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Problem

• Weakness of the Existing Person Re-ID Models:
• Ignore the relationship information between different probe-gallery pairs.
• Hard samples are difficult to get proper similarity scores.

• Main Idea: Update s2 by s1 and s3.
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Comparison

Conventional Approach

SGGNN Approach
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Graph Formulation

• An undirected complete graph 𝐺𝐺(𝑉𝑉,𝐸𝐸).
• Each node 𝒗𝒗𝒊𝒊 represents a pair of probe-gallery images.
• Node features are processed difference features.

Graph Illustration Node Feature Generating
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Naïve Node Loss Function I

• 𝐿𝐿 = −∑𝑖𝑖=1𝑁𝑁 𝑦𝑦𝑖𝑖 log 𝑓𝑓 𝑑𝑑𝑖𝑖 + 1 − 𝑦𝑦𝑖𝑖 log(1 − 𝑓𝑓 𝑑𝑑𝑖𝑖 )
• 𝑓𝑓() is a linear classifier followed by a sigmoid function.
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Similarity-Guided Graph Neural Network

• Intuition: Using gallery-gallery similarity scores to guide the 
refinement of the probe-gallery relation features.

• Updating Node Feature: Original Feature + Fusion Feature.

• 𝑑𝑑𝑖𝑖
(𝑡𝑡+1) = 1 − 𝛼𝛼 𝑑𝑑𝑖𝑖

𝑡𝑡 + 𝛼𝛼∑𝑗𝑗=1𝑁𝑁 𝑊𝑊𝑖𝑖𝑖𝑖𝑡𝑡𝑗𝑗
(𝑡𝑡) for 𝑖𝑖 = 1,2, … ,𝑁𝑁

2018/10/09 Xu Gao, Peking University 6



Similarity-Guided Graph Neural Network

• Updating: 𝑑𝑑𝑖𝑖
(𝑡𝑡+1) = 1 − 𝛼𝛼 𝑑𝑑𝑖𝑖

𝑡𝑡 + 𝛼𝛼∑𝑗𝑗=1𝑁𝑁 𝑊𝑊𝑖𝑖𝑖𝑖𝑡𝑡𝑗𝑗
(𝑡𝑡) for 𝑖𝑖 = 1,2, … ,𝑁𝑁

• 𝑊𝑊𝑖𝑖𝑖𝑖 is a scalar edge weight, represents the relation importance 
between node 𝑖𝑖 and node 𝑗𝑗.

• 𝑊𝑊𝑖𝑖𝑖𝑖 = �
exp(𝑆𝑆(𝑔𝑔𝑖𝑖,𝑔𝑔𝑗𝑗))

∑𝑗𝑗 exp(𝑆𝑆(𝑔𝑔𝑖𝑖,𝑔𝑔𝑗𝑗))
, 𝑖𝑖 ≠ 𝑗𝑗

0, 𝑖𝑖 = 𝑗𝑗
• 𝑆𝑆() is a pairwise similarity function.
• Set 𝑡𝑡 = 1 in both training and testing.
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Avoid Self-Enhancing



Update Node Loss Function II

• 𝐿𝐿 = −∑𝑖𝑖=1𝑁𝑁 𝑦𝑦𝑖𝑖 log 𝑠𝑠𝑖𝑖 + 1 − 𝑦𝑦𝑖𝑖 log(1 − 𝑠𝑠𝑖𝑖)
• Similarity estimator is a linear classifier followed by a sigmoid 

function.
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Datasets, Metrics, Experiments

• Datasets: CUHK03, Market-1501, DukeMTMC
• Metrics: mAP and CMC top-1, top-5, top-10 accuracies.
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CUHK03 Market-1501 DukeMTMC



Ablation Study

• Base Model: Only use the naïve node loss function.

• SGGNN w/o SG: 𝑑𝑑𝑖𝑖
(𝑡𝑡+1) = 1 − 𝛼𝛼 𝑑𝑑𝑖𝑖

𝑡𝑡 + 𝛼𝛼∑𝑗𝑗=1𝑁𝑁 ℎ(𝑑𝑑𝑖𝑖 ,𝑑𝑑𝑗𝑗)𝑡𝑡𝑗𝑗
(𝑡𝑡), 

where ℎ ∗,∗ is an inner product function.
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Normal Ablation Study.

To show SGGNN also learns better visual features.
Evaluate the performance by directly calculating 
the l2 distance between probe and gallery image 
features from ResNet-50 model



Conclusion

• Present SGGNN to incorporate the rich gallery-gallery similarity 
information into training process.

• + Consider the relationship between each probe-gallery pair.
• + Add directly label supervision for guidance.
• - A complete graph might be slow when the number of nodes 

increasing.
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