Emerging Properties in Self-Supervised Vision Transformers

Mathilde Caron, Hugo Touvron, Ishan Misra, Herv'e Jegou, Julien Mairal, Piotr Bojanowski, Armand Joulin,

Facebook AI Research, Inria, Sorbonne University

Dense Contrastive Learning for Self-Supervised Visual Pre-Training

Xinlong Wang, Rufeng Zhang, Chunhua Shen, Tao Kong, Lei Li

The University of Adelaide, Tongji University, ByteDance Al Lab

CVPR 2021 Oral

Arxiv 2021

Self-Supervised Representation Learning

- Learn image features without human labels
- Map similar semantics closer
- Transferrable to downstream tasks

Common Idea:

- Positive pair has similar features
- Negative pair has distinct features (Optional)

Previously on Self-Supervised Representation Learning

Emerging Properties in Self-Supervised Vision Transformers

Mathilde Caron, Hugo Touvron, Ishan Misra, Herv'e Jegou, Julien Mairal, Piotr Bojanowski, Armand Joulin,

Facebook AI Research, Inria, Sorbonne University

Dense Contrastive Learning for Self-Supervised Visual Pre-Training

Xinlong Wang, Rufeng Zhang, Chunhua Shen, Tao Kong, Lei Li

The University of Adelaide, Tongji University, ByteDance Al Lab

CVPR 2021 Oral

Arxiv 2021

Centering Softmax + Different temperatures Augmentation: Local / Global Views

Interpreted as self-distillation

Centering Softmax + Different temperatures Augmentation: Local / Global Views

Interpreted as self-distillation

Centering

Softmax + Different temperatures Augmentation: Local / Global Views

EMA center

$$c \leftarrow mc + (1-m)\frac{1}{B}\sum_{i=1}^{B} g_{\theta_t}(x_i),$$

Subtract the center from teacher features

(Moving first order BN)

Centering

Softmax + Different temperatures Augmentation: Local / Global Views

Softmax: Fake classification

Different temperatures

Making the student to be more confident gradually

Centering Softmax + Different temperatures Augmentation: Local / Global Views

Random Local or Global Views

ImageNet is object-centric Guess the object with partial view

Positive pair Negative pair Mean teacher Asymmetric training

Centering Softmax + Different temperatures Augmentation: Local / Global Views

Random Local or Global Views

Method	Arch.	Param.	im/s	Linear	k-NN	
Supervised	RN50	23	1237	79.3	79.3	
SCLR [12]	RN50	23	1237	69.1	60.7	
MoCov2 [15]	RN50	23	1237	71.1	61.9	
InfoMin [67]	RN50	23	1237	73.0	65.3	
BarlowT [81]	RN50	23	1237	73.2	66.0	
OBoW [27]	RN50	23	1237	73.8	61.9	
BYOL [30]	RN50	23	1237	74.4	64.8	
DCv2 [10]	RN50	23	1237	75.2	67.1	
SwAV [10]	RN50	23	1237	75.3	65.7	
DINO	RN50	23	1237	75.3	67.5	
Supervised	ViT-S	21	1007	79.8	79.8	
BYOL* [30]	ViT-S	21	1007	71.4	66.6	
MoCov2* [15]	ViT-S	21	1007	72.7	64.4	
SwAV* [10]	ViT-S	21	1007	73.5	66.3	
DINO	ViT-S	21	1007	77.0	74.5	
Comparison across architectures						
SCLR [12]	RN50w4	375	117	76.8	69.3	
SwAV [10]	RN50w2	93	384	77.3	67.3	
BYOL [30]	RN50w2	93	384	77.4	_	
DINO	ViT-B/16	85	312	78.2	76.1	
SwAV [10]	RN50w5	586	76	78.5	67.1	
BYOL [30]	RN50w4	375	117	78.6	_	
BYOL [30]	RN200w2	250	123	79.6	73.9	
DINO	ViT-S/8	21	180	79.7	78.3	
SCLRv2 [13]	RN152w3+SK	794	46	79.8	73.1	
DINO	ViT-B/8	85	63	80.1	77.4	

Linear / k-NN probe on ImageNet

Especially good for transformers

Attention maps from multiple heads

Vit [CLS]

Emerging Properties in Self-Supervised Vision Transformers

Mathilde Caron, Hugo Touvron, Ishan Misra, Herv'e Jegou, Julien Mairal, Piotr Bojanowski, Armand Joulin,

Facebook Al Research, Inria, Sorbonne University

Dense Contrastive Learning for Self-Supervised Visual Pre-Training

Xinlong Wang, Rufeng Zhang, Chunhua Shen, Tao Kong, Lei Li

The University of Adelaide, Tongji University, ByteDance AI Lab

CVPR 2021 Oral

Arxiv 2021

Feature vector at a location in a image Feature vector at corresponding location in the augmented view of the same image

> Feature vector at a location in a image Average of feature vectors of all locations in a different image

No pooling

Positive pair:

Negative pair:

Feature vector at a location in a image Feature vector at corresponding location in the augmented view of the same image

> Feature vector at a location in a image Average of feature vectors of all locations in a different image

No pooling

Positive pair:

Negative pair:

Correspondence: Matching of feature maps Computed from geometrics

Correspondence: Matching of feature maps Computed from geometrics

pre-train	AP	AP ₅₀	AP ₇₅
random init.	32.8	59.0	31.6
super. IN	54.2	81.6	59.8
MoCo-v2 CC	54.7	81.0	60.6
DenseCL CC	56.7	81.7	63.0
SimCLR IN [2]	51.5	79.4	55.6
BYOL IN [14]	51.9	81.0	56.5
MoCo IN [17]	55.9	81.5	62.6
MoCo-v2 IN [3]	57.0	82.4	63.6
MoCo-v2 IN*	57.0	82.2	63.4
DenseCL IN	58.7	82.8	65.2

Table 1 – Object detection fine-tuned on PASCAL VOC. **Table 4 – Semantic segmentation on PASCAL VOC and** 'CC' and 'IN' indicate the pre-training models trained on Cityscapes. 'CC' and 'IN' indicate the pre-training models COCO and ImageNet respectively. The models pre-trained on trained on COCO and ImageNet respectively. The metric is the

	Detection			Classification
strategy	AP	AP ₅₀	AP ₇₅	mAP
random	56.0	81.3	62.0	81.7
max-sim Θ	56.0	81.5	62.1	81.8
max-sim \mathbf{F}	56.7	81.7	63.0	82.9

Table 6 – Ablation study of matching strategy. To extract the dense correspondence according to the backbone features \mathbf{F}_1 and \mathbf{F}_2 shows the best results.

	pre-train	mIoU	pre-train	mIoU
	random init.	40.7	random init.	63.5
	super. IN	67.7	67.7 super. IN	
-	MoCo-v2 CC	64.5	MoCo-v2 CC	73.8
	DenseCL CC	67.5	DenseCL CC	75.6
	SimCLR IN	64.3	SimCLR IN	73.1
	BYOL IN	63.3	BYOL IN	71.6
	MoCo-v2 IN	67.5	MoCo-v2 IN	74.5
	DenseCL IN	69.4	DenseCL IN	75.7
(a) PASCAL VOC		(b) Cityscap	es	

Conclusion

- DINO: Self-supervised learning + ViT
- DenseCL: Self-supervised learning for dense prediction

Comments

- Datasets and augmentations matter
- Downstream tasks matter lacksquare