Person Re-identification with Deep Similarity-Guided Graph Neural Network

Yantao Shen, Hongsheng Li, Shuai Yi, Dapeng Chen, Xiaogang Wang

CUHK-SenseTime Joint Lab, SenseTime Research
ECCV 2018

Problem

- Weakness of the Existing Person Re-ID Models:

- Ignore the relationship information between different probe-gallery pairs.
- Hard samples are difficult to get proper similarity scores.
- Main Idea: Update s2 by s1 and s3.

Comparison

Conventional Approach

SGGNN Approach

Graph Formulation

- An undirected complete graph $G(V, E)$.
- Each node $\boldsymbol{v}_{\boldsymbol{i}}$ represents a pair of probe-gallery images.
- Node features are processed difference features.

Graph Illustration

Node Feature Generating

Naïve Node Loss Function I

- $L=-\sum_{i=1}^{N} y_{i} \log \left(f\left(d_{i}\right)\right)+\left(1-y_{i}\right) \log \left(1-f\left(d_{i}\right)\right)$
- $f()$ is a linear classifier followed by a sigmoid function.

Similarity-Guided Graph Neural Network

- Intuition: Using gallery-gallery similarity scores to guide the refinement of the probe-gallery relation features.
- Updating Node Feature: Original Feature + Fusion Feature.
- $d_{i}^{(t+1)}=(1-\alpha) d_{i}^{(t)}+\alpha \sum_{j=1}^{N} W_{i j} t_{j}^{(t)}$ for $i=1,2, \ldots, N$

Similarity-Guided Graph Neural Network

- Updating: $d_{i}^{(t+1)}=(1-\alpha) d_{i}^{(t)}+\alpha \sum_{j=1}^{N} W_{i j} t_{j}^{(t)}$ for $i=1,2, \ldots, N$
- $W_{i j}$ is a scalar edge weight, represents the relation importance between node i and node j.
- $W_{i j}=\left\{\begin{array}{c}\frac{\exp \left(S\left(g_{i}, g_{j}\right)\right)}{\Sigma_{j} \exp \left(S\left(g_{i}, g_{j}\right)\right)}, i \neq j \\ 0, \quad i=j\end{array}\right.$
- $S()$ is a pairwise similarity function.
- Set $t=1$ in both training and testing.

Update Node Loss Function II

- $L=-\sum_{i=1}^{N} y_{i} \log \left(s_{i}\right)+\left(1-y_{i}\right) \log \left(1-s_{i}\right)$
- Similarity estimator is a linear classifier followed by a sigmoid function.

Datasets, Metrics, Experiments

- Datasets: CUHK03, Market-1501, DukeMTMC
- Metrics: mAP and CMC top-1, top-5, top-10 accuracies.

Methods	Conference	mAP	CUHK03 [28]		top-10
			top-1	top-5	
Quadruplet Loss [9]	CVPR 2017	-	75.5	95.2	99.2
OIM Loss [65]	CVPR 2017	72.5	77.5	-	-
SpindleNet [73]	CVPR 2017	-	88.5	97.8	98.6
MSCAN [26]	CVPR 2017	-	74.2	94.3	97.5
SSM [2]	CVPR 2017	-	76.6	94.6	98.0
k-reciprocal [78]	CVPR 2017	67.6	61.6	-	-
VI+LSRO [77]	ICCV 2017	87.4	84.6	97.6	98.9
SVDNet [61]	ICCV 2017	84.8	81.8	95.2	97.2
OL-MANS [80]	ICCV 2017	-	61.7	88.4	95.2
Pose Driven [60]	ICCV 2017	-	88.7	98.6	99.6
Part Aligned [74]	ICCV 2017	-	85.4	97.6	99.4
HydraPlus-Net [39]	ICCV 2017	-	91.8	98.4	99.1
MuDeep [49]	ICCV 2017	-	76.3	96.0	98.4
JLML [29]	IJCAI 2017	-	83.2	98.0	99.4
MC-PPMN [43]	AAAI 2018	-	86.4	98.5	99.6
Proposed SGGNN		94.3	95.3	99.1	99.6

Methods	Reference	Market-1501 [75]			
		mAP	top-1	top-5	top-10
OIM Loss [65]	CVPR 2017	60.9	82.1	-	-
SpindleNet [73]	CVPR 2017	-	76.9	91.5	94.6
MSCAN [26]	CVPR 2017	53.1	76.3	-	-
SSM [2]	CVPR 2017	68.8	82.2	-	-
k-reciprocal [78]	CVPR 2017	63.6	77.1	-	-
Point 2 Set [81]	CVPR 2017	44.3	70.7	-	-
CADL [35]	CVPR 2017	47.1	73.8	-	-
VI+LSRO [77]	ICCV 2017	66.1	84.0	-	-
SVDNet [61]	ICCV 2017	62.1	82.3	92.3	95.2
OL-MANS [80]	ICCV 2017	-	60.7	-	-
Pose Driven [60]	ICCV 2017	63.4	84.1	92.7	94.9
Part Aligned [74]	ICCV 2017	63.4	81.0	92.0	94.7
HydraPlus-Net [39]	ICCV 2017	-	76.9	91.3	94.5
JLML [29]	IJCAI 2017	65.5	85.1	-	-
HA-CNN [30]	CVPR 2018	75.7	91.2	-	-
Proposed SGGNN		82.8	92.3	96.1	97.4

DukeMTMC

Methods	Reference	DukeMTMC [52]			
		mAP	top-1	top-5	top-10
BoW+KISSME [75]		12.2	25.1	-	-
LOMO+XQDA [34]		17.0	30.8	-	-
ACRN [54]		52.0	72.6	84.8	88.9
OIM Loss [65]	CVPR 2017	47.4	68.1	-	-
Basel.+LSRO [77]	ICCV 2017	47.1	67.7	-	-
SVDNet [61]	ICCV 2017	56.8	76.7	86.4	89.9
Proposed SGGNN		$\mathbf{6 8 . 2}$	$\mathbf{8 1 . 1}$	$\mathbf{8 8 . 4}$	$\mathbf{9 1 . 2}$

Ablation Study

- Base Model: Only use the naïve node loss function.
- SGGNN w/o SG: $d_{i}^{(t+1)}=(1-\alpha) d_{i}^{(t)}+\alpha \sum_{j=1}^{N} h\left(d_{i}, d_{j}\right) t_{j}^{(t)}$, where $h(*, *)$ is an inner product function.

Methods	Market-1501 [75] CUHK03 [28]					DukeMTMC [52]
	mAP	top-1	mAP	top-1	mAP	top-1
	Normal Ablation Study.					
Base Model	76.4	91.2	88.9	91.1	61.8	78.8
Base Model + SGGNN w/o SG	81.2	90.6	92.7	93.6	67.3	80.5
Base Model + SGGNN	$\mathbf{8 2 . 8}$	$\mathbf{9 2 . 3}$	$\mathbf{9 4 . 3}$	$\mathbf{9 5 . 3}$	$\mathbf{6 8 . 2}$	$\mathbf{8 1 . 1}$

Model	Market-1501 [75] CUHK03 [28]				DukeMTMC [52]	
	mAP	top-1	mAP	top-1	mAP	top-1
Base Model	74.6	90.4	87.6	91.0	60.3	77.6
Base Model + SGGNN w/o SG	75.4	90.4	87.7	91.5	61.7	78.1
Base Model + SGGNN	$\mathbf{7 6 . 7}$	$\mathbf{9 1 . 5}$	$\mathbf{8 8 . 1}$	$\mathbf{9 3 . 6}$	$\mathbf{6 4 . 6}$	$\mathbf{7 9 . 1}$

To show SGGNN also learns better visual features. Evaluate the performance by directly calculating the 12 distance between probe and gallery image features from ResNet-50 model

Conclusion

- Present SGGNN to incorporate the rich gallery-gallery similarity information into training process.
- + Consider the relationship between each probe-gallery pair.
- + Add directly label supervision for guidance.
- - A complete graph might be slow when the number of nodes increasing.

