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Abstract. Surgical phase recognition is of particular interest to com-
puter assisted surgery systems, in which the goal is to predict what
phase is occurring at each frame for a surgery video. Networks with
multi-stage architecture have been widely applied in many computer
vision tasks with rich patterns, where a predictor stage first outputs
initial predictions and an additional refinement stage operates on the
initial predictions to perform further refinement. Existing works show
that surgical video contents are well ordered and contain rich temporal
patterns, making the multi-stage architecture well suited for the surgical
phase recognition task. However, we observe that when simply applying
the multi-stage architecture to the surgical phase recognition task, the
end-to-end training manner will make the refinement ability fall short
of its wishes. To address the problem, we propose a new non end-to-
end training strategy and explore different designs of multi-stage ar-
chitecture for surgical phase recognition task. For the non end-to-end
training strategy, the refinement stage is trained separately with pro-
posed two types of disturbed sequences. Meanwhile, we evaluate three
different choices of refinement models to show that our analysis and
solution are robust to the choices of specific multi-stage models. We
conduct experiments on two public benchmarks, the M2CAI16 Work-
flow Challenge and the Cholec80 dataset. The SOTA comparable re-
sults show that the multi-stage architecture holds the great potential to
boost the performance of existing single-stage models. Code is available
at https://github.com/ChinaYi/NETE.

Keywords: Surgical Phase Recognition · Surgical Workflow Segmenta-
tion · Multi-Stage Architecture.

1 Introduction

Surgical phase recognition is of particular interest to computer assisted surgery
systems, because it offers solutions to numerous demands of the modern oper-
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Fig. 1. Pipeline of multi-stage architecture.

ating room, such as monitoring surgical processes [1], scheduling surgeons [2]
and enhancing coordination among surgical teams [3]. This paper works on the
online surgical phase recognition task, which requires to predict what phase is
occurring at each frame without using the information of future frames.

Existing surgical phase recognition models can be divided into two groups.
The first group is single-stage models which output prediction results with the
input visual features, while the second group is the multi-stage models which
additionally stack a refinement stage over the prediction results to perform a
further refinement. In our opinion, the multi-stage architecture is the one which
is well-suited for the surgical phase recognition task. First of all, networks with
multi-stage architecture have been widely applied in many computer vision tasks
with rich patterns, such as human pose estimation [4, 5] and action segmenta-
tion [6]. Generally speaking, the idea of multi-stage architecture consists of a
predictor stage and a refinement stage, as shown in Fig. 1. Sometimes, due to
the hard-to-recognize visual features, the initial predictions output by the pre-
dictor stage may have errors that violate intrinsic patterns within the data. (i.e.
The tiny spikes of over-segmentation errors for a continuous action or human
pose estimation results that do not conform to the connections of human body
joint.) The initial predictions are thus further refined by the refinement stage.
Secondly, surgical video contents are well ordered and contain rich temporal pat-
terns. Some works have been motivated by utilizing the rich temporal patterns
to refine the predictions. The success in [7, 8] shows that it is possible for the
multi-stage architecture to rectify the misclassifications due to the ambiguous
visual features in the predictor stage.

However, we observe that the improvement of multi-stage structure in the
surgical phase recognition task is not as obvious as other tasks. Experiments
in [9] show that the performance improvement of the additional refinement stage
is very limited. This interesting phenomenon raises our concerns, why the multi-
stage architecture does not work as well as we expected?
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Fig. 2. Our non end-to-end training strategy where two stages are trained separately.

In this paper, we first answer the question of why with our analysis, and then
further give a solution of how to make multi-stage architecture work better for
surgical phase recognition task. The reason of why is two folds. Firstly, a common
issue for the multi-stage architecture is that the refinement stage cannot actually
learn how to refine with an end-to-end training manner. As shown in Fig. 1, the
supervision signal is applied in both the predictor stage and refinement stage.
After several epochs of training, the predictor stage will quickly converge to
the ground truth, which means that the initial predictions ŷp are almost 100%
correct during the training process. However, in the inference process with the
test data, ŷp still remain lots of errors due to imperfect predictor. The huge gap
between the inputs of the refinement stage during training and inference makes
the refinement ability fall short of its wishes. Secondly, in the case of end-to-end
training, the limited size of current datasets for surgery phase recognition cannot
afford the training of refinement stage which brings additional parameters. This
leads to a severe overfitting problem compared to the results of applying multi-
stage architecture to other vision tasks.

With the answer of why, we propose a non end-to-end training strategy where
the predictor stage and the refinement stage are trained separately to solve
the above two issues simultaneously. As shown in Fig. 2, the predictor stage is
trained with the raw video data. To reduce the gap between the inputs of the
refinement stage during training and inference, two types of training sequences
for refinement stage are carefully designed to simulate the real output of the
predictor during inference, denoted as cross-validate type and mask-hard-frame
type respectively. Meanwhile, as the refinement stage is separately trained with
the two types of carefully designed training sequences, the over-fitting problem
for surgical phase recognition can also be alleviated.

Besides the training strategy, we further explore the designs of multi-stage
architecture by evaluating three different temporal models for the refinement
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stage, including TCN (offline) [10], causal TCN (online) [10] and GRU (on-
line) [11]. As for the predictor stage, we use the causal TCN in [9] for its high
efficiency and good performance. In principle, our solution can be applied to
any single-stage predictor model. Extensive experiments are conducted on two
public benchmarks, M2CAI16 [12] and Cholec80 [13]. Results show that all three
refinement models trained with our strategy successfully boost the performance
of the single predictor stage, demonstrating that our analysis and solution are
robust to different choices of refinement models. And the SOTA comparable re-
sults show that the multi-stage architecture holds the great potential to boost
the performance of existing single-stage models.

2 Related Work

Existing surgical phase recognition models can be divided into two groups. The
first group is single-stage models which output prediction results with the input
visual features. For example, a number of works utilized dynamic time warp-
ing [14, 15], conditional random field [16], and variations of Hidden Markov
Model (HMM) [17, 18] over extracted visual features. [7] trained an end-to-end
RNN model that first used a very deep ResNet to extract visual features for each
frame and then applied a LSTM network to model the temporal dependencies
of sequential frames. [19] proposed a LSTM-based temporal network structure
that leveraged task-specific network representation to collect long-term suffi-
cient statistics that were propagated by a sufficient statistics model. In addition,
with the wide application of transformer in computer vision, there are also some
single-stage models based on transformer. [20] used a novel attention regular-
ization loss which encouraged the transformer model to focus on high-quality
frames during training, and the attention weights could be utilized to identify
characteristic high attention frames for each surgical phase, which could further
help the surgery summarization. [21] proposed a hybrid embedding aggregation
transformer model which used cleverly designed spatial and temporal embed-
dings by allowing for active queries based on spatial information from temporal
embedding sequences.

The second group is the multi-stage models which additionally stack a refine-
ment stage over the prediction results to perform a further refinement. [9] is the
first one which brought in multi-stage architecture for surgical phase recognition
task. They used a causal TCN [10] to output initial predictions over pre-extracted
CNN features, and then appended another causal TCN [10] to refine the pre-
dictions. [22] proposed a multi-task multi-stage temporal convolutional network
along with a multi-task convolutional neural network training setup to jointly
predict the phases and steps and benefit from their complementarity to better
evaluate the execution of the procedure.

In addition, some surgical phase recognition models used data augmentation
techniques to improve performance, such as cross validation and hard frames
detection. Cross validation is the simplest way to make part of training data
unseen to the predictor model, so that the unseen part of data could be used to



Not End-to-End 5

simulate the real predictions during the inference. Besides, the concept of hard
frames was first proposed by [8], which denoted the frames that were not rec-
ognizable from their visual appearance. They observed that single-stage models
usually made mistakes on hard frames, so they found out all the hard frames in
the training videos and mapped them to corresponding phases separately.

3 Methods

The multi-stage architecture stacks a refinement stage over the predictor stage
sequentially. We propose a training strategy where these two stages are trained
separately and explore designs of multi-stage architecture. We first introduce the
predictor stage and its training in Sec. 3.1, then describe the generation process
of disturbed prediction sequences in Sec. 3.2, and finally discuss the refinement
stage and its training in Sec. 3.3. It is worth noting that, although we train the
multi-stage architecture in a non end-to-end manner, the inference process is
still end-to-end as the normal multi-stage architecture.

3.1 Predictor Stage

We use causal TCN in [9] to get the initial predictions for its high efficiency and
good performance. Instead of the general temporal convolutions which depend
on both n past and n future frames, the causal temporal convolutions only rely
on the current and previous frames and thus meet the demand of online surgical
phase recognition. In principle, the predictor model can be any online model. The
input of the causal TCN is the frame-wise extracted features from a pre-trained
CNN. Denote the output prediction sequence as ŷp ∈ RC×T . For each frame, the
output is a vector of size C denoting the classification probability for each class.
For the loss function Lp, we use a combination of cross-entropy classification loss
and a smoothing loss [23] by deploying a mean square error over the classification
probabilities of every two adjacent frames. The loss function writes as

Lp =
1

T

T∑
t=1

−log(ŷp(c,t))

+
1

TC

C∑
m=1

T−1∑
t=1

|ŷp(m,t) − ŷp(m,t+1)|
2
.

(1)

3.2 Disturbed Prediction Sequence Generation

The input of the refinement stage is the prediction results ŷp output by the
predictor stage. During the inference, ŷp will remain lots of errors due to the
imperfect predictor. In order to achieve better refinement results, we should min-
imize the distribution gap between the preliminary prediction results in training
and inference. Thus, we design two types of disturbed prediction sequences by
simulating the imperfect prediction results of the predictor model during the
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Fig. 3. (a) The generation of mask-hard-frame type. (b) The generation of cross-
validate type.

inference. Note that the generation of both two types of disturbed prediction
sequences are related to the predictor model, since we cannot directly obtain the
prediction sequences from the raw video data.

Mask-Hard-Frame Type. The concept of hard frames was proposed by [8],
which denoted the frames that were not recognizable from their visual appear-
ance. Their work shows that single-stage models usually make mistakes on hard
frames. Motivated by this, we seek to add perturbations to the prediction of
these hard frames. We first train a predictor model with the normal video data.
Then, we follow the rule of [8] to find out hard frames in the training set and add
perturbations on those hard frames by using a black mask to cover the whole
image. Finally, we pass the perturbed video data to the predictor model to get
the disturbed prediction sequence. The workflow is shown in Fig. 3(a).

Cross-Validate Type. Cross validation is the simplest way to make part of
training data unseen to the predictor model, so that the unseen part of data
could be used to simulate the real predictions of the predictor model during
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Fig. 4. (a) An overview of causal TCN, which can be performed online. The dilation
factor is doubled at each causal layer, i.e. 1, 2, 4, ...., 1024. (b) The architecture of the
causal convolutions with different dilation factors.

the inference. Specifically, we randomly partition the training videos into K
groups of equal size. Each time, a single group is retained for validation, and the
remaining K − 1 groups are used to train a predictor model. And then, we use
the trained predictor model to obtain the predictions of the retained video to
get the prediction sequence. The workflow is shown in Fig. 3(b). We set K = 10
in our experiments.

3.3 Refinement Stage

For a training set with N training videos, both two methods can generate N
perturbed prediction sequences to train the refinement model. Both two types
of disturbed sequences are used to train the refinement stage in following ex-
periments except for special specification. For the loss function of the refine-
ment stage, we use the cross-entropy loss. For the choice of specific refinement
model, we evaluate three common temporal models, including TCN [10], causal
TCN [10] and GRU [11]. We chose these three models as the refinement models
because these are the three most common temporal models. In addition, stacking
several predictors sequentially has shown significant improvements in many tasks
like human pose estimation and action segmentation. The stacked architecture is
composed of several models sequentially such that each model operates directly
on the output of the previous one. So we also stack single GRU stages to form
a stacked GRU for the refinement stage.

Causal TCN. The overview of causal TCN is illustrated in Fig. 4(a). The first
layer of causal TCN is a 1 × 1 convolutional layer, that adjusts the dimension
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Fig. 5. The overview of single GRU network. The GRU unit employs three gates to
modulate the interactions between the GRU cells and the environment. The dimension
of the hidden state is set to 128.

of the input features from 2048-d to 64-d. Then, this layer is followed by several
layers of dilated causal convolutions, as shown in Fig. 4(b). The causal convo-
lution is different from common temporal convolution, for each time step t and
filter length d, it convolves from Xt−d to Xt, which meets the demands of online
surgical phase recognition. Note that we do not use temporal pooling layer, be-
cause it might results in a loss of fine-grained information that is necessary for
phase recognition. Instead, we use a dilation factor that is doubled at each causal
layer, i.e. 1, 2, 4, ...., 1024, to enlarge the temporal receptive field. Finally, we
apply a 1× 1 convolution over the output of the last dilated causal convolution
layer to get the probability vector dimension.

Single GRU. Gated Recurrent Unit (GRU) is a popular variant of Recurrent
Neural Network (RNN). The architecture of GRU is shown in Fig. 5. The GRU
unit employs three gates, i.e., a reset gate rt, an update gate zt and a new gate
nt, to modulate the interactions between the GRU cells and the environment.
The dimension of the hidden state is set to 128. At timestep t, given input pt
(probability vector of frame Xt belonging to each phase), hidden state ht−1, the
GRU unit updates with following equations:

rt = σ(Wirpt + bir +Whrh(t−1) + bhr) ,

zt = σ(Wizpt + biz +Whzh(t−1) + bhz) ,

nt = tanh(Winpt + bin + rt ∗ (Whnh(t−1) + bhn)) ,

ht = (1− zt) ∗ nt + zt ∗ h(t−1) .

(2)

In above equations, σ is the sigmoid function, and ∗ is the Hadamard product.
To get the refined predictions, we additionally apply a fully connected layer over
the hidden state.

Stacked GRU. The refinement model takes an initial prediction as input, and
then outputs a refined prediction. It is natural to come up with the idea that if
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we stack multiple refinement models sequentially, each model will successively
operate on the refined predictions of the previous one. The effect of such compo-
sition is an incremental refinement of the predictions from the previous model.
Therefore, in the architecture of stacked GRU, the input to the latter GRU is the
refined result from the previous GRU, not the hidden state. The set of operations
at each GRU in stacked GRU can be formally described as follows:

P0 = p̂1:T ,

Ps = GRU(Ps−1) .
(3)

In above equations, Ps is the refined predictions at sth GRU and GRU is the
single-stage GRU discussed before. As for loss function, different from single-
stage refinement models, we use the cross entropy loss on the refined probability
sequence of each GRU.

3.4 Training Details

We employ the ResNet50 [24] as the visual feature extractor to extract off-the-
shelf video features. Specifically, the ResNet50 is trained frame-wise without
temporal information through cross-entropy loss. The dimension of the input
ResNet50 features is 2048-d. With the pre-extracted video features, we train the
predictor stage for 100 epochs with initial learning rate 1e-4 and Adam optimizer.
For the refinement stage, we train the model for 40 epochs with two proposed
disturbed sequences.

4 Experiment

4.1 Dataset

M2CAI16 Workflow Challenge Dataset. M2CAI16 dataset [12] contains 41
laparoscopic videos that are acquired at 25 fps of cholecystectomy procedures,
and 27 of them are used for training and 14 videos are used for testing. These
videos are segmented into 8 phases by experienced surgeons.

Cholec80 Dataset. Cholec80 dataset [13] contains 80 videos of cholecystec-
tomy surgeries performed by 13 surgeons. The dataset is divided into training
set (40 videos) and testing set (40 videos). These videos are segmented into 7
phases and are captured at 25 fps.

4.2 Metrics

To quantitatively analyze the performance of our method, we use three met-
rics [7] including the jaccard index (JACC ), recall (Rec) and accuracy (Acc).
Among them, Acc quantitatively evaluates the amount of correctly classified
phases in the whole video, while Rec and JACC evaluate the results for each
individual phase.
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Table 1. Comparison of multi-stage architectures with three different choices of re-
finement models under the end-to-end training strategy and ours on Cholec80 dataset.
Predictor denotes single-stage predictor without the refinement stage.

Method Acc JACC Rec
Predictor 88.8±6.3 73.2±9.8 84.9±7.2
End-to-End+GRU 87.1±7.8 69.7±12.6 83.2±9.4
End-to-End+causal TCN 87.7±6.3 77.7±11.2 84.3±6.3
End-to-End+TCN 89.8±6.6 75.8±8.4 87.4±7.5
Ours+GRU 90.8±7.0 75.5±11.1 85.6±10.0
Ours+causal TCN 91.0±5.2 74.2±11.8 84.1±9.6
Ours+TCN 92.8±5.0 78.7±9.4 87.5±8.3

4.3 End-to-End VS. Not End-to-End

In this section, we evaluate the performance of multi-stage architectures with
the end-to-end training strategy and our non end-to-end training strategy on
the Cholec80 dataset. Results are shown in Table 1. We can observe that, with
the end-to-end training strategy, the multi-stage architecture only achieves com-
parable results with the single-stage predictor. When we use causal TCN or
GRU as the refinement model, performance is even slightly worse possibly due
to the over-fitting problem. Such results are consistent with the results in [9].
Meanwhile, all three refinement models trained with our proposed disturbed
sequences largely boost the performance of the predictor, which proves our pre-
vious analysis above the multi-stage architecture and shows that our solution
is effective and not sensitive to the choices of different refinement models. Al-
though TCN achieves the best performance as the refinement model, however,
it does not meet the constraint of online surgical phase recognition because it
needs information from future frames. So, we explore GRU as the refinement
model for further experiments.

Fig. 6 shows the qualitative results of GRU as the refinement model under
the end-to-end training strategy and our non end-to-end training strategy on
the Cholec80 dataset. We can observe that the results of single-stage predictor
and end-to-end multi-stage model both contain a large number of short surgical
phases, which do not meet the temporal continuity and destroy the smoothness
of the predicted results. Besides, the result of end-to-end multi-stage model also
contains more prediction errors than single-stage predictor. These results clearly
highlight the ability of the multi-stage architecture trained with our solution
which obtains consistent and smooth predictions.

4.4 Stacked Number of GRUs in Refinement Model

In this section, we use the stacked GRU as the refinement stage model. During
training, the stacked GRU is trained as a whole with the two proposed sequences
and the loss function is applied on the output of each GRU. Results of the stacked
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Fig. 6. Qualitative results on the Cholec80 dataset of the multi-stage architectures
trained with end-to-end manner and ours. GRU is used for the refinement stage. (a)
is the ground truth. (b) is the prediction from the single-stage predictor. (c) is the
prediction from the multi-stage architecture trained with end-to-end manner. (d) is
the prediction from the multi-stage architecture trained with our solution.

Table 2. Effects of the stacked number of GRUs on the Cholec80 dataset.

Method Acc JACC Rec
Single GRU 90.8±7.0 75.5±11.1 85.6±10.0
Stacked GRU(2 GRU) 91.3±6.1 75.9±11.2 84.4±10.0
Stacked GRU(3 GRU) 91.5±7.1 77.2±11.2 86.8±8.5
Stacked GRU(4 GRU) 90.8±5.8 74.2±15.9 83.1±14.6

GRU with different numbers of GRUs on the Cholec80 dataset are shown in Ta-
ble 2. We get the best results when stacking 3 GRUs sequentially on the Cholec80
dataset. In order to give an intuitive explanation about how the stacked refine-
ment model works, we also show the qualitative results of a video in different
stages for a stacked GRU with 3 GRUs in Fig. 7. Fig. 7(a) shows the predictions
at each stage, and Fig. 7(b) shows the probability sequences of the predictions.
We can observe that adding more GRUs results in an incremental refinement of
the predictions. We also conduct experiments on the M2CAI16 dataset. Results
of the stacked GRU with different numbers of GRUs on the M2CAI16 dataset
are shown in Table 3. we can observe that the experiments get the best results
when stacking 2 GRUs, which is less than that of the Cholec80 dataset. This
may due to the fact that the size of M2CAI16 is smaller.

Table 3. Effects of the stacked number of GRUs on the M2CAI16 dataset.

Method Acc JACC Rec
Single GRU 86.2±9.1 72.6±11.6 90.0±11.7
Stacked GRU(2 GRU) 88.2±8.5 75.1±10.6 91.4±11.2
Stacked GRU(3 GRU) 86.9±10.2 72.7±11.1 89.9±9.2
Stacked GRU(4 GRU) 87.0±8.4 72.4±11.0 89.0±12.3
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Fig. 7. (a) Qualitative results for the predictions in each GRU of the stacked GRU
on the Cholec80 dataset. (b) Qualitative results for the probability sequences of the
predictions in each GRU of the stacked GRU.

4.5 Impact of Disturbed Prediction Sequence

The disturbed prediction sequence for training the refinement stage is very im-
portant. In this section, we conduct ablative experiments by using different com-
binations of the disturbed prediction sequences and other augmentation tech-
niques. For the multi-stage architecture, we use the stacked GRU with 3 GRUs
as the refinement stage. Besides the mask-hard-frame type and the cross-validate
type, we additionally designed the random-mask type and the normal-noise type.
Different from mask-hard-frame type, the random-mask type randomly masks
frames, no matter how important the masked frames are. The normal-noise type
adds Gaussian noise with different standard deviations to the output of the pre-
dictor model to simulate the imperfect prediction results of the predictor model
during the inference. Table 4 shows the results on the Cholec80 dataset. First, if
we only use one type of disturbed sequence, the performances will drop due to
the lack of training data. Meanwhile, we can observe that, the refinement stage
trained with the random-mask type is not as good as the mask-hard-frame type.
This demonstrates the importance of the location to add perturbations. Only
when those frames that are not easily classified correctly during inference are
masked, the sequence obtained is most similar to the real situation, and that’s
why the result of mhf is better than rm. In addition, when using one augmenta-
tion method, the way of adding noise performs better than the mask-hard-frame
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Table 4. Results of the multi-stage architectures trained with different augmentation
techniques. Abbreviations: cv for the cross-validate type, mhf for the mask-hard-frame
type, rm for the random-mask type, nn for the normal-noise type.

Method Acc JACC Rec
nn(σ = 0.3) 88.9±6.3 72.8±9.4 83.6±9.6
nn(σ = 0.5) 89.3±6.4 74.2±9.1 84.8±8.2
nn(σ = 0.7) 89.1±6.4 73.2±9.7 84.2±9.2
cv 89.6±5.6 70.4±13.5 83.5±13.2
mhf 88.7±9.4 70.6±9.4 81.8±9.9
rm 86.5±7.8 69.7±10.9 82.4±7.0
nn+cv 90.4±5.3 72.9±14.6 85.6±10.6
nn+mhf 89.2±7.2 71.9±10.5 82.7±9.7
nn+rm 87.4±6.8 69.2±11.5 82.6±8.6
cv+mhf 91.5±7.1 77.2±11.2 86.8±8.5
nn+cv+mhf 92.0±5.3 77.1±11.5 87.0±7.3
cv+rm+mhf 91.0±6.8 75.3±13.4 85.4±10.3
nn+cv+rm+mhf 91.7±5.2 76.0±12.6 86.4±9.5

type and the random-mask type. And when combined with the other methods,
the normal-noise type improves the performance of other methods and achieves
the SOTA performance. These results show that adding Gaussian noise to the
output of the predictor model is also an effective perturbation, and it can play
a complementary role to the disturbed prediction sequences.

4.6 Comparison with the SOTA Methods

In order to compare our solution with the SOTA methods, we use a stacked
GRU with 3 GRUs and a stacked GRU with 2 GRUs as the refinement stage
for the Cholec80 dataset and the M2CAI16 dataset, respectively. Table 5 and
Table 6 show the results. Compared with the single-stage predictor causal TCN,
multi-stage architecture trained with our solution largely boosts its performance.
Noting that TeCNO [9] is also a multi-stage network, where causal TCN is used
for both predictor stage and refinement stage. We can observe that, when sim-
ply applying the multi-stage network on surgical phase recognition task, the
end-to-end training makes the refinement ability fall out of its wishes, TeCNO
only achieves comparable results with the single-stage predictor causal TCN.
However, when applying our strategy, the advantage of multi-stage network is
revealed, which proves that our previous analysis above the multi-stage archi-
tecture and shows that our solution is effective. Besides, compared with these
SOTA methods, our method is comparable to Trans-SVNet [21] on the Cholec80
dataset and much better than the other methods, while on the M2CAI16 dataset,
our method outperforms all other methods.
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Table 5. Comparison with the SOTA methods on the Cholec80 dataset.

Method Acc JACC Rec
ResNet [8] 78.3±7.7 52.2±15.0 -
PhaseLSTM [25] 80.7±12.9 64.4±10.0 -
PhaseHMM [25] 71.1±20.3 62.4±10.4 -
EndoNet [13] 81.7±4.2 - 79.6±7.9
EndoNet-GTbin [13] 81.9±4.4 - 80.0±6.7
SV-RCNet [7] 85.3±7.3 - 83.5±7.5
OHFM [8] 87.0±6.3 66.7±12.8 -
TeCNO [9] 88.6±2.7 - 85.2±10.6
OperA [20] 85.8±1.0 - 87.7±0.7
Trans-SVNet [21] 90.3±7.1 79.3±6.6 88.8±7.4
causal TCN 88.8±6.3 73.2±9.8 84.9±7.2
Ours 92.0±5.3 77.1±11.5 87.0±7.3

Table 6. Comparison with the SOTA methods on the M2CAI16 dataset.

Method Acc JACC Rec
ResNet [8] 76.3±8.9 56.4±10.4 -
PhaseLSTM [25] 72.5±10.6 54.8±8.9 -
PhaseHMM [25] 79.5±12.1 64.1±10.3 -
SV-RCNet [7] 81.7±8.1 65.4±8.9 81.6±7.2
OHFM [8] 84.8±8.0 68.5±11.1 -
Trans-SVNet [21] 87.2±9.3 74.7±7.7 87.5±5.5
causal TCN 84.1±9.6 69.8±10.7 88.3±9.6
Ours 88.2±8.5 75.1±10.6 91.4±11.2

5 Conclusion and Future Work

In this paper, we observe that the end-to-end training manner makes the re-
finement ability of the multi-stage architecture fall out of its wishes. In order to
solve the problem, we propose a new non end-to-end training strategy and ex-
plore different designs of multi-stage architectures for surgical phase recognition
task. To minimize the distribution gap between the training and inference, we
generate two types of disturbed sequences as the input of the refinement stage.
In the future, we will explore other different predictor models, and apply our
solution to other computer vision tasks where the multi-stage architecture is
widely applied.
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