

2D Amodal Instance Segmentation Guided by 3D Shape Prior

¹ Advanced Institute of Information Technology, Peking University, Hangzhou, China ² National Engineering Research Center of Visual Technology, School of Computer Science, Peking University, Beijing, China

What is amodal instance segmentation?

Predict the complete mask of the occluded instance, including both visible and invisible regions.

Visible Instance Segmentation

Amodal Instance Segmentation

Observations:

2D amodal mask is the **projection** of 3D model 3D model can be **reconstructed** from 2D instances

Our Purpose:

- 1. Build a bridge between 2D and 3D
 - 2. Use 3D model as shape prior

- **Step 1**: Visible Instance Segmentation
- **Step 2**: Single-view **Unsupervised** 3D Reconstruction
- **Step 3**: Unsupervised Learning for Viewpoint Estimation
- **Step 4**: Differentiable Render for Projecting 3D to 2D
- **Step 5**: Region-specific Edge Refine

Zhixuan Li^{1,2}, Weining Ye², Tingting Jiang^{\boxtimes 1,2}, and Tiejun Huang²

Comparison with SOTA

Methods	Airplane	Bench	Dresser	Car	Chair	Display	Lamp	Speaker	Rifle	Sofa	Table	Phone	Vessel	mIoU
Deocclusion [36] _{CVPR'20}	24.9	67.4	45.3	58.8	83.7	78.4	77.9	15.2	<u>48.7</u>	48.1	39.5	23.8	71.9	52.2
Mask-RCNN [9] _{ICCV'17}	73.4	66.0	92.4	93.5	89.3	90.0	77.4	88.5	30.0	86.0	73.1	89.8	80.5	79.2
ORCNN [7] _{WACV'19}	71.5	61.1	92.0	92.7	88.8	88.8	79.5	88.7	32.8	85.6	72.5	89.0	80.0	78.7
BCNet $[17]_{\text{CVPR'21}}$	73.0	75.1	93.8	89.4	86.6	88.7	81.6	90.2	32.8	83.4	77.5	88.7	74.8	78.2
ShapeDict [30] _{AAAI'21}	75.2	68.5	93.7	93.6	88.4	89.3	78.1	88.6	34.4	87.3	74.8	90.7	80.9	80.3
Ours (no pretrain)	77.9	80.8	94.2	92.8	79.7	87.5	67.8	90.5	69.9	90.3	86.2	92.1	81.3	83.9

On the ShapeNet dataset

Qualitative Results

On the ShapeNet dataset

- End-to-end trainable amodal instance segmentation. WACV. 2019 [9] He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. ICCV. 2017
- CVPR. 2021
- segmentation and shape prior. AAAI. 2020

Our approach:

Experiments:

3D Shape Prior in Viewpoint 2

2D Amoda

Prediction

References:

[7] Follmann, P., Konig, R., Hartinger, P., Klostermann, M., Bottger, T.: Learning to see the invisible: [17] Ke, L., Tai, Y.W., Tang, C.K.: Deep occlusion-aware instance segmentation with overlapping bilayers.

[30] Xiao, Y., Xu, Y., Zhong, Z., Luo, W., Li, J., Gao, S.: Amodal segmentation based on visible region

[36] Zhan, X., Pan, X., Dai, B., Liu, Z., Lin, D., Loy, C.C.: Self-supervised scene deocclusion. CVPR. 2020