
Decomposed Cross-modal Distillation for RGB-based Temporal Action Detection

Pilhyeon Lee1 Taeoh Kim2 Minho Shim2 Dongyoon Wee2 Hyeran Byun1*

1Yonsei University 2Naver Cloud, AI Tech.
B lph1114@yonsei.ac.kr

Abstract

Temporal action detection aims to predict the time inter-
vals and the classes of action instances in the video. Despite
the promising performance, existing two-stream models ex-
hibit slow inference speed due to their reliance on compu-
tationally expensive optical flow. In this paper, we intro-
duce a decomposed cross-modal distillation framework to
build a strong RGB-based detector by transferring knowl-
edge of the motion modality. Specifically, instead of direct
distillation, we propose to separately learn RGB and motion
representations, which are in turn combined to perform ac-
tion localization. The dual-branch design and the asymmet-
ric training objectives enable effective motion knowledge
transfer while preserving RGB information intact. In addi-
tion, we introduce a local attentive fusion to better exploit
the multimodal complementarity. It is designed to preserve
the local discriminability of the features that is important
for action localization. Extensive experiments on the bench-
marks verify the effectiveness of the proposed method in en-
hancing RGB-based action detectors. Notably, our frame-
work is agnostic to backbones and detection heads, bring-
ing consistent gains across different model combinations.

1. Introduction
With the popularization of mobile devices, a significant

number of videos are generated, uploaded, and shared ev-
ery single day through various online platforms such as
YouTube and TikTok. Accordingly, there arises the impor-
tance of automatically analyzing untrimmed videos. As one
of the major tasks, temporal action detection (or localiza-
tion) [56] has attracted much attention, whose goal is to find
the time intervals of action instances in the given video. In
recent years, a lot of efforts have been devoted to improving
the action detection performance [28–30, 36, 37, 74, 79, 84].

Most existing action detectors take as input two-stream
data consisting of RGB frames and motion cues, e.g., opti-
cal flow [21, 66, 78]. Indeed, it is widely known that differ-
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Figure 1. Comparison between conventional distillation and ours.

Framework Method Average mAP (%)
RGB+OF RGB ∆

Anchor-based G-TAD [74] 41.5 26.9 −14.6

Anchor-free AFSD [34] 52.4 43.3 −9.1
Actionformer [80] 62.2 55.5 −6.7

DETR-like TadTR [42] 56.7 46.0 −10.7

Proposal-free TAGS [47] 52.8 47.9 −4.9

Table 1. Impact of motion modality. We measure the average mAP
under the IoU thresholds of [0.3:0.7:0.1] on THUMOS’14.

ent modalities provide complementary information [6, 24,
58, 69]. To examine how much two-stream action detec-
tors rely on the motion modality, we conduct an ablative
study using a set of representative models1. As shown in
Table 1, regardless of the framework types, all the mod-
els experience sharp performance drops when the motion
modality is absent, probably due to the static bias of video
models [11, 27, 31, 32]. This indicates that explicit motion
cues are essential for accurate action detection.

However, two-stream action detectors impose a cycle of
dilemmas for real-world applications due to the heavy com-
putational cost of motion modality. For instance, the most
popular form of motion cues for action detection, TV-L1

optical flow [66], is not real-time, taking 1.8 minutes to
process a 1-min 224 × 224 video of 30 fps on a single
GPU [58]. Although cheaper motion clues such as temporal
gradient [63, 70, 85] can be alternatives, two-stream models
still exhibit inefficiency at inference by doubling the net-

1Each model is reproduced by its official codebase.
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work forwarding process. Therefore, it would be desirable
to build strong RGB-based action detectors that can bridge
the performance gap with two-stream methods.

To this end, we focus on cross-modal knowledge distilla-
tion [12,16], where the helpful knowledge of motion modal-
ity is transferred to an RGB-based action detector during
training in order to improve its performance. In contrast to
conventional knowledge distillation [19, 20, 46, 52] where
the superior teacher guides the weak student, cross-modal
distillation requires exploiting the complementarity of the
teacher and student. However, existing cross-modal distil-
lation approaches [12,13] fail to consider the difference and
directly transfer the motion knowledge to the RGB model
(Fig. 1a), as conventional distillation does. By design, the
RGB and motion information are entangled with each other,
making it difficult to balance between them. As a result,
they often achieve limited gains without careful tuning.

To tackle the issue, we introduce a novel framework,
named decomposed cross-modal distillation (Fig. 1b). In
detail, our model adopts the split-and-merge paradigm,
where the high-level features are decomposed into appear-
ance and motion components within a dual-branch design.
Then only the motion branch receives the distillation signal,
while the other branch remains intact to learn appearance in-
formation. For explicit decomposition, we adopt the shared
detection head and the asymmetric objective functions for
the branches. Moreover, we design a novel attentive fusion
to effectively combine the multimodal information provided
by the two branches. In contrast to existing attention meth-
ods, the proposed fusion preserves local sensitivity which
is important for accurate action detection. With these key
components, we build a strong action detector that produces
precise action predictions given only RGB frames.

We conduct extensive experiments on the popular bench-
marks, THUMOS’14 [22] and ActivityNet1.3 [4]. Experi-
mental results show that the proposed framework enables
effective cross-modal distillation by separating the RGB
and motion features. Consequently, our model largely im-
proves the performance of RGB-based action detectors, ex-
hibiting its superiority over conventional distillation. The
resulting RGB-based action detectors effectively bridge the
gap with two-stream models. Moreover, we validate our ap-
proach by utilizing another motion clue, i.e., temporal gra-
dient, which has been underexplored for action detection.

To summarize, our contributions are three-fold: 1) We
propose a decomposed cross-modal distillation framework,
where motion knowledge is transferred in a separate way
such that appearance information is not harmed. 2) We de-
sign a novel attentive fusion method that is able to exploit
the complementarity of two modalities while sustaining the
local discriminability of features. 3) Our method is gener-
alizable to various backbones and detection heads, showing
consistent improvements.

2. Related Works

2.1. Temporal Action Detection

Temporal action detection requires predicting tempo-
ral intervals as well as action categories for all action in-
stances occurring in the video. Conventional methods adopt
the two-stage pipeline (i.e., proposal-and-classification) and
generate proposals by either sliding windows [7, 55, 72,
76, 77, 86] or predicting the per-frame starting and ending
probabilities [33, 36, 37, 84]. Besides, several methods fo-
cus on proposal refinement to improve the detection per-
formance [49, 79, 88]. Meanwhile, analogous to one-stage
object detection [39, 50], anchor-free models are proposed
for efficient action detection [34, 80]. Inspired by the re-
cent success of DETR [5], query-based action detectors
are also designed to streamline the complicated detection
pipeline [42,53,60]. In an orthogonal direction, some works
showcase the benefit of end-to-end training of video back-
bones for temporal action detection [10, 40, 73].

Most of the current action detectors leverage two-stream
inputs for accurate action localization. However, the optical
flow takes heavy computations, suggesting the necessity of
RGB-based action detection models. In this paper, we pro-
pose a novel distillation framework to build a strong RGB-
based action detector by transferring motion knowledge.

2.2. Cross-modal Knowledge Distillation

Knowledge distillation [20] is originally devised to
transfer the knowledge of large-scale models (teachers) to
smaller ones (students). Existing approaches can be catego-
rized into three groups based on what types of knowledge
are distilled: responses, features, and relations. Response-
based methods encourage the student to produce similar
predictions to those of the teacher [3,9,20,81]. Meanwhile,
feature-based distillation methods pursue the matching of
intermediate features between students and teachers [46,52,
57, 65]. Lastly, relation-based models focus on aligning the
inter-sample relationship between the teacher and the stu-
dent [43, 48, 61]. In practice, the three types of distillation
are often used in a combinational form [14, 81, 87].

As a subset, cross-modal knowledge distillation aims to
transfer knowledge of one modality to another modality.
Generally, the model taking the superior modality on the
target task is selected as the teacher and guides the inferior
modality model [51, 83]. On the other hand, in the regime
of action analysis, there is no dominant modality, and it is
crucial to grasp the complementarity of different modali-
ties [6, 58]. However, existing works [12, 13, 16, 45] ig-
nore this property and directly inject motion knowledge into
the RGB model, leading to entangled representations. In
contrast, we propose a decomposed distillation framework,
where different modality information is separately learned
and recomposed for effective action detection.
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3. Method
Problem formulation. The input of temporal action de-
tection models is a video V ∈ RT×3×H×W consisting of a
total of T frames with the size of H ×W . Here the video
length T can vary across input videos. Since most of the
action detectors are based on two-stream inputs, the optical
flow maps are additionally extracted from each pair of con-
secutive RGB frames. We denote the optical flow maps by
F ∈ RT×2×H×W , where each map Ft is composed of two
channels that respectively estimate the displacements of x
and y axes. During training, the input video is labeled with
its corresponding annotation Ψ = {(ϕm,ym)}Mm=1, where
ym is the category label of the m-th action instance and
ϕm = (tsm , tem) indicates its starting and ending times-
tamps. Typically, the class label ym ∈ RC is a one-hot
vector, where C indicates the number of categories. In the
test phase, a two-stream action detector localizes the action
instances based on both V and F . Differently, to bypass
time-consuming optical flow extraction and inefficient in-
ference, we aim to build an RGB-based action detector that
takes only V as input. To this end, we leverage a pre-trained
motion model as the teacher and transfer its knowledge to
the RGB-based action detector in a decomposed way.
Motion modality. Conventionally, optical flow is utilized
as the motion modality for action detection [7, 37]. Mean-
while, another form of the motion modality, i.e., tempo-
ral gradient, has recently been explored for action recogni-
tion [70,71]. Inspired by this, we explore temporal gradient
for temporal action detection for the first time. The tem-
poral gradient maps G ∈ RT×3×H×W is defined by the
residual difference between two consecutive frames, i.e.,
Gt = Vt − Vt−1, which implicitly captures motion infor-
mation such as camera moving, object moving, etc. Fig. 2
exemplifies an RGB frame and the corresponding optical
flow and temporal gradient. Although vulnerable to noises
like environmental changes, the temporal gradient can be
obtained on-the-fly and thus have the potential to be utilized
as a weak form of motion modality. Indeed, it is shown in
the experiments that its motion knowledge helps to improve
the action detection performance. In the following, we will
elaborate on our framework using optical flow maps F as
the motion modality by default, but they can be replaced by
temporal gradient maps G without loss of generality.

3.1. Motion Teacher Training

In this section, we describe the training of the motion
teacher. Given the input optical flow F , the video back-
bone extracts 1D spatially pooled features zmot ∈ RT/rT×C ,
where rT indicates the temporal downsampling rate and C
is the channel dimension. Here rT can vary depending on
the backbone choices. The extracted features go through
the action detection head, resulting in a set of predicted
action boundaries and scores Ψ̂mot = {(ϕ̂mot

n , ŷmot
n )}Nn=1,

(a) RGB frame (b) Optical flow (c) Temporal gradient

Figure 2. An example of an RGB frame and the corresponding
optical flow map and temporal gradient map.

where ϕ̂mot
n = (t̂mot

sn , t̂
mot
en ) is the predicted action propos-

als, N is the number of predictions, and ŷn is the class
probability with Sigmoid activation. We leave the model ar-
chitecture and the detailed prediction process to be abstract
since our framework can be applied to any framework type,
e.g., anchor-based [44, 74], anchor-free [34, 80], query-
based [42, 60]. We show in experiments that our approach
brings consistent improvements for different types of heads.
The action predictions are grouped by positive and negative
sets based on pre-defined principles; some works perform
thresholding the intersection-over-union (IoU) with ground
truths [7, 55], while other query-based methods rely on the
Hungarian matching [40]. We denote the positive and neg-
ative sets by Ψ̂mot

P and Ψ̂mot
N , respectively. The predictions

in the positive set are labeled by the best-matched ground-

truth intervals and classes {(ϕn,yn)}|Ψ̂
mot
P |

n=1 . On the other
hand, the predictions in the negative set are annotated as the
background class. Despite minor differences, the training
objective of action detectors generally consists of a classifi-
cation loss, a regression loss, and a completeness loss.

1) The classification loss is defined by a weighted sum
of the focal binary cross-entropy function as follows.

Lcls =
αP

|Ψ̂mot
P |

∑
ŷn∈Ψ̂mot

P

`focal(ŷn,yn) +
αN

|Ψ̂mot
N |

∑
ŷn∈Ψ̂mot

N

`focal(ŷn,0),

(1)
where `focal(ŷ,y) denotes the focal binary cross-entropy
loss [38], α∗ is the term for balancing between positive and
negative samples, and 0 ∈ RC is the C-dimensional zero
vector indicating the background class.

2) The regression loss is defined by the L1-distance be-
tween ground truths and the predicted offsets as follows.

Lreg =
1

|Ψ̂mot
P |

∑
ϕ̂n∈Ψ̂mot

P

`1(ϕ̂n, ϕn), (2)

where `1(ϕ̂, ϕ) denotes the (smooth) L1 distance between
the two offsets. It is worth noting that the regression loss is
computed only for the positive set.

3) The completeness loss is utilized to maximize the
IoUs between ground truths and the predicted proposals.

Lcomp =
1

|Ψ̂mot
P |

∑
ϕ̂n∈Ψ̂mot

P

(
1− |ϕ̂n ∩ ϕn|
|ϕ̂n ∪ ϕn|

)
. (3)

The completeness loss is defined only for the positive set.
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The overall objective function is a weighted sum of the
above losses: λclsLcls + λregLreg + λcompLcomp. After train-
ing, the motion modelMmot is able to extract discriminative
motion features and will serve as the teacher for distillation.

3.2. Decomposed Cross-modal Distillation

Motivation. Previous cross-modal knowledge distillation
frameworks [12,13] transfer motion knowledge to the RGB
model in a direct way, so that the RGB model is encour-
aged to produce similar predictions with the motion model.
Such an approach, however, would result in sub-optimal so-
lutions, as the complementarity of the two modalities is not
considered. To handle the challenge, we design a novel de-
composed distillation framework, where RGB and motion
information are separately learned and later fused to effec-
tively exploit their complementarity. The training process
of our distillation framework is illustrated in Fig. 3a.

Similar to the motion model, given RGB frames V ,
the video backbone first produces the spatiotemporal fea-
tures zRGB ∈ RT/rT×C . The representation zRGB is pro-
jected into two different spaces, i.e., motion and appear-
ance spaces. The projections are implemented by a series
of 1D convolutional layers, and we denote this process by
φapp(zRGB), φmot(z

RGB) ∈ RT/rT×D, respectively. After-
ward, the projected features serve as input to the subsequent
separate branches to predict the temporal intervals of action
instances. In the following, we describe how the separated
features learn their own representations.

3.2.1 Motion branch

The motion branch is supposed to learn motion informa-
tion from the RGB frames. For this purpose, the pre-trained
motion modelMmot (teacher) explicitly guides the motion
branch (student) by distilling its knowledge. A variety of
distillation approaches can be applied to our framework,
and we adopt two representative methods in the following.

1) The response-based distillation loss [9,20] utilizes the
teacher’s predictions as pseudo-ground truths and encour-
ages the student to mimic the behavior of the teacher.

Lrespon = λclsLcls
respon + λregLreg

respon,

where Lcls
respon =

1

|Ψ̂|

|Ψ̂|∑
n=1

`focal(ŷn, ŷ
mot
n )

and Lreg
respon =

1

|Ψ̂|

|Ψ̂|∑
n=1

`1(ϕ̂n, ϕ̂
mot
n ).

(4)

where (ϕ̂mot
n , ŷmot

n ) is the corresponding teacher’s predic-
tions of the student’s ones. Here `focal and `1 are defined
as same in Eq. 1 and 2, respectively.

2) The feature-based distillation loss [52] encourages the
matching of the intermediate features from the student and
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Figure 3. Overall workflow of the proposed framework. (a) During
training, our model performs decomposed cross-modal distillation
by explicitly separating motion and appearance branches. Here
the detection heads of two branches are shared. (b) At inference,
our model takes as input only RGB frames and precisely localizes
action instances based on multimodal information.

the teacher, which is formulated as:

Lfeat =
1

T

T∑
t=1

‖φmot(z
RGB
t )− zmot

t ‖22, (5)

where the projection layer φmot(·) can be viewed as an
adaptation layer [8] that helps to ease the feature match-
ing between different modality features. Note that although
this equation represents the matching of backbone features,
other features from any intermediate layer can be aligned.

To summarize, the total training objective function of the
motion branch is defined by the weighted sum of the distil-
lation losses: Ldistill = Lrespon+λfeatLfeat. With the guidance
of the pre-trained motion model, the motion branch learns
motion representations given RGB frames as inputs. Note
that our framework is general and can utilize other improved
distillation methods, but it is beyond the scope of this paper.

3.2.2 Appearance branch

On the other side, to prevent the model from losing rather
static RGB information during distillation, we train the ap-
pearance branch jointly with the motion branch. The train-
ing objective is the same with the motion teacher Mmot,
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except that the input is RGB frames. Here we define the
training objective of the appearance branch as: Lapp =
λclsLcls + λregLreg + λcompLcomp. Being trained with the
conventional detection loss, the appearance branch is able
to keep the appearance information intact during distillation
which is useful for action detection.

3.2.3 Discussion

Our decomposed distillation model contains two separate
branches with different design purposes. Specifically, the
motion branch needs to imitate the behavior of the mo-
tion teacher, while the appearance branch is supposed to
learn the original appearance information from the same
RGB inputs. To achieve this goal, we propose to endow
the branches with conflicting training objectives. However,
the two branches may reach a degenerate solution, learn-
ing similar representations without distinction and relying
solely on the powerful detection head to produce differ-
ent predictions. To tackle the potential issue, we make the
branches share the weights of the classifier and the regres-
sor in the detection heads. With these two key designs, we
can lead the two branches to learn the different information
of RGB and motion modalities, thus achieving their com-
plementarity of theirs in the subsequent fusion stage.

3.3. Local Attentive Fusion

Provided that the appearance and motion features have
learned the expected information, the next question is how
to fuse the different information from them. An intuitive
way would be to perform concatenation before feeding
them to the joint detection head, also known as early fu-
sion [23]. However, we argue that such a naive way does
not help much since erroneous predictions of one modality
can propagate to the other. Instead, we utilize an attentive
fusion mechanism to maximize the harmonizing effect of
the two different modalities.

Our motivation is that one modality can enhance the
other by highlighting the agreement between different
modalities. One can try applying cross-attention for that
purpose, where features of one modality aggregate informa-
tion from those of the other modality based on feature sim-
ilarity. Although the cross-attention proves to be effective
in various fields [18,67], we experimentally find that it does
not help much to improve the action detection performance.
We conjecture that this is because the cross-attention ham-
pers local discriminability of the features by gathering in-
formation along the temporal dimension, i.e., feature over-
smoothing, which is also observed in the literature [17, 60].
To bypass the issue, we propose a new attentive fusion that
sustains locally discriminative features for action detection.

Let us call the modality to be enhanced the target modal-
ity and the other the reference modality. At first, we build a

𝑸𝒖𝒆𝒓𝒚

Target modality

features 𝑓𝑡𝑎𝑟𝑔𝑒𝑡
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: Element-wise

multiplication
A

Figure 4. Illustration of the proposed local attentive fusion.

single representative feature for the target modality by ag-
gregating the whole features along the temporal dimension,
i.e., f target = ψ(f target

1 , . . . , f target
T ) ∈ RD, where the ag-

gregation function can be implemented by various pooling
methods. Thereafter, it serves as the query and the individ-
ual features from the assistant modality are deemed as the
key. Then, the query-key matching process is defined by:

ωt = σ
[
(W>queryf

target)� (W>keyf
ref
t )
]
, (6)

where Wquery,Wkey ∈ RD×D respectively indicate the pro-
jection matrices for the query and keys, � denotes the
Hadamard product, and σ(·) is the sigmoid activation. Here
the resulting weight ωt ∈ [0, 1]D can be viewed as the chan-
nel attention weights that are derived from the similarity
between the two modalities. Therefore, we can suppress
erroneous predictions of the target modality and emphasize
the mutually agreed information by applying the weight to
the features of the target modality, i.e., f̃ target

t = ωt · f target
t .

The overall process of our attentive fusion is illustrated in
Fig. 4. Importantly, our attentive fusion does not fuse infor-
mation of different temporal points and thus can preserve
the local sensitivity of the features. The advantage of our
local attentive fusion over the conventional cross-attention
will be verified in Sec. 4. After enhancing the appearance
and motion features based on each other, we concatenate
and put them into the joint detection head. The detection
head is trained to perform the action detection given the en-
hanced multimodal features. The loss function of the de-
tection head is the same as that of the appearance branch:
Ljoint = λclsLcls + λregLreg + λcompLcomp.

3.4. Joint Training and Inference

Our framework is trained in an end-to-end manner. The
total training objective of our model is defined as Ltotal =
Lapp + Ldistill + Ljoint. At inference, we discard the detec-
tion heads of the branches and predict action intervals and
classes using the joint head, as depicted in Fig. 3b. It is note-
worthy that our model takes only RGB frames as input and
localizes action instances based on multimodal information.
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distillation local attn. mAP@IoU (%) AVGconven. decomp. 0.3 0.4 0.5 0.6 0.7

7 7 7 62.3 55.2 46.2 33.8 20.4 43.6

3 62.5 55.7 47.3 35.1 21.8 44.5
3 63.3 56.2 47.9 36.1 22.9 45.2
3 3 64.4 58.0 49.0 37.5 24.1 46.6

Table 2. Ablation study on the effect of each component. The
comparative methods are evaluated on THUMOS’14.

4. Experiments

4.1. Experimental Setups

Datasets. We evaluate our framework on the two most
popular benchmarks for temporal action detection: THU-
MOS’14 [22] and ActivityNet1.3 [4]. THUMOS’14 con-
sists of 200 and 213 videos respectively for training and
testing with 20 action categories. It is a challenging dataset
since it contains frequent action instances, e.g., 15 instances
per video on average. Therefore, we utilize it as the main
dataset for experiments. On the other hand, ActivityNet1.3
is a relatively large-scale dataset containing 10,024, 4,926,
and 5,044 videos respectively for training, validation, and
testing. As the ground truths of the test set are unavailable,
we evaluate the comparative models on the validation set.
Evaluation metrics. The standard protocol for evaluating
action detectors is mean average precisions (mAPs) at dif-
ferent intersection-over-union (IoU) thresholds. Following
the convention [7, 41, 74], we set the thresholds to [0.3:0.7]
with a step size of 0.1 for THUMOS’14 and [0.5:0.95] with
a step size of 0.05 for ActivityNet1.3.
Implementation details. Our framework is agnostic to the
choices of backbones and action detection heads. To con-
firm the generalizability of the proposed method, we con-
duct experiments using different combinations. The video
backbones are TSM18 [35], TSM50, I3D [6], and Slow-
fast50 [15]. For the detection head, we utilize the represen-
tative models of three different detector types: anchor-based
(GTAD [74]), anchor-free (Actionformer [80]), and query-
based (TadTR [42]). For model implementation and hyper-
parameter settings, we strictly follow the official codebases.
All the backbones are pre-trained on Kinetics-400 [6]. Fol-
lowing the previous works [34, 37, 80], we use the TV-L1

algorithm [1] to extract dense optical flow. Since only the
I3D model has pre-trained weights on the optical flow, we
utilize it as the teacher network in the distillation setting
of optical flow. Besides, we also conduct experiments us-
ing the temporal gradient as the motion modality, where the
identical backbone networks serve as the teacher to guide
the RGB model. We follow Liu et al. [40] for data pro-
cessing, where the input is a video with the size of 96×96
and the length of 25.6 seconds. Our model is trained in an
end-to-end fashion using the Adam optimizer [26] with the
learning rate of 1e-4 for 20 epochs.

Fusion mAP@IoU (%) AVG0.3 0.4 0.5 0.6 0.7

concat. 63.3 56.2 47.9 36.1 22.9 45.2
sum. 62.6 56.1 47.5 36.1 23.0 45.1

self-attn. 63.8 56.3 46.7 34.2 21.9 44.6
cross-attn. 63.1 54.5 46.4 35.4 21.7 44.2
diff.-attn. 61.8 54.8 46.3 32.6 21.0 43.3

local attn. (Ours) 64.4 58.0 49.0 37.5 24.1 46.6

Table 3. Ablation study on the fusion mechanism. The compara-
tive methods are evaluated on THUMOS’14.

4.2. Analysis

4.2.1 Effect of each component

To analyze the impact of each component, we conduct an
ablation study on THUMOS’14 in Table 2. For this study,
we utilize TSM18 [35] and Actionformer [80] as the back-
bone and the detection head, respectively. We first set our
baseline using the pure RGB-based action detector, whose
average mAP is 43.6 %. On top of it, we apply two different
types of distillation with temporal gradient as the motion
modality, namely the conventional and decomposed ones.
For the decomposed distillation, we simply concatenate fea-
tures from the two branches and feed them to the joint
branch for action detection. As a result, the conventional
distillation achieves a limited performance gain, while our
decomposed distillation greatly boosts the detection perfor-
mance (2nd-3rd rows). This indicates that the way of di-
rectly transferring the motion knowledge to the RGB model
is prone to a sub-optimal solution due to entangled informa-
tion. When adopting the proposed local attentive fusion, our
model better grasps the multimodal complementarity and
shows a further performance gain of 1.4 % (4th row), indi-
cating the importance of information fusion. The resulting
distilled RGB model improves the baseline by 3.0 %, which
clearly verifies the effectiveness of the proposed methods.

4.2.2 Ablation study on fusion

To verify the effectiveness of the proposed local attentive
fusion, we compare it with a variety of fusion methods. In
specific, we employ two naı̈ve fusion methods, i.e., con-
catenation and summation, and three attention-based ap-
proaches [62,75], i.e., self-, cross-, and difference-attention.
The results are shown in Table 3, where we observe that the
naive fusion shows decent performance, while the attention-
based methods perform even poorer than the naı̈ve ones.
We conjecture that this is due to the over-smoothing of the
features, which are known to be a side effect of attention-
based methods [17, 54, 60], leading to less discriminability
in action boundary detection. On the contrary, the proposed
local attentive fusion successfully preserves the local sensi-
tivity of features during multimodal information exchange,
thereby achieving the best action localization performance.
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Figure 5. Qualitative results on THUMOS’14.

Backbone Distill. mAP@IoU (%) AVG0.3 0.4 0.5 0.6 0.7

TSM18 [35]
7 62.3 55.2 46.2 33.8 20.4 43.6

TG 64.4 58.0 49.0 37.5 24.1 46.6 (+3.0)
OF 65.3 59.5 50.9 39.6 25.5 48.2 (+4.6)

TSM50 [35]
7 65.0 59.2 50.0 38.2 25.0 47.5

TG 68.1 61.8 52.4 41.7 27.5 50.3 (+2.8)
OF 66.5 62.3 55.3 44.5 32.9 52.3 (+4.8)

I3D [6]
7 53.8 47.0 38.6 30.0 19.9 37.9

TG 57.6 51.4 42.5 32.9 22.1 41.3 (+3.4)
OF 57.7 52.1 44.6 34.9 24.0 42.6 (+4.7)

Slowfast50 [15]
7 67.4 62.9 56.8 46.8 35.0 53.8

TG 68.9 64.1 58.1 48.2 35.6 55.0 (+1.2)
OF 70.5 65.8 59.2 50.1 38.2 56.8 (+3.0)

Table 4. Experiments with different backbones on THUMOS’14.
The detection head is fixed to Actionformer [80]. ‘TG’ and ‘OF’
denote temporal gradient and optical flow, respectively.

4.2.3 Generalizability

It is worth noting that our distillation framework is general
and can be applied to any video backbones and detection
heads. To analyze the generalizability of our method, we
conduct comprehensive experiments on THUMOS’14.

The experimental results on four different video back-
bones are presented in Table 4. We use Actionformer [80] as
the detection head for this experiment. It can be noticed that
regardless of the backbone choices, our decomposed dis-
tillation consistently improves the performance with large
gains. In addition, even the strong backbone, i.e., Slowfast,
benefits from the motion knowledge distillation, showing a
performance gain of 3.0 % when using optical flow as the
teacher modality. In addition, the results using different de-
tection heads are provided in Table 5, where TSM18 [35] is
employed as the backbone network. Again, it is noticeable
that all the heads benefit from the decomposed distillation to
a large extent. In detail, they show significant performance
boosts when being distilled the motion knowledge from the
optical flow. On the other hand, albeit being efficiently ob-
tained from RGB frames, the temporal gradient also brings
nontrivial performance gains, shedding light on its poten-
tial to serve as an efficient motion modality. To summarize,
these experiments clearly validate the generalizability of the

Head Distill. mAP@IoU (%) AVG0.3 0.4 0.5 0.6 0.7

G-TAD [74]
7 51.4 44.7 36.0 26.4 16.8 35.1

TG 54.8 48.9 38.1 28.0 18.1 37.6 (+2.5)
OF 55.3 49.4 39.2 30.6 19.7 38.8 (+3.6)

TadTR [42]
7 62.8 56.7 47.5 37.3 25.5 46.0

TG 63.8 57.4 49.9 39.2 26.9 47.4 (+1.4)
OF 64.1 58.3 51.2 40.9 28.8 48.7 (+2.7)

Actionformer [80]
7 62.3 55.2 46.2 33.8 20.4 43.6

TG 64.4 58.0 49.0 37.5 24.1 46.6 (+3.0)
OF 65.3 59.5 50.9 39.6 25.5 48.2 (+4.6)

Table 5. Experiments with different detection heads on THU-
MOS’14. The backbone is fixed to TSM18 [35]. ‘TG’ and ‘OF’
indicate temporal gradient and optical flow, respectively.

proposed distillation framework.

4.3. Qualitative Results

To analyze where the performance gains come from, we
provide several qualitative comparisons in Fig. 5. Specif-
ically, we visualize the detection results from the RGB
baseline, the motion teacher, and the resultant RGB-based
model of our decomposed distillation. In both examples, it
can be observed that the RGB-based baseline shows unsat-
isfying performance, indicating the importance of motion
modality. Meanwhile, the motion teacher suffers from the
static video with tiny movements (Fig. 5b), resulting in in-
accurate localization results. On the other hand, our model
produces precise action proposals for both examples by suc-
cessfully fusing the multimodal information learned within
the decomposed distillation framework.

4.4. Comparison with State-of-the-arts

The state-of-the-art comparison of THUMOS’14 and
ActivityNet1.3 is shown in Table 6. For the comparison,
we utilize Slowfast50 [15] and Actionformer [80] for the
backbone and the detection head, respectively. To make the
comparison clear, we separate the entries based on whether
the models take as input two-stream data or not. The first
thing we can observe is that the RGB-based approaches
fall largely behind the two-stream approaches, especially on
THUMOS’14 compared to ActivityNet1.3. This is because
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Method Venue OF THUMOS’14 ActivityNet1.3
0.3 0.4 0.5 0.6 0.7 AVG 0.5 0.75 0.95 AVG

TAL-Net [7] CVPR’18 3 53.2 48.5 42.8 33.8 20.8 39.8 38.23 18.30 1.30 20.22
BSN [37] ECCV’18 3 53.5 45.0 36.9 28.4 20.0 - 46.45 29.96 8.02 30.03
BMN [36] ICCV’19 3 56.0 47.4 38.8 29.7 20.5 38.5 50.07 34.70 8.29 33.85
P-GCN [79] ICCV’19 3 63.6 57.8 49.1 - - - 48.26 33.16 3.27 31.11
G-TAD [74] CVPR’20 3 54.5 47.6 40.2 30.8 23.4 39.3 50.36 34.60 9.02 34.09
BC-GNN [2] ECCV’20 3 57.1 49.1 40.4 31.2 23.1 40.2 50.56 34.75 9.37 34.26
BU-MR [84] ECCV’20 3 53.9 50.7 45.4 38.0 28.5 43.3 43.47 33.91 9.21 30.12
AFSD [34] CVPR’21 3 67.3 62.4 55.5 43.7 31.1 52.0 52.38 35.27 6.47 34.39
MUSES [41] CVPR’21 3 68.9 64.0 56.9 46.3 31.0 53.4 50.02 34.97 6.57 33.99
RTD-Net [60] ICCV’21 3 68.3 62.3 51.9 38.8 23.7 49.0 47.21 30.68 8.61 30.83
VSGN [82] ICCV’21 3 66.7 60.4 52.4 41.0 30.4 50.2 52.38 36.01 8.37 35.07
RCL [64] CVPR’22 3 70.1 62.3 52.9 42.7 30.7 51.7 55.15 39.02 8.27 37.65
RefactorNet [68] CVPR’22 3 70.7 65.4 58.6 47.0 32.1 54.8 56.60 40.70 7.50 38.60
TAGS [47] ECCV’22 3 68.6 63.8 57.0 46.3 31.8 52.8 56.30 36.80 9.60 36.50
ReAct [53] ECCV’22 3 69.2 65.0 57.1 47.8 35.6 55.0 49.60 33.00 8.60 32.60
Actionformer [80] ECCV’22 3 82.1 77.8 71.0 59.4 43.9 66.8 53.50 36.20 8.20 35.60

CDC [55] CVPR’17 7 40.1 29.4 23.3 13.1 7.9 22.8 45.30 26.00 0.20 23.80
GTAN [44] CVPR’19 7 57.8 47.2 38.8 - - - 52.61 34.14 8.91 34.31
G-TAD* [74] CVPR’20 7 52.5 45.9 37.6 28.5 19.1 36.7 49.22 34.55 4.74 33.17
AFSD* [34] CVPR’21 7 57.7 52.8 45.4 34.9 22.0 43.6 - - - 32.90
TadTR* [42] TIP’22 7 59.6 54.5 47.0 37.8 26.5 45.1 49.56 35.24 9.93 34.35
E2E-TAD [40] CVPR’22 7 69.4 64.3 56.0 46.4 34.9 54.2 50.47 35.99 10.83 35.10
TAGS† [47] ECCV’22 7 59.8 57.2 50.7 42.6 29.1 47.9 54.44 34.95 8.71 34.95
Actionformer† [80] ECCV’22 7 69.8 66.0 58.7 48.3 34.6 55.5 53.21 35.15 8.03 34.94
Ours - 7 70.5 65.8 59.2 50.1 38.2 56.8 53.73 35.87 8.61 35.58

Table 6. Comparison with state-of-the-art methods. The average mAPs under the IoU thresholds 0.3:0.7 and 0.5:0.95 are reported respec-
tively for THUMOS’14 and ActivityNet1.3. Entries are grouped by whether the model relies on optical flow (OF) at inference time. The
results of models with asterisk (*) are taken from Liu et al. [40], while those with dagger (†) are the reproduced results by official code.

the THUMOS’14 benchmark contains frequent actions oc-
curring, e.g., 15 instances per video on average, and there-
fore the motion modality has a large impact on localizing
the actions. On the other hand, ActivityNet1.3 have sparse
and relatively long action instances, e.g., 1.5 instances per
video on average, and it is widely known that classifica-
tion rather than localization is important for the dataset due
to a large number of action classes. In the comparison re-
sults on THUMOS’14, our model achieves the state-of-the-
art performance among the RGB-based action detectors.
In addition, it surpasses many two-stream action detection
models even without relying on the motion modality dur-
ing inference. This signifies the efficacy of our distillation
framework that enables simulating two-stream predictions
by effectively distilling the motion knowledge and exploit-
ing the multimodal complementarity. On ActivityNet1.3,
our model also sets a new state-of-the-art among the RGB-
based detectors and shows comparable performance with
two-stream approaches.

5. Conclusion

In this paper, we have presented a new paradigm for
cross-modal distillation. Specifically, we pointed out that

existing distillation approaches inevitably entangle the RGB
and motion information during the distilling process. To
handle the issue, we propose a decomposed distillation
pipeline that enables separate learning of different modal-
ities. Furthermore, we design a local attentive fusion to
sustain the local discriminability of features during inte-
grating multimodal information, thereby accomplishing ac-
curate action detection. In the extensive experiments, we
verified the effectiveness of our distillation framework and
local attentive fusion. Moreover, our model successfully
bridges the gap between two-stream and RGB-based action
detectors while preserving efficiency at test time. Notably,
our framework is generalizable to various combinations of
video backbones and action detection heads, demonstrat-
ing consistent performance improvements. In the future, it
would be interesting to explore our decomposed distillation
framework for other multimodal tasks.
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