1 \in C_0 \land x_2 \in C_0$, where C_0 is the most specific class that subsumes both C_1 and C_2 .

$$\sin(x_1, x_2) = \frac{2 \times \log P(C_0)}{\log P(C_1) + \log P(C_2)}$$

Example

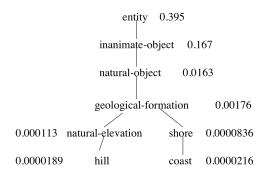


Figure 2: A Fragment of WordNet

$$\sin(\mathsf{hill},\mathsf{coast}) = \frac{2 \times \log P(\mathsf{geological-formation})}{\log P(\mathsf{hill}) + \log P(\mathsf{coast})} = 0.59$$

3

• • • • • • • • • • • •

Quantitative Results

Word Pair	Miller&	Resnik	Wu &	sim
	Charles		Palmer	
car, automobile	3.92	11.630	1.00	1.00
gem, jewel	3.84	15.634	1.00	1.00
journey, voyage	3.84	11.806	.91	.89
boy, lad	3.76	7.003	.90	.85
coast, shore	3.70	9.375	.90	.93
asylum, madhouse	3.61	13.517	.93	.97
magician, wizard	3.50	8.744	1.00	1.00
midday, noon	3.42	11.773	1.00	1.00
furnace, stove	3.11	2.246	.41	.18
food, fruit	3.08	1.703	.33	.24
bird, cock	3.05	8.202	.91	.83
bird, crane	2.97	8.202	.78	.67
tool, implement	2.95	6.136	.90	.80
brother, monk	2.82	1.722	.50	.16
crane, implement	1.68	3.263	.63	.39
lad, brother	1.66	1.722	.55	.20
journey, car	1.16	0	0	0
monk, oracle	1.10	1.722	.41	.14
food, rooster	0.89	.538	.7	.04
coast, hill	0.87	6.329	.63	.58
forest, graveyard	0.84	0	0	0
monk, slave	0.55	1.722	.55	.18
coast, forest	0.42	1.703	.33	.16
lad, wizard	0.42	1.722	.55	.20
chord, smile	0.13	2.947	.41	.20
glass, magician	0.11	.538	.11	.06
noon, string	0.08	0	0	0
rooster, voyage	0.08	0	0	0
Correlation with	1.00	0.795	0.803	0.834
Miller & Charles				

Dingquan Li (PKU)

Lin ICML (1998)

December 3, 2018 24 / 31

æ

Introduction

- 2 Definition of Similarity
- 3 Similarity between Ordinal Values
- 4 Feature Vectors
- 5 Word Similarity
- 6 Semantic Similarity in a Taxonomy
 - 7 Comparison between Different Similarity Measures

Conclusion

Dice coefficient

$$\operatorname{sim}_{\operatorname{dice}}(A,B) = \frac{2 \times \sum_{i=1}^{n} a_i b_i}{\sum_{i=1}^{n} a_i^2 + \sum_{i=1}^{n} b_i^2}$$

distance-based similarity

$$\operatorname{sim}_{\operatorname{dist}}(A,B) = \frac{1}{1 + \operatorname{dist}(A,B)}$$

• Resnik (IJCAI 1995)

$$sim_{Resnik}(A, B) = \frac{1}{2}I(common(A, B))$$

• Wu & Palmer (ACL 1994)

$$\operatorname{sim}_{\operatorname{Wu}\&\operatorname{Palmer}}(A,B) = \frac{2 \times N_{CR}}{N_{AC} + N_{BC} + 2 \times N_{CR}}$$

Comparison between Different Similarity Measures

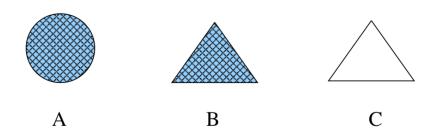
	Similarity Measures:					
		WP:	sin	n _{Wu&Palr}	ner	
	R:			sim _{Resnik}		
	Dice: sim _{dice}					
Property	sim	WP	R	Dice	sim _{dist}	
increase with	yes	yes	yes	yes	no	
commonality						
decrease with	yes	yes	no	yes	yes	
difference						
triangle	no	no	no	no	yes	
inequality						
Assumption 6	yes	yes	no	yes	no	
max value=1	yes	yes	no	yes	yes	
semantic	yes	yes	yes	no	yes	
similarity						
word	yes	no	no	yes	yes	
similarity						
ordinal	yes	no	no	no	no	
values						

Dingquan Li (PKU)

Lin ICML (1998)

December 3, 2018

Counter-example of Triangle Inequality



Dingquan Li (PKU)

Lin ICML (1998)

December 3, 2018 28 / 31

Introduction

- 2 Definition of Similarity
- Similarity between Ordinal Values
- 4 Feature Vectors
- 5 Word Similarity
- 6 Semantic Similarity in a Taxonomy
 - 7 Comparison between Different Similarity Measures

8 Conclusion

- A universal definition of similarity in terms of information theory, derived from a set of assumptions.
- The universality of the definition is demonstrated by its applications in different domains

Amos Tversky (1977)

Features of similarity.

Psychological Review 84(4), pp. 327 - 352.

Philip Resnik (1995)

Using information content to evaluate semantic similarity in a taxonomy. *IJCAI* 1995, pp. 448 – 453.

George A. Miller and Walter G. Charles (1991)

Contextual correlates of semantic similarity.

Language and Cognitive Processes 6(1), pp. 1 - 28.