Person Re-identification with Deep Similarity-Guided Graph Neural Network

Yantao Shen, Hongsheng Li, Shuai Yi, Dapeng Chen, Xiaogang Wang CUHK-SenseTime Joint Lab, SenseTime Research ECCV 2018

Problem

• Weakness of the Existing Person Re-ID Models:

- Ignore the relationship information between different probe-gallery pairs.
- Hard samples are difficult to get proper similarity scores.
- Main Idea: Update s2 by s1 and s3.

Comparison

Conventional Approach

SGGNN Approach

Graph Formulation

- An undirected **complete graph** G(V, E).
- Each node v_i represents a pair of probe-gallery images.
- Node features are processed difference features.

Graph Illustration

Node Feature Generating

Naïve Node Loss Function I

- $L = -\sum_{i=1}^{N} y_i \log(f(d_i)) + (1 y_i) \log(1 f(d_i))$
- f() is a linear classifier followed by a sigmoid function.

Similarity-Guided Graph Neural Network

- Intuition: Using gallery-gallery similarity scores to guide the refinement of the probe-gallery relation features.
- Updating Node Feature: Original Feature + Fusion Feature.

•
$$d_i^{(t+1)} = (1 - \alpha)d_i^{(t)} + \alpha \sum_{j=1}^N W_{ij}t_j^{(t)}$$
 for $i = 1, 2, ..., N$

Similarity-Guided Graph Neural Network

- Updating: $d_i^{(t+1)} = (1 \alpha)d_i^{(t)} + \alpha \sum_{j=1}^N W_{ij}t_j^{(t)}$ for i = 1, 2, ..., N
- W_{ij} is a scalar edge weight, represents the relation importance between node i and node j.

•
$$W_{ij} = \begin{cases} \frac{\exp(S(g_i, g_j))}{\sum_j \exp(S(g_i, g_j))}, & i \neq j \\ 0, & i = j \end{cases}$$

- S() is a pairwise similarity function.
- Set t = 1 in both training and testing.

Update Node Loss Function II

- $L = -\sum_{i=1}^{N} y_i \log(s_i) + (1 y_i) \log(1 s_i)$
- Similarity estimator is a linear classifier followed by a sigmoid function.

Datasets, Metrics, Experiments

- Datasets: CUHK03, Market-1501, DukeMTMC
- Metrics: mAP and CMC top-1, top-5, top-10 accuracies.

Methods	Conference	CUHK03 [28]				Matha Ja	Reference	Market-1501 [75]			
		mAP	$\operatorname{top-1}$	top-5	top-10	Methods	Reference	mAP	$\operatorname{top-1}$	top-5	top-10
Quadruplet Loss [9]	CVPR 2017	-	75.5	95.2	99.2	OIM Loss [65]	CVPR 2017	60.9	82.1	-	-
OIM Loss [65]	CVPR 2017	72.5	77.5	-	-	SpindleNet [73]	CVPR 2017	-	76.9	91.5	94.6
SpindleNet [73]	CVPR 2017	-	88.5	97.8	98.6	MSCAN [26]	CVPR 2017	53.1	76.3	-	-
MSCAN [26]	CVPR 2017	-	74.2	94.3	97.5	SSM [2]	CVPR 2017	68.8	82.2	-	-
SSM [2]	CVPR 2017	-	76.6	94.6	98.0	k-reciprocal [78]	CVPR 2017	63.6	77.1	-	-
k-reciprocal [78]	CVPR 2017	67.6	61.6	-	-	Point 2 Set [81]	CVPR 2017	44.3	70.7	-	-
VI+LSRO [77]	ICCV 2017	87.4	84.6	97.6	98.9	CADL [35]	CVPR 2017	47.1	73.8	-	-
SVDNet [61]	ICCV 2017	84.8	81.8	95.2	97.2	VI+LSRO [77]	ICCV 2017	66.1	84.0	-	-
OL-MANS [80]	ICCV 2017	-	61.7	88.4	95.2	SVDNet [61]	ICCV 2017	62.1	82.3	92.3	95.2
Pose Driven [60]	ICCV 2017	-	88.7	98.6	99.6	OL-MANS [80]	ICCV 2017	-	60.7	-	-
Part Aligned [74]	ICCV 2017	-	85.4	97.6	99.4	Pose Driven [60]	ICCV 2017	63.4	84.1	92.7	94.9
HydraPlus-Net [39]	ICCV 2017	-	91.8	98.4	99.1	Part Aligned [74]	ICCV 2017	63.4	81.0	92.0	94.7
MuDeep [49]	ICCV 2017	-	76.3	96.0	98.4	HydraPlus-Net [39]	ICCV 2017	-	76.9	91.3	94.5
JLML [29]	IJCAI 2017	-	83.2	98.0	99.4	JLML [29]	IJCAI 2017	65.5	85.1	-	-
MC-PPMN [43]	AAAI 2018	-	86.4	98.5	99.6	HA-CNN [30]	$\rm CVPR\ 2018$	75.7	91.2	-	-
Proposed SGGNN		94.3	95.3	99.1	99.6	Proposed SGGNN		82.8	92.3	96.1	97.4

CUHK03

Market-1501

DukeMTMC

Methods	Reference	DukeMTMC [52]					
Methous	Reference	mAP	top-1	top-5	top-10		
BoW+KISSME [75]	ICCV 2015	12.2	25.1	-	-		
LOMO+XQDA [34]	CVPR 2015	17.0	30.8	-	-		
ACRN [54]	CVPRW 2017	52.0	72.6	84.8	88.9		
OIM Loss $[65]$	CVPR 2017	47.4	68.1	-	-		
Basel.+LSRO [77]	ICCV 2017	47.1	67.7	-	-		
SVDNet [61]	ICCV 2017	56.8	76.7	86.4	89.9		
Proposed SGGNN		68.2	81.1	88.4	91.2		

Ablation Study

• Base Model: Only use the naïve node loss function.

• SGGNN w/o SG:
$$d_i^{(t+1)} = (1 - \alpha)d_i^{(t)} + \alpha \sum_{j=1}^N h(d_i, d_j)t_j^{(t)}$$
, where $h(*,*)$ is an inner product function.

Methods	Market	-1501 [75	6] CUHF	K03 [28]] DukeN	ITMC [52]
Methods	mAP	top-1	mAP	top-1	mAP	top-1
Base Model	76.4	91.2	88.9	91.1	61.8	78.8
Base Model + SGGNN w/o SC	£ 81.2	90.6	92.7	93.6	67.3	80.5
Base Model + SGGNN	82.8	92.3	94.3	95.3	68.2	81.1

Normal Ablation Study.

Model	Market-1501 [75] CUHK03 [28] DukeMTMC [52]							
	mAP	top-1	mAP	top-1	mAP	top-1		
Base Model	74.6	90.4	87.6	91.0	60.3	77.6		
Base Model + SGGNN w/o SG	75.4	90.4	87.7	91.5	61.7	78.1		
Base Model $+$ SGGNN	76.7	91.5	88.1	93.6	64.6	79.1		

To show SGGNN also learns better visual features. Evaluate the performance by directly calculating the I2 distance between probe and gallery image features from ResNet-50 model

Conclusion

- Present SGGNN to incorporate the rich gallery-gallery similarity information into training process.
- + Consider the relationship between each probe-gallery pair.
- + Add directly label supervision for guidance.
- A complete graph might be slow when the number of nodes increasing.