GLORIA: A Multimodal Global-Local Representation Learning Framework for Label-efficient Medical Image Recognition

- Shih-Cheng Huang, Liyue Shen, Matthew P. Lungren, Serena Yeung
 - Stanford University

ICCV 2021

Introduction

Task:

Multimodal representation learning for medical tasks

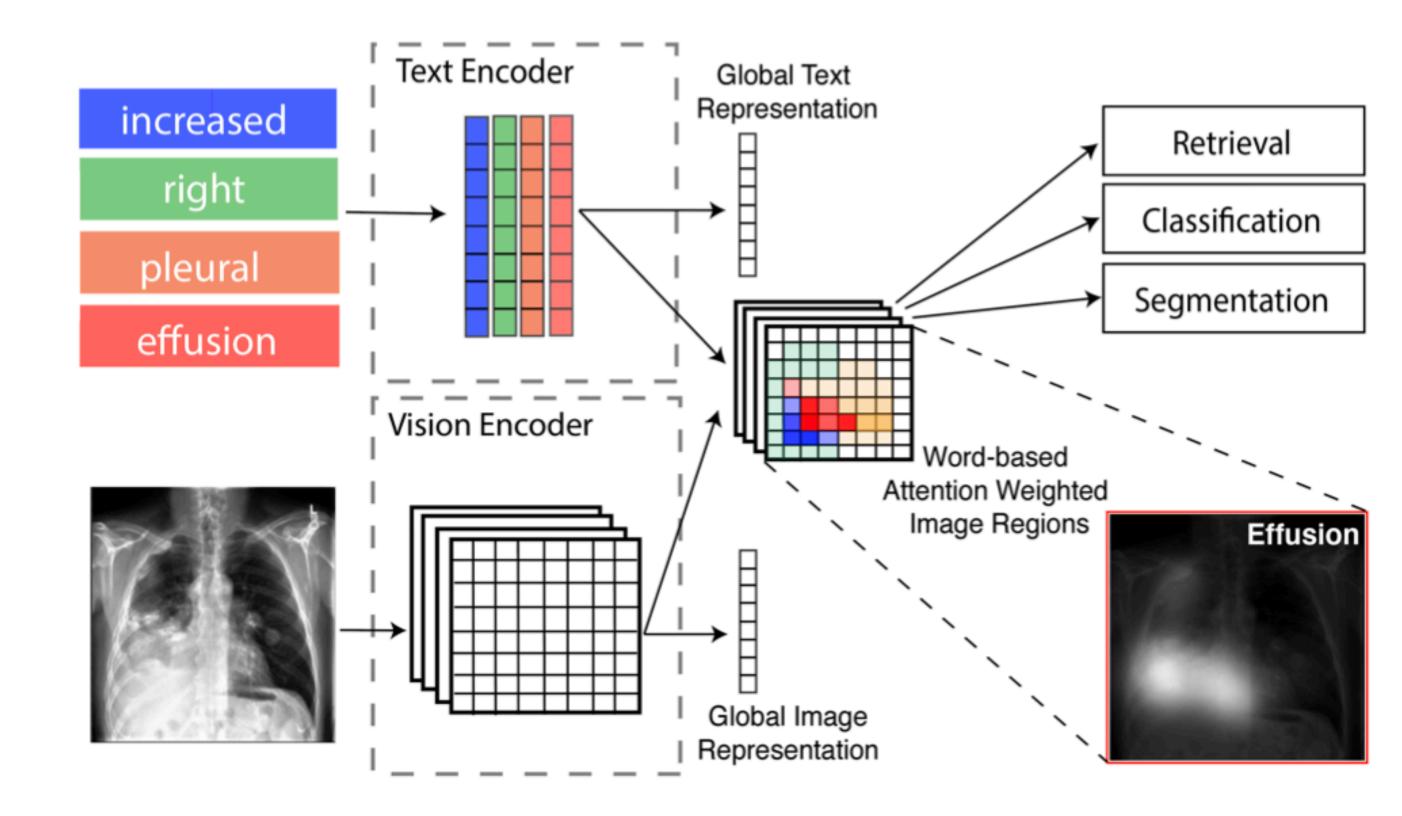
< radiology report, radiology image>

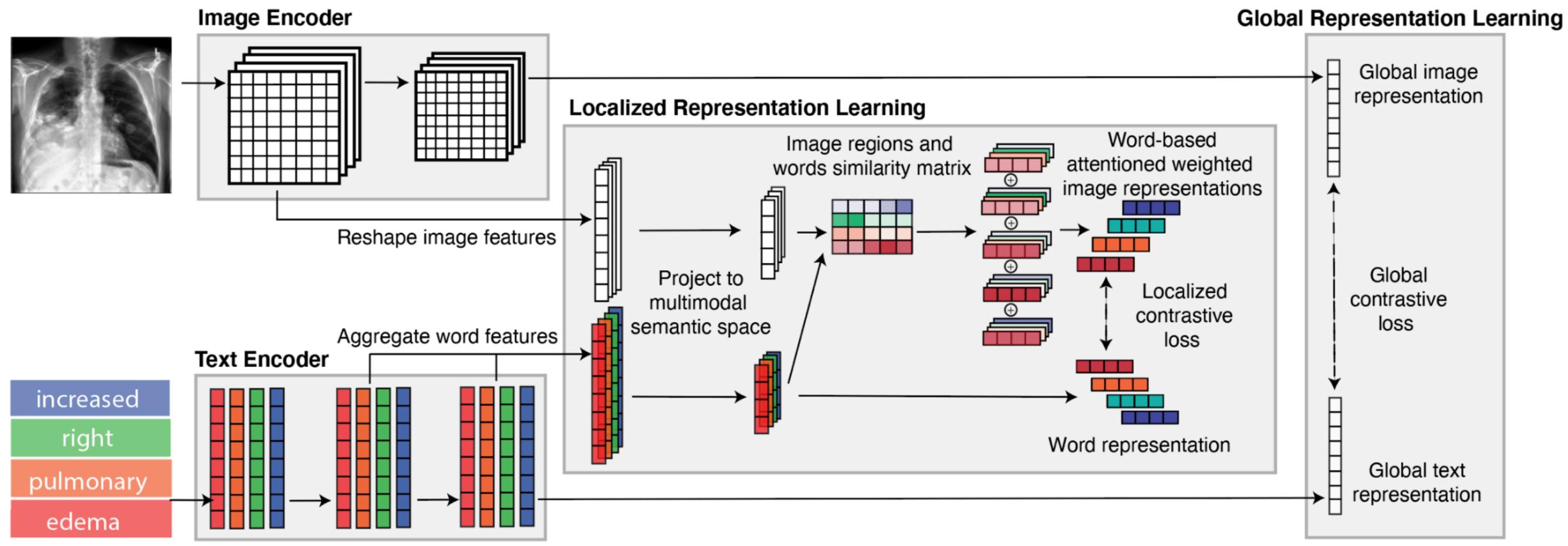
Idea:

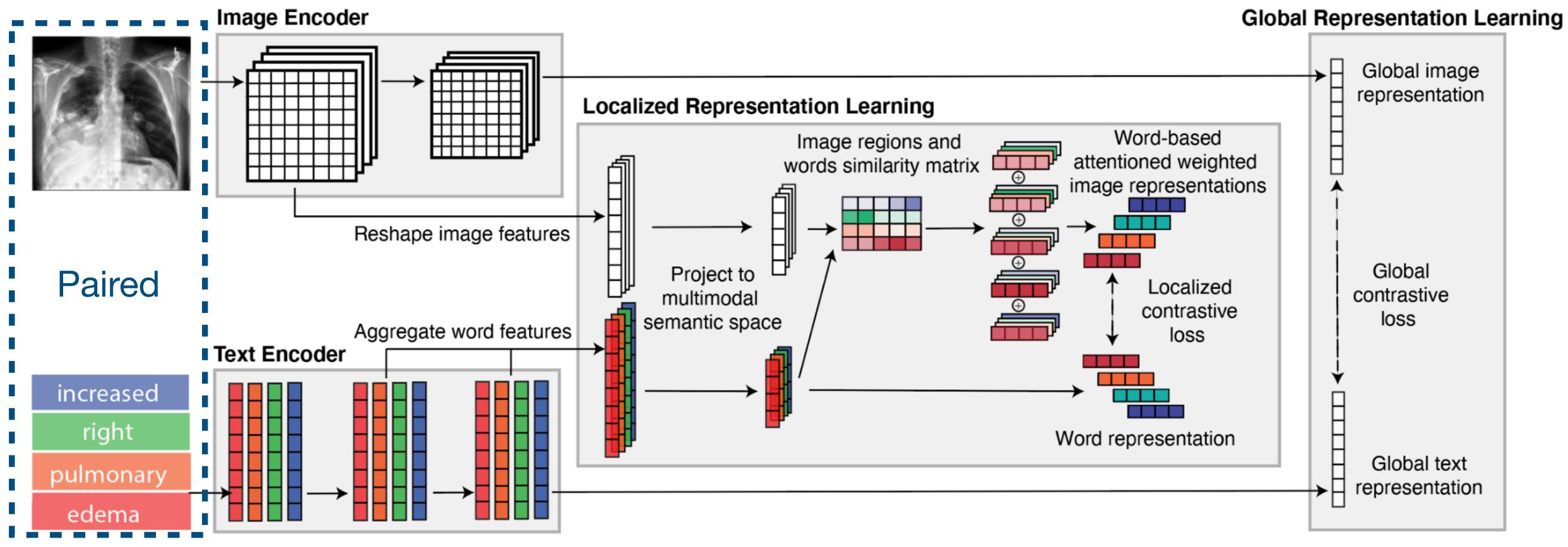
global-local representation learning by contrasting image sub-regions and report words

Transfer:

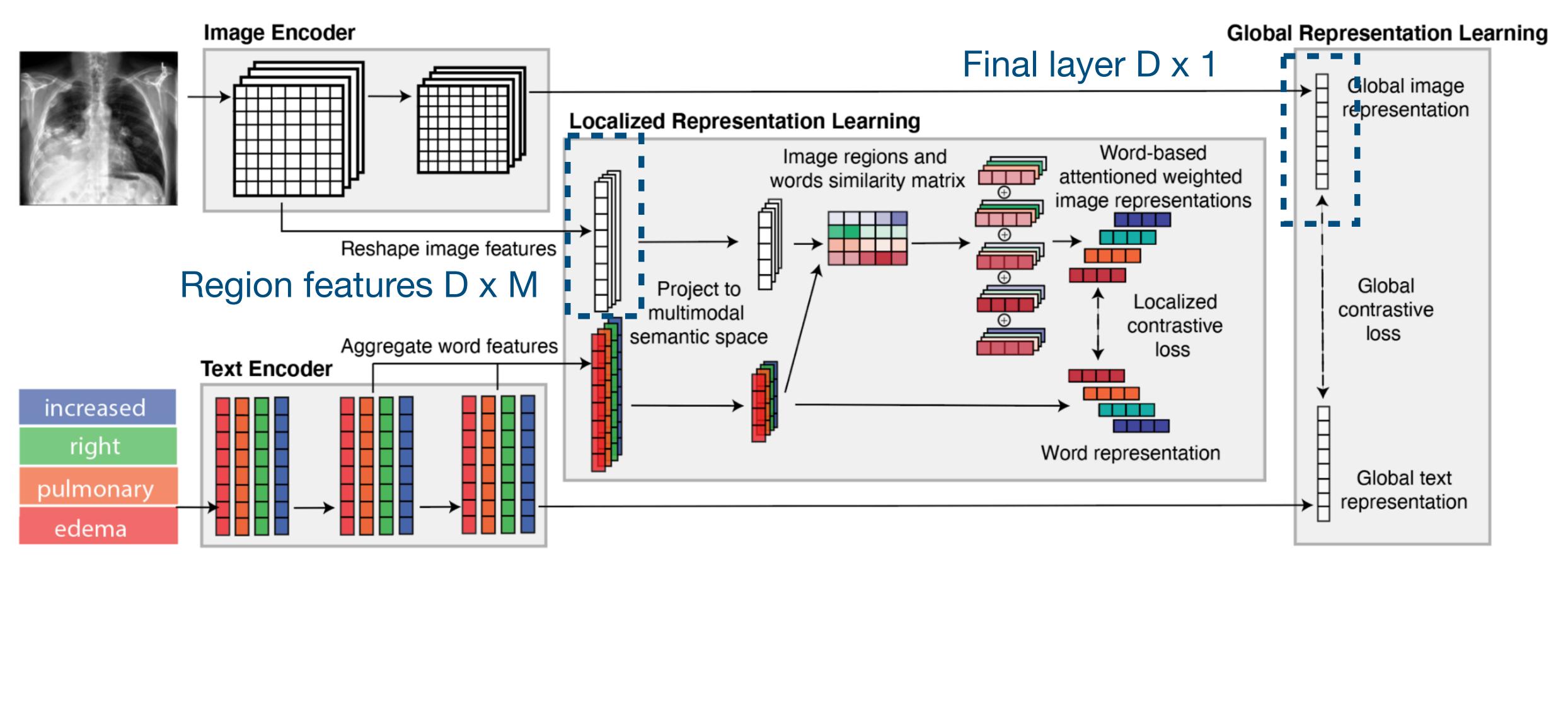
- image-text retrieval
- classification
- segmentation

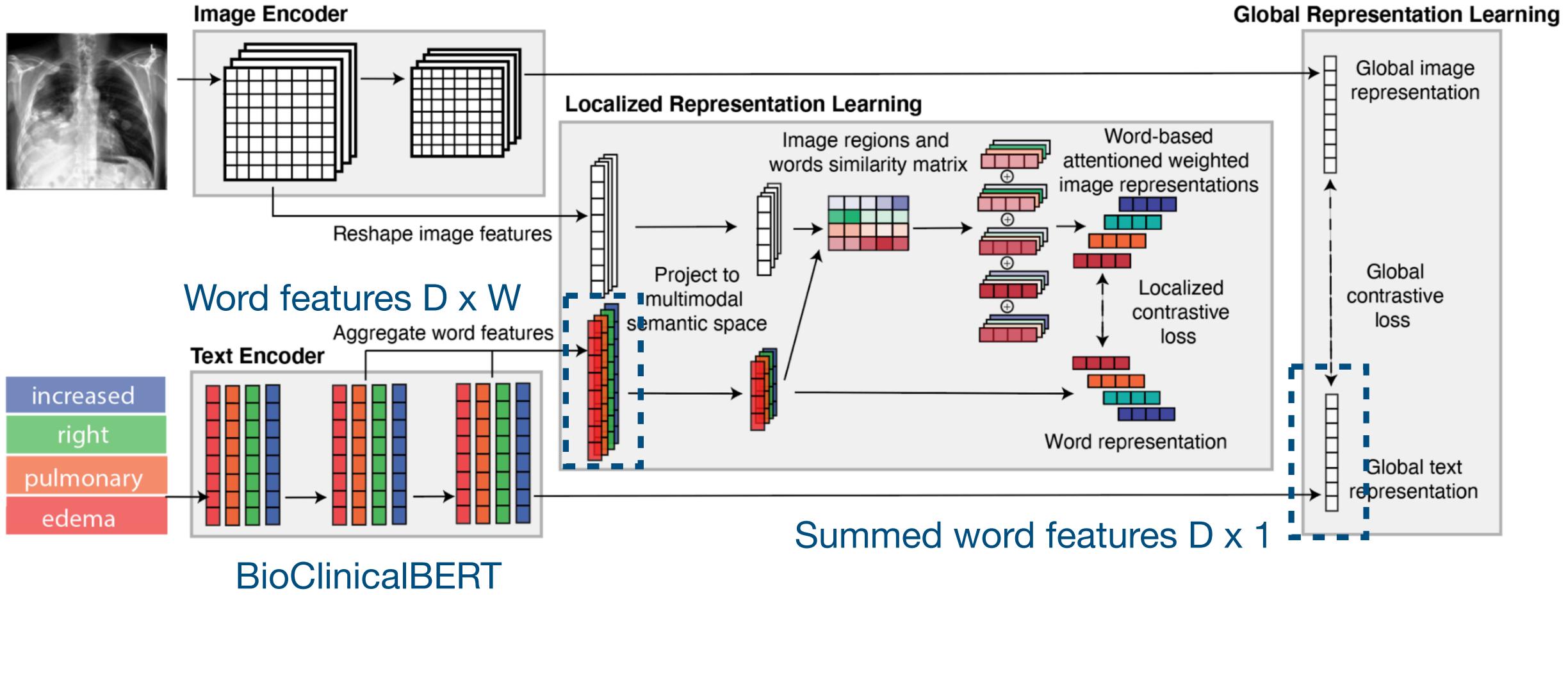


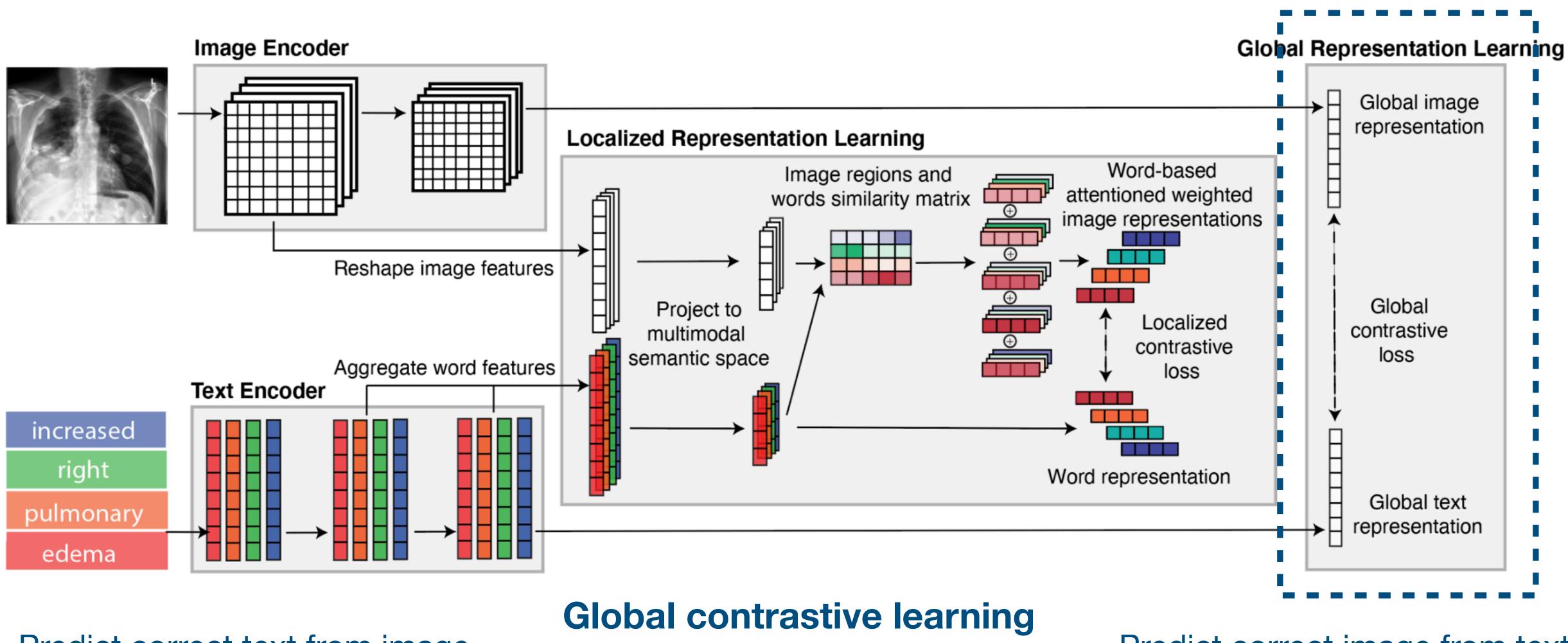




Resnet-50





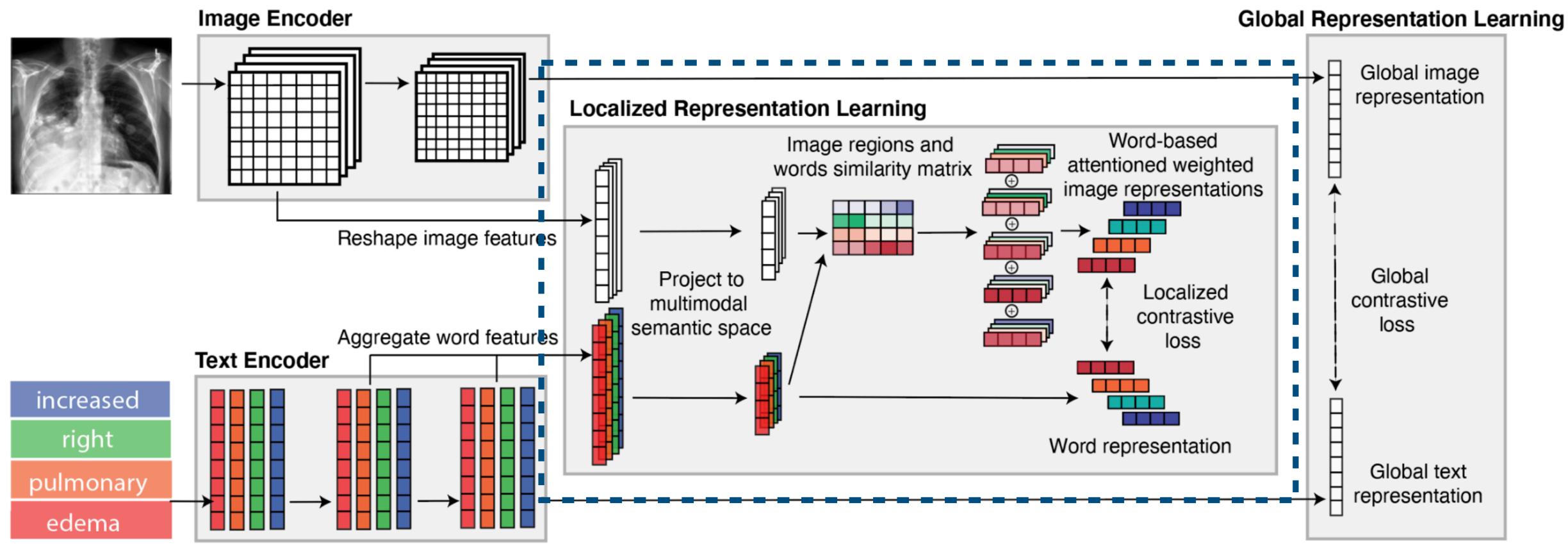


Predict correct text from image

$$L_g^{(v|t)} = \sum_{i=1}^N -\log(\frac{\exp(\langle v_{gi}, t_{gi} \rangle / \tau_1)}{\sum_{k=1}^N \exp(\langle v_{gi}, t_{gk} \rangle / \tau_1)})$$

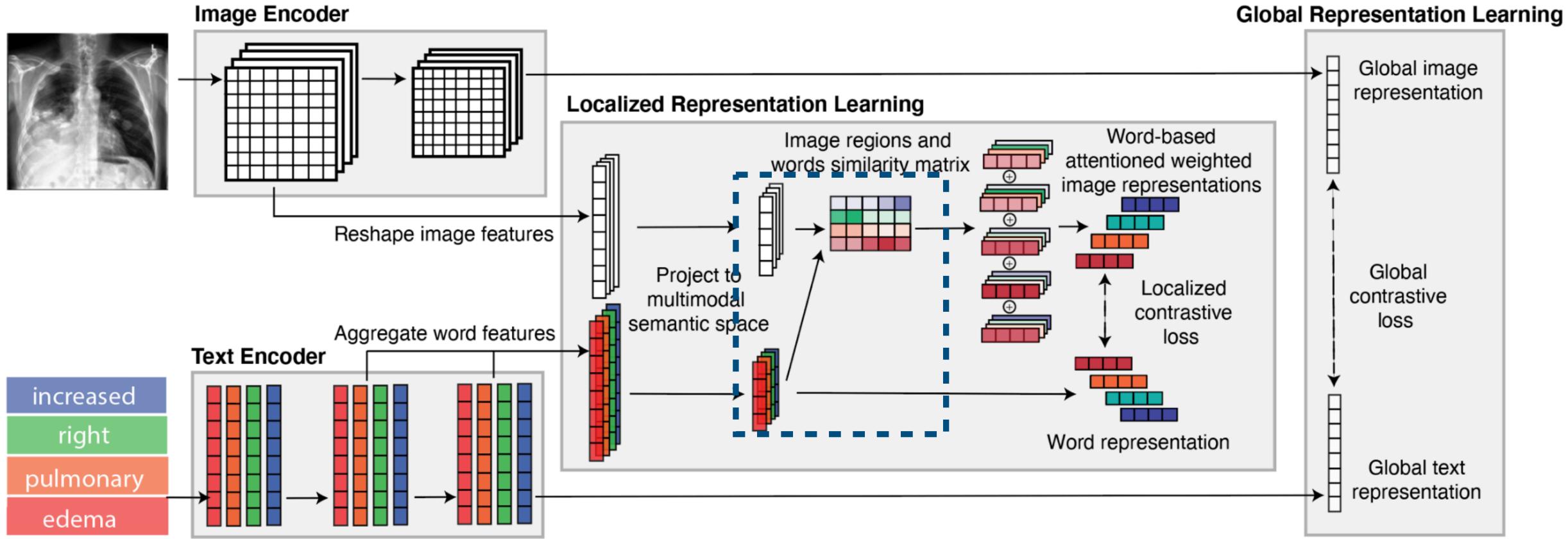
Predict correct image from text

$$L_g^{(t|v)} = \sum_{i=1}^N -\log(\frac{\exp(\langle v_{gi}, t_{gi} \rangle / \tau_1)}{\sum_{k=1}^N \exp(\langle v_{gk}, t_{gi} \rangle / \tau_1)})$$



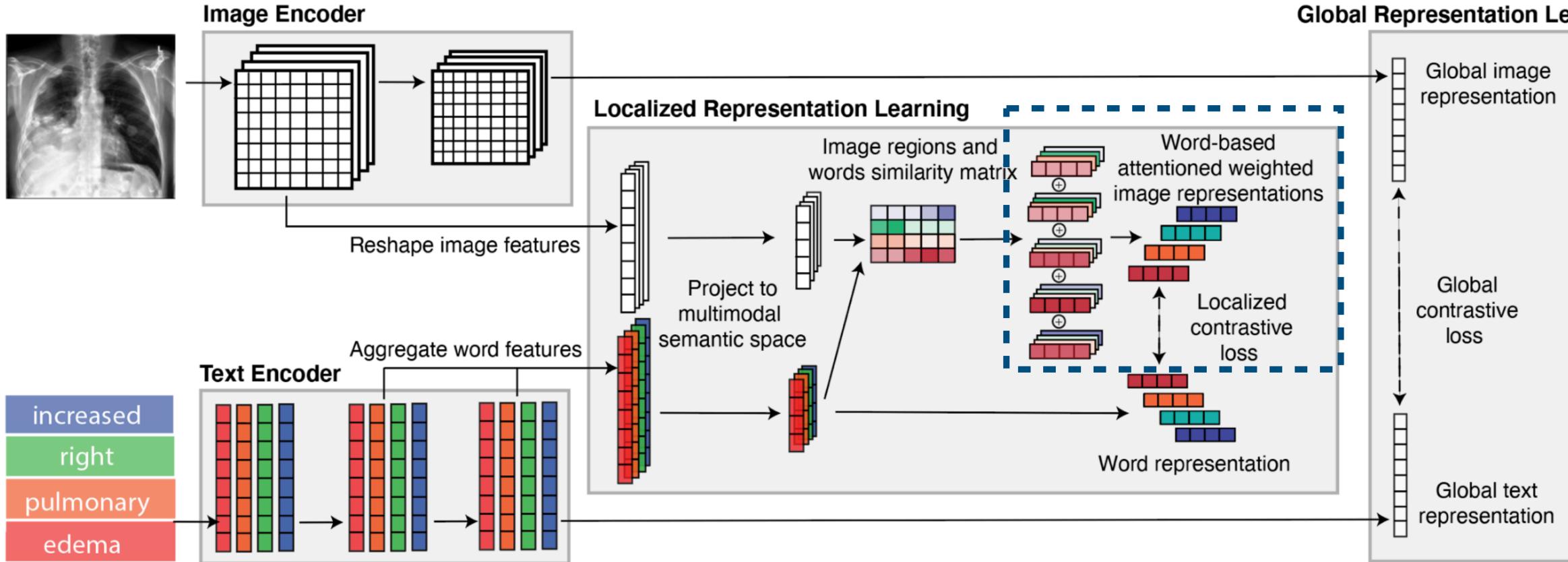
Local contrastive learning:

Learn attentions that weigh different image subregions based on their significance for a given word



Region-word similarity (M x W)

$$= v_l^T t_l$$

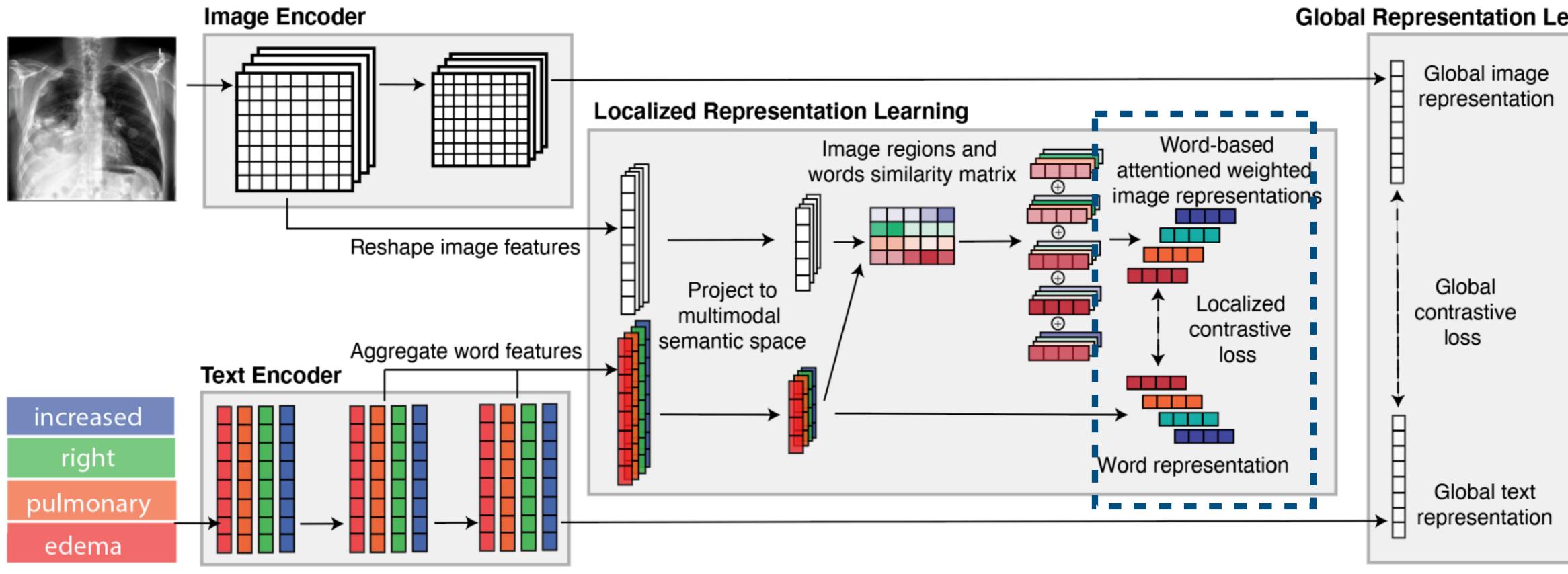


For each word *i*, compute a attention-weighted image region feature

$$a_{ij} = \frac{\exp(s_{ij}/\tau_2)}{\sum_{k=1}^{M} \exp(s_{ik}/\tau_2)}$$

Global Representation Learning

$$c_i = \sum_{j=0}^M a_{ij} v_j$$



Local contrastive learning:

Similar to global contrastive learning, but with a local matching function W $(\sum \exp(\langle c_i, t_li/\tau_3))^{\tau_3}$ i: word Z i=1

$$Z(v_{l,t_{l}}) = \log($$

Global Representation Learning

Global contrastive learning

Predict correct text from image

$$L_g^{(v|t)} = \sum_{i=1}^N -\log(\frac{\exp(\langle v_{gi}, t_{gi} \rangle / \tau_1)}{\sum_{k=1}^N \exp(\langle v_{gi}, t_{gk} \rangle / \tau_1)})$$

Predict correct image from text

$$L_g^{(t|v)} = \sum_{i=1}^N -\log(\frac{\exp(\langle v_{gi}, t_{gi} \rangle / \tau_1)}{\sum_{k=1}^N \exp(\langle v_{gk}, t_{gi} \rangle / \tau_1)})$$

Global contrastive learning

Predict correct text from image

$$L_g^{(v|t)} = \sum_{i=1}^N -\log(\frac{\exp(\langle v_{gi}, t_{gi} \rangle / \tau_1)}{\sum_{k=1}^N \exp(\langle v_{gi}, t_{gk} \rangle / \tau_1)})$$

$$L_l^{(v|t)} = \sum_{i=1}^N -\log(\frac{\exp(Z(\mathbf{V}_{i,t}]i)/\tau_2)}{\sum_{k=1}^N \exp(Z(\mathbf{V}_{i,t}]k)/\tau_2)})$$

Predict correct text from image

Local contrastive learning

Predict correct image from text

$$L_g^{(t|v)} = \sum_{i=1}^N -\log(\frac{\exp(\langle v_{gi}, t_{gi} \rangle / \tau_1)}{\sum_{k=1}^N \exp(\langle v_{gk}, t_{gi} \rangle / \tau_1)})$$

$$L_{l}^{(t|v)} = \sum_{i=1}^{N} -\log(\frac{\exp(Z(v_{li,t_{i})}/\tau_{2})}{\sum_{k=1}^{N}\exp(Z(v_{k,t_{i})}/\tau_{2})})$$

Predict correct image from text

Global contrastive learning

Predict correct text from image

$$L_g^{(v|t)} = \sum_{i=1}^N -\log(\frac{\exp(\langle v_{gi}, t_{gi} \rangle / \tau_1)}{\sum_{k=1}^N \exp(\langle v_{gi}, t_{gk} \rangle / \tau_1)})$$

$$L_l^{(v|t)} = \sum_{i=1}^N -\log(\frac{\exp(Z(\mathbf{V}_\mathbf{i}, t_\mathbf{i})/\tau_2)}{\sum_{k=1}^N \exp(Z(\mathbf{V}_\mathbf{i}, t_\mathbf{k})/\tau_2)})$$

Predict correct text from image

Predict correct image from text

$$L_g^{(t|v)} = \sum_{i=1}^N -\log(\frac{\exp(\langle v_{gi}, t_{gi} \rangle / \tau_1)}{\sum_{k=1}^N \exp(\langle v_{gk}, t_{gi} \rangle / \tau_1)})$$

$$L_{l}^{(t|v)} = \sum_{i=1}^{N} -\log(\frac{\exp(Z(v_li,t_li)/\tau_2)}{\sum_{k=1}^{N}\exp(Z(v_lk,t_li)/\tau_2)})$$

Predict correct image from text

Local contrastive learning

Regions and words in paired image and text should be better matched

Transfer

image-text retrieval: global similarity and local matching score

classification:

<u>zero-shot</u> classification by image-text similarity find the class with highest average similarity

• segmentation: fine-tune

- generate text for each class in terms of sub-types, severities and locations

Experiment

Image-text retrieval

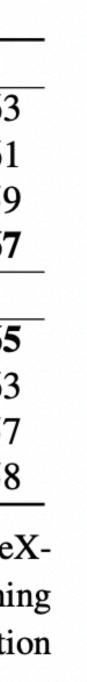
Method	Prec@5	Prec@10	Prec@100		CheXpert	Acc.	Sens.	Spec.	PPV	NPV	F1
DSVE [8]	40.64	32.77	24.74		100%	0.57	0.83	0.80	0.51	0.95	0.63
VSE++ [9]	44.28	36.81	26.89	Overfit	10%	0.55	0.76	0.82	0.51	0.92	0.61
ConVIRT [40] global only	66.98	63.06	49.03		1%	0.47	0.68	0.85	0.53	0.91	0.59
GLoRIA (Ours) - global only	67.02	64.68	49.55		Zero-shot	0.61	0.70	0.91	0.65	0.92	0.67
GLoRIA (Ours) - local only	68.22	64.58	48.17		RSNA	Acc	Sen	Spe	PPV	NPV	F1
GLoRIA (Ours)	69.24	67.22	53.78		100%	0.79	0.87	0.76	0.52	0.95	0.65
		•••==			10%	0.78	0.78	0.79	0.52	0.92	0.63
Table 1: Results of image-text retrieval on the CheXpert 5x200					1%	0.72	0.82	0.69	0.44	0.93	0.57
dataset. The top K Precision metrics are reported for $K =$					Zero-shot	0.70	0.89	0.65	0.43	0.95	0.58

-5, 10, 100. Ours method achieves the best performance by incorporating both global and local representations.

Zero-shot classification

Table 3: Results of zero-shot image classification on the CheXpert 5x200 and RSNA datasets. Note that representation learning framework is trained using CheXpert. We compare classification results with different amounts of training data for comparison.

Pre-trained on CheXpert Full



Experiment

Supervised classification: Linear classifier

	CheXpert			RSNA			
	1%	10%	100%	1%	10%	100%	
Random	56.1	62.6	65.7	58.9	69.4	74.1	
ImageNet	74.4	79.1	81.4	74.9	74.5	76.3	
DSVE [8]	50.1	51.0	51.5	49.7	52.1	57.8	
VSE++ [9]	50.3	51.2	524	49.4	57.2	67.9	
ConVIRT [40]	85.9	86.8	87.3	77.4	80.1	81.3	
GLoRIA (Ours)	86.6	87.8	88.1	86.1	88.0	88.6	

Table 2: Results of fine-tuned image classification (AUROC score) on CheXpert and RSNA test sets based on different portion of training data: 1%, 10%, 100%.

Experiment

Segmentation: U-Net

	Pneumothorax Segmenta				
Initialization Method	1%	10%	100%		
Random	0.090	0.286	0.543		
ImageNet	0.102	0.355	0.635		
ConVIRT [40]	0.250	0.432	0.599		
GLoRIA (Ours)	0.358	0.469	0.634		

Table 4: Results of image segmentation (Dice score) on SIIM dataset with different portion of training data: 1%, 10%, 100%.

Attention weights

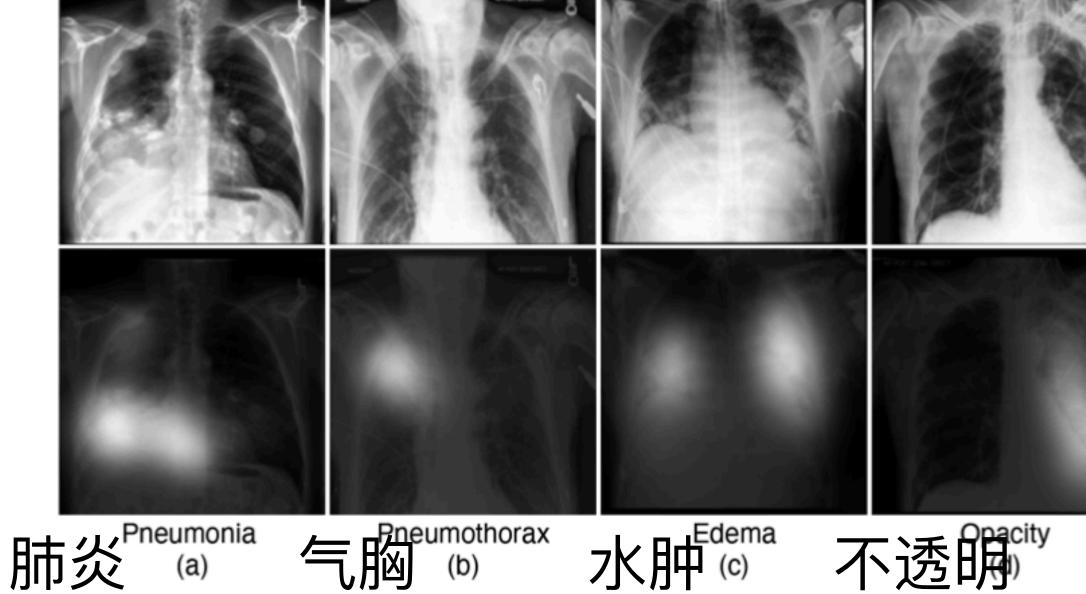


Figure 4: Examples of frontal radiographs of the chest (top) with corresponding attention weights for the given word (below).

Conclusion

- global + local representation learning for medical tasks
- local representation learning with region-word matching
- tested on chest X-ray

ning for medical tasks region-word matching

Most state-art-the art methods require pre- trained object detection model for local feature extraction, which is not applicable for medical images.

["Car", "dio", "mega", "ly"], it is important to understand the direct correspon- dence of the term "Cardiomegaly"