
Improving Generalization of Adversarial Training via
Robust Critical Fine-Tuning

Kaijie Zhu1,2, Jindong Wang3, Xixu Hu4, Xing Xie3, Ge Yang1,2 *

1School of Artifical Intelligence, University of Chinese Academy of Sciences
2Institute of Automation, CAS 3 Microsoft Research 4 City University of Hong Kong

Abstract

Deep neural networks are susceptible to adversarial ex-
amples, posing a significant security risk in critical appli-
cations. Adversarial Training (AT) is a well-established
technique to enhance adversarial robustness, but it often
comes at the cost of decreased generalization ability. This
paper proposes Robustness Critical Fine-Tuning (RiFT), a
novel approach to enhance generalization without compro-
mising adversarial robustness. The core idea of RiFT is
to exploit the redundant capacity for robustness by fine-
tuning the adversarially trained model on its non-robust-
critical module. To do so, we introduce module robust
criticality (MRC), a measure that evaluates the signifi-
cance of a given module to model robustness under worst-
case weight perturbations. Using this measure, we identify
the module with the lowest MRC value as the non-robust-
critical module and fine-tune its weights to obtain fine-tuned
weights. Subsequently, we linearly interpolate between the
adversarially trained weights and fine-tuned weights to de-
rive the optimal fine-tuned model weights. We demon-
strate the efficacy of RiFT on ResNet18, ResNet34, and
WideResNet34-10 models trained on CIFAR10, CIFAR100,
and Tiny-ImageNet datasets. Our experiments show that
RiFT can significantly improve both generalization and out-
of-distribution robustness by around 1.5% while maintain-
ing or even slightly enhancing adversarial robustness. Code
is available at https://github.com/microsoft/
robustlearn.

1. Introduction
The pursuit of accurate and trustworthy artificial intelli-

gence systems is a fundamental objective in the deep learn-
ing community. Adversarial examples [43, 14], which per-
turbs input by a small, human imperceptible noise that
can cause deep neural networks to make incorrect predic-
tions, pose a significant threat to the security of AI sys-

*Corresponding author: Ge Yang <ge.yang@ia.ac.cn>.

81.5 82.0 82.5 83.0 83.5
Standard Accuracy

52.25

52.50

52.75

53.00

53.25

53.50

53.75

54.00

Ad
ve

rs
ar

ia
l R

ob
us

t A
cc

ur
ac

y

Non-robust-critical module
Linear layer
All layers
Robust-critical module
Vertical Line

Figure 1. Interpolation results of fine-tuning on different modules
of ResNet18 on CIFAR10 dataset. Dots denote different inter-
polation points between the final fine-tuned weights of RiFT and
the initial adversarially trained weights. All fine-tuning meth-
ods improve the generalization ability, but only fine-tuning on the
non-robust-critical module (layer2.1.conv2) can preserve
robustness. Additionally, fine-tuning on robust-critical module
(layer4.1.conv1) causes the worst trade-off between gener-
alization and robustness. In the initial interpolation stage, fine-
tuning on non-robust-critical modules enhances adversarial ro-
bustness by around 0.3%.

tems. Notable experimental and theoretical progress has
been made in defending against such adversarial examples
[6, 4, 10, 18, 11, 15, 36]. Among various defense methods
[49, 32, 54, 30, 8], adversarial training (AT) [28] has been
shown to be one of the most promising approaches [4, 11]
to enhance the adversarial robustness. However, compared
to standard training, AT severely sacrifices generalization
on in-distribution data [40, 44, 55, 35, 31] and is exception-
ally vulnerable to certain out-of-distribution (OOD) exam-
ples [13, 50, 21] such as Contrast, Bright and Fog, resulting
in unsatisfactory performance.

Prior arts tend to mitigate the trade-off between gener-

ar
X

iv
:2

30
8.

02
53

3v
1 

 [
cs

.L
G

] 
 1

 A
ug

 2
02

3

https://github.com/microsoft/robustlearn
https://github.com/microsoft/robustlearn


alization and adversarial robustness within the adversarial
training procedure. For example, some approaches have
explored reweighting instances [56], using unlabeled data
[35], or redefining the robust loss function [55, 46, 48, 31].
In this paper, we take a different perspective to address such
a trade-off by leveraging the redundant capacity for robust-
ness of neural networks after adversarial training. Recent
research has demonstrated that deep neural networks can
exhibit redundant capacity for generalization due to their
complex and opaque nature, where specific network mod-
ules can be deleted, permuted [45], or reset to their initial
values [52, 9] with only minor degradation in generalization
performance. Hence, it is intuitive to ask: Do adversarially
trained models have such redundant capacity? If so, how to
leverage it to improve the generalization and OOD robust-
ness 1 while maintaining adversarial robustness?

Based on such motivation, we introduce a new concept
called Module Robust Criticality (MRC) 2 to investigate the
redundant capacity of adversarially trained models for ro-
bustness. MRC aims to quantify the maximum increment
of robustness loss of a module’s parameters under the con-
strained weight perturbation. As illustrated in Figure 3,
we empirically find that certain modules do exhibit redun-
dant characteristics under such perturbations, resulting in
negligible drops in adversarial robustness. We refer to the
modules with the lowest MRC value as the non-robust-
critical modules. These findings further inspire us to pro-
pose a novel fine-tuning technique called Robust Critical
Fine-Tuning (RiFT), which aims to leverage the redundant
capacity of the non-robust-critical module to improve gen-
eralization while maintaining adversarial robustness. RiFT
consists of three steps: (1) Module robust criticality charac-
terization, which calculates the MRC value for each mod-
ule and identifies the non-robust-critical module. (2) Non-
robust-critical module fine-tuning, which exploits the re-
dundant capacity of the non-robust-critical module via fine-
tuning its weights with standard examples. (3) Mitigating
robustness-generalization trade-off via interpolation, which
interpolates between adversarially trained parameters and
fine-tuned parameters to find the best weights that maxi-
mize the improvement in generalization while preserving
adversarial robustness.

Experimental results demonstrate that RiFT significantly
improves both the generalization performance and OOD
robustness by around 2% while maintaining or even im-
proving the adversarial robustness of the original models.
Furthermore, we also incorporate RiFT to other adversar-
ial training regimes such as TRADES [55], MART [46],
AT-AWP [48], and SCORE [31], and show that such incor-
poration leads to further enhancements. More importantly,

1Here, generalization refers to generalization to in-distribution (ID)
samples, and OOD robustness refers to generalization to OOD samples.

2In our paper, a module refers to a layer of the neural network.

our experiments reveal several noteworthy insights. First,
we found that fine-tuning on non-robust-critical modules
can effectively mitigate the trade-off between adversarial
robustness and generalization, showing that these two can
both be improved (Section 5.3). As illustrated in Figure 1,
adversarial robustness increases alongside the generaliza-
tion in the initial interpolation procedure, indicating that the
features learned by fine-tuning can benefit both generaliza-
tion and adversarial robustness. This contradicts the pre-
vious claim [44] that the features learned by optimal stan-
dard and robust classifiers are fundamentally different. Sec-
ond, the existence of non-robust-critical modules suggests
that current adversarial training regimes do not fully uti-
lize the capacity of DNNs (Section 5.2). This motivates
future work to design more efficient adversarial training ap-
proaches using such capacity. Third, while previous study
[24] reported that fine-tuning on pre-train models could dis-
tort the learned robust features and result in poor perfor-
mance on OOD samples, we find that fine-tuning adversar-
ially trained models do NOT lead to worse OOD perfor-
mance (Section 5.3).

The contribution of this work is summarized as follows:

1. Novel approach. We propose the concept of module
robust criticality and verify the existence of redundant
capacity for robustness in adversarially trained models.
We then propose RiFT to exploit such redundancy to
improve the generalization of AT models.

2. Superior experimental results. Our approach im-
proves both generalization and OOD robustness of AT
models by around 2%. It can also be incorporated with
previous AT methods to mitigate the trade-off between
generalization and adversarial robustness.

3. Interesting insights. The findings of our experiments
shed light on the intricate interplay between general-
ization, adversarial robustness, and OOD robustness.
Our work emphasizes the potential of leveraging the
redundant capacity in adversarially trained models to
improve generalization and robustness further, which
may inspire more efficient and effective training meth-
ods to fully utilize this redundancy.

2. Related Work
Trade-off between adversarial robustness and gener-
alization The existence of such trade-off has been ex-
tensively debated in the adversarial learning community
[40, 44, 55, 20, 35, 31]. Despite lingering controversies, the
prevalent viewpoint is that this trade-off is inherent. Theo-
retical analyses [44, 35, 20] demonstrated that the trade-off
provably exists even in simple cases, e.g., binary classifica-
tion and linear regression. To address this trade-off, vari-
ous methods have been proposed during adversarial train-



ing, such as instance reweighting [56], robust self-training
[35], incorporating unlabeled data [7, 18], and redefining
the robust loss function [55, 46, 48, 31]. This paper presents
a novel post-processing approach that exploits the excess
capacity of the model after adversarial training to address
such trade-off. Our RiFT can be used in conjunction with
existing adversarial training techniques, providing a practi-
cal and effective way to mitigate the trade-off further.

Redundant Fitting Capacity The over-parameterized
deep neural networks (DNNs) exhibit striking fitting power
even for random labels [52, 3]. Recent studies have shown
that not all modules contribute equally to the generalization
ability of DNNs [45, 38, 53, 9], indicating the redundant
fitting capacity for generalization. Veit et al. [45] found
that some blocks can be deleted or permuted without de-
grading the test performance too much. Rosenfeld and
Tsotsos [38] demonstrated that one could achieve compa-
rable performance by training only a small fraction of net-
work parameters. Further, recent studies have identified cer-
tain neural network modules, referred to as robust modules
[53, 9], rewinding their parameters to initial values results
in a negligible decline in generalization. Previous studies
have proposed methods to reduce the computational and
storage costs of deep neural networks by removing the re-
dundant capacity for generalization while preserving com-
parable performance, such as compression [16] and distil-
lation [19]. In contrast, our work focuses on the redundant
capacity for robustness of adversarially trained models and
tries to exlpoit such redundancy.

Fine-tuning Methods Pre-training on large scale datasets
has been shown to be a powerful approach for develop-
ing high-performing deep learning models [5, 12, 34, 22].
Fine-tuning is a widely adopted approach to enhance the
transferability of pre-trained models to downstream tasks
and domain shifts. Typically, fine-tuning methods involve
fine-tuning the last layer (linear probing) [1, 24] or all lay-
ers (fully fine-tuning) [1, 18, 29, 24]. Salman et al. [39]
demonstrated that both fully fine-tuning and linear prob-
ing of adversarially trained models can improve the trans-
fer performance on downstream tasks. Nevertheless, recent
studies [2, 47, 24] have suggested that fine-tuning can de-
grade pre-trained features and underperformance on out-of-
distribution (OOD) samples. To address this issue, different
fine-tuning techniques are proposed such as WiSE-FT [47]
and surgical fine-tuning [27] that either leveraged ensem-
ble learning or selective fine-tuning for better OOD perfor-
mance. Kumar et al. [24] suggested the two-step strategy of
linear probing then full fine-tuning (LP-FT) combines the
benefits of both fully fine-tuning and linear probing.

3. Module Robust Criticality
Improving the generalization of adversarially trained

models requires a thorough understanding of DNNs, which,
however, proves to be difficult due to the lack of explain-
ability. Luckily, recent studies show that specific modules
in neural networks, referred to as critical modules [53, 9],
significantly impact model generalization if their parame-
ters are rewound to initial values. In this work, we propose
a metric called Module Robust Criticality (MRC) to eval-
uate the robustness contribution of each module explicitly.

3.1. Preliminaries

We denote a l-layered DNN as f(θ) = ϕ(x(l);θ(l)) ◦
. . . ◦ ϕ(x(1);θ(1)), where θ(i) is the parameter of i-th
layer and ϕ(·) denotes the activation function. We use
θAT and θFT to denote the weights of the adversarially
trained and fine-tuned model, respectively. We use D =
{(x1, y1), ..., (xn, yn)} to denote a dataset and Dstd means
a standard dataset such as CIFAR10. The cross-entropy loss
is denoted by L and ∥·∥p is denoted as the ℓp norm.

Let ∆x ∈ S denote the adversarial perturbation applied
to a clean input x, where S represents the allowed range
of input perturbations. Given a neural network f(θ) and a
dataset D, adversarial training aims to minimize the robust
loss [28] as:

argmin
θ

R(f(θ),D), where

R(f(θ),D) =
∑

(x,y)∈D

max
∆x∈S

L(f(θ,x+∆x), y).
(1)

Here, R(f(θ),D) is the robust loss to find the worst-
case input perturbation that maximizes the cross-entropy
classification error.

3.2. Module Robust Criticality

Definition 3.1 (Module Robust Criticality). Given a weight
perturbation scaling factor ϵ > 0 and a neural network f(θ),
the robust criticality of a module i is defined as

MRC (f,θ(i),D, ϵ) = max
∆θ∈Cθ

R(f(θ +∆θ),D)

−R(f(θ),D), (2)

where ∆θ = {0, . . . ,0,∆θ(i),0, . . . ,0} denotes the
weight perturbation with respect to the module weights θ(i),
Cθ = {∆θ

∣∣ ∥∆θ∥p ≤ ϵ∥θ(i)∥p}, R(·) is the robust loss de-
fined in Eq. (1).

The MRC value for each module represents how they
are critically contributing to model adversarial robustness.
The module with the lowest MRC value is considered re-
dundant, as changing its weights has a negligible effect on
robustness degradation. We refer to this module as the



non-robust-critical module. Intuitively, MRC serves as an
upper bound for weight changing of a particular module,
as demonstrated in Theorem 3.1. Since we do not know
the optimization directions and how they might affect the
model robustness to adversarial examples, we measure the
extent to which worst-case weight perturbations affect the
robustness, providing an upper bound loss for optimizing
the weight. Further, the MRC for a module depicts the
sharpness of robust loss landscape [48, 41] around the min-
ima θ(i). If the MRC score is high, it means that the robust
loss landscape with respect to θ(i) is sharp, and fine-tuning
this module is likely to hurt the adversarial robustness.

Theorem 3.1. The MRC value for a module i serves as an
upper bound for the robust loss increase when we optimize
the module under constraint Cθ:

R(f(θ∗),D)−R(f(θ),D) ≤ MRC (f,θ(i),D, ϵ),

where θ∗ = argmin
θ′,(θ′−θ)∈Cθ

∑
(x,y)∈D

L(f(θ′, x), y). (3)

Proof. By the definition of MRC, for any weights (θ′−θ) ∈
Cθ, we have:

R(f(θ′),D)−R(f(θ),D) ≤ MRC (f,θ(i),D, ϵ). (4)

Thus, for the optimized weights:

θ∗ = argmin
θ′,(θ′−θ)∈Cθ

∑
(x,y)∈D

L(f(θ′, x), y), (5)

it satisfies

R(f(θ∗),D)−R(f(θ),D) ≤ MRC (f,θ(i),D, ϵ). (6)

Such that the proof ends.

Remark: The definition of MRC is similar in spirit to the
work of Zhang et al. [53] and Chatterji et al. [9]. How-
ever, MRC differs fundamentally from them in two aspects.
First, MRC aims to capture the influence of a module on
adversarial robustness, while Zhang et al. [53] and Chat-
terji et al. [9] focus on studying the impact of a module on
generalization. Second, MRC investigates the robustness
characteristics of module weights under worst-case weight
perturbations, whereas Zhang et al. [53] and Chatterji et
al. [9] analyzed the properties of a module by rewinding its
weights to their initial values. Similar to [25, 41], we de-
fine the weight perturbation constraint Cθ as a multiple of
the ℓp norm of original parameters, which ensures the scale-
invariant property and allows us to compare the robust crit-
icality of modules across different layers, see Appendix A
for a detailed proof.

Theorem 3.1 establishes a clear upper bound for fine-
tuning particular modules. This theorem assures us that

Algorithm 1 Module Robust Criticality Characterization
Input: neural network f , adversarially trained model

weights θAT , desired module i’s weights θ(i), standard
dataset Dstd, weight perturbation scaling factor ϵ, opti-
mization iteration steps T , learning rate γ.

Output: The module robust criticality of module i.
1: Initialize adversarial dataset: Dadv = {}
2: for Batch Bk ∈ Dstd do ▷ Generate adversarial dataset
3: Badv

k = PGD-10(θAT ,Bk)
4: Dadv = Dadv

⋃
Badv
k

5: end for
6: Freeze all parameters of θAT except for θ(i)

7: θ1 = θAT

8: for t = 1, . . . , T do ▷ Iterate T epochs
9: θt+1 = θt

10: for Batch Badv
k ∈ Dadv do

11: Calculate Loss: L(f,θt,Badv
k ))

12: θt+1 = θt+1 + γ∇θt(L) ▷ Gradient Ascent
13: end for
14: ∆θ(i) = θ

(i)
t+1 − θ

(i)
AT ▷ Check perturb constraint

15: if ∥∆θ(i)∥2 ≥ ϵ∥θ(i)
AT ∥2 then

16: ∆θ(i) = ϵ
∥θ(i)

AT ∥2

∥∆θ(i)∥2
∆θ(i)

17: θt+1 = θt +∆θ(i)

18: break
19: end if
20: end for
21: MRC (θ(i)) = L(f,θT ,Dadv )− L(f,θAT ,Dadv )
22: Return MRC (θ(i))

fine-tuning on non-robust-critical modules shouldn’t harm
the model robustness. However, it does not ascertain if fine-
tuning the robust-critical module will lead to a significant
decline in robust accuracy.

3.3. Relaxation of MRC

Optimizing in Eq. (2) requires simultaneously finding
worst-case weight perturbation ∆θ and worst-case input
perturbation ∆x, which is time-consuming. Thus, we pro-
pose a relaxation version by fixing ∆x at the initial opti-
mizing phase. Concretely, we first calculate the adversarial
examples ∆x with respect to θAT . By fixing the adversarial
examples unchanged during the optimization, we iteratively
optimize the ∆θ by gradient ascent method to maximize
the robust loss to find the optimal ∆θ. We set a weight
perturbation constraint and check it after each optimization
step. If the constraint is violated, we project the perturba-
tion onto the constraint set. The pseudo-code is described
in Algorithm 1. In our experiments, if not specified, we
set ∥·∥p = ∥·∥2 and ϵ = 0.1 for Cθ, the iterative step for
optimizing ∆θ is 10.



AT Models: 𝜽𝑨𝑻

Non-robust-critical module

Robust-critical module

Step 1 :
Module robust criticality

characterization.

Step 2 :
Fine-tuning on

non-robust critical module.

Step 3 :
Mitigating robustness-
generalization trade-off

via interpolation.

AT Models: 𝜽𝑨𝑻

FT Models: 𝜽𝑭𝑻

𝟏 − 𝜶

+

𝜶
𝜶∗:

Finding the best interpolation 
factor 𝜶∗ which maximize the 

increase of generalization 
while preserving robustness.

Best FT Models: 𝜽𝑭𝑻∗

Figure 2. The pipeline of our proposed Robust Critical Fine-Tuning (RiFT).

4. RiFT: Robust Critical Fine-tuning

In this paper, we propose RiFT, a robust critical fine-
tuning approach that leverages MRC to guide the fine-
tuning of a deep neural network to improve both generaliza-
tion and robustness. Let Padv (x, y) and Pstd(x, y) denote
the distributions of adversarial and standard inputs, respec-
tively. Then, applying an adversarially trained model on
Padv (x, y) to Pstd(x, y) can be viewed as a distributional
shift problem. Thus, it is natural for RiFT to exploit the re-
dundant capacity to fine-tune adversarially trained models
on the standard dataset.

Specifically, RiFT consists of three steps as shown in
Figure 2. First, we calculate the MRC of each module and
choose the module with the lowest MRC score as our non-
robust-critical module. Second, we freeze the parameters of
the adversarially trained model except for our chosen non-
robust-critical module. Then we fine-tune the adversari-
ally trained models on corresponding standard dataset Dstd .
Third, we linearly interpolate the weights of the original ad-
versarially trained model and fine-tuned model to identify
the optimal interpolation point that maximizes generaliza-
tion improvement while maintaining robustness.

Step 1: Module robust criticality characterization Ac-
cording to the Algorithm 1, we iteratively calculate the
MRC value for each module θ(i) ∈ θAT , then we choose
the module with the lowest MRC value, denoted as θ̃:

θ̃ = θ(i) where i = argmin
i

MRC (f,θ(i),D, ϵ). (7)

Step 2: Fine-tuning on non-robust-critical modules
Next, we freeze the rest of the parameters and fine-tune on
desired parameters θ̃. We solve the following optimization

problem by SGD with momentum [42]

argmin
θ̃

∑
(x,y)∈D

L(f(x, (θ̃;θ \ θ̃)), y) + λ∥θ̃∥2, (8)

where λ is the ℓ2 weight decay factor.

Step 3: Mitigating robustness-generalization trade-off
via interpolation For a interpolation coefficient α, the in-
terpolated weights is calculated as:

θα = (1− α)θAT + αθFT , (9)

where θAT is the initial adversarially trained weights and
θFT is the fine-tuned weights obtained by Eq. (8). Since
our goal is to improve the generalization while preserving
adversarial robustness, thus the best interpolation point is
chosen to be the point that most significantly improves the
generalization while the corresponding adversarial robust-
ness is no less than the original robustness by 0.1.

Remark: Theorem 3.1 establishes an upper bound on
the possible drop in robustness loss that can be achieved
through fine-tuning. It is expected that the second step of
optimization would enforce the parameters to lie within the
boundary Cθ in order to satisfy the theorem. However, here
we do not employ constrained optimization but find the op-
timal point by first optimizing without constraints and then
interpolating. This is because (1) the constraints are empir-
ically given and may not always provide the optimal range
for preserving robustness, and it is possible to fine-tune out-
side the constraint range and still ensure that there is not
much loss of robustness. (2) the interpolation procedure
serves as a weight-ensemble, which may benefit both ro-
bustness and generalization, as noted in WiSE-FT [47]. The
complete algorithm of RiFT is shown in Appendix B.



5. Experiments

5.1. Experimental Setup

Datasets We adopt three popular image classification
datasets: CIFAR10 [23], CIFAR100 [23], and Tiny-
ImageNet [26]. CIFAR10 and CIFAR100 comprise 60,000
32 × 32 color images in 10 and 100 classes, respectively.
Tiny-ImageNet is a subset of ImageNet and contains 200
classes, where each class contains 500 colorful images with
size 64 × 64. We use three OOD datasets accordingly to
evaluate the OOD robustness: CIFAR10-C, CIFAR100-C,
and Tiny-ImageNet-C [18]. These datasets simulate 15
types of common visual corruptions and are grouped into
four classes: Noise, Blur, Weather, and Digital.

Evaluation metrics We use the test set accuracy of each
standard dataset to represent the generalization ability. For
evaluating adversarial robustness, we adopt a common set-
ting of PGD-10 [28] with constraint ℓ∞ = 8/255. We run
PGD-10 with three times and select the worst robust accu-
racy as the final metric. The OOD robustness is evaluated
by the accuracy of the test set of the corrupted dataset cor-
responding to the standard dataset.

Training details We use ResNet18 [17], ResNet34
[17], WideResNet34-10 (WRN34-10) [51] as backbones.
ResNet18 and ResNet34 are 18-layer and 34-layer ResNet
models, respectively. WideResNet34-10 is a 34-layer
WideResNet model with a widening factor of 10. Similarly,
we adopt PGD-10 [28] with constraint ℓ∞ = 8/255 for ad-
versarial training. Following standard settings [37, 33], we
train models with adversarial examples for 110 epochs. The
learning rate starts from 0.1 and decays by a factor of 0.1 at
epochs 100 and 105. We select the weights with the highest
test robust accuracy as our adversarially trained models.

We fine-tune the adversarially trained models θAT us-
ing SGD with momentum [42] for 10 epochs. The initial
learning rate is set to 0.001.3 We decay the learning rate by
1/10 after fine-tuning for 5 epochs We choose the weights
with the highest test accuracy as fine-tuned model weights,
denoted as θFT . We then interpolate between initial adver-
sarially trained model weights θAT and θFT , the best in-
terpolation point selected by Step 3 in Section 4 is denoted
as θ∗

FT . We then compare the generalization, adversarial
robustness, and OOD robustness of θ∗

FT and θAT .
We report the average of three different seeds and omit

the standard deviations of 3 runs as they are tiny (< 0.20%),
which hardly effect the results. Refer to Appendix C for
more training details.

3The best learning rate for fine-tuning vary across architectures and
datasets and is required to be carefully modified.

5.2. Empirical Analysis of MRC

Before delving into the main results of RiFT, we first
empirically analyze our proposed MRC metric in Defini-
tion 3.1, which serves as the foundation of our RiFT ap-
proach. We present the MRC analysis on ResNet18 [17] on
CIFAR-10 in Figure 3, where each column corresponds to
the MRC value and its corresponding robust accuracy drop
of a specific module.

Our analysis shows that the impact of worst-case weight
perturbations on model robustness varies across different
modules. Some modules exhibit minimal impact on robust-
ness under perturbation, indicating the presence of redun-
dant capacity for robustness. Conversely, for other mod-
ules, the worst-case weight perturbation shows a signifi-
cant impact, resulting in a substantial decline in robustness.
For example, in module layer2.1.conv2, worst-case
weight perturbations only result in a meager addition of
0.09 robust loss. However, for layer4.1.conv1, the
worst-case weight perturbations affect the model’s robust
loss by an additional 12.94, resulting in a substantial de-
cline (53.03%) in robustness accuracy. Such robust-critical
and non-robust-critical modules are verified to exist in var-
ious network architectures and datasets, as detailed in Ap-
pendix C.4. We also observe that as the network capacity
decreases (e.g., from WRN34-10 to ResNet18) and the task
becomes more challenging (e.g., from CIFAR10 to Tiny-
ImageNet), the proportion of non-robust-critical modules
increases, as less complex tasks require less capacity, lead-
ing to more non-robust-critical modules.

It is worthy noting that the decrease in robust accuracy
doesn’t directly correlate with MRC. For instance, both
layer4.0.conv2 and layer4.1.conv1 have a ro-
bust accuracy drop of 53.05%, yet their MRC values differ.
This discrepancy can be attributed to the different probabil-
ity distributions of misclassified samples across modules,
resulting in same accuracy declines but different losses.

5.3. Main Results

Table 1 summarizes the main results of our study, from
which we have the following findings.

RiFT improves generalization First, RiFT effectively
mitigates the trade-off between generalization and robust-
ness raised by adversarial training. Across different datasets
and network architectures, RiFT improves the generaliza-
tion of adversarially trained models by approximately 2%.
This result prompts us to rethink the trade-off, as it may be
caused by inefficient adversarial training algorithm rather
than the inherent limitation of DNNs. Furthermore, as
demonstrated in Figure 1, both adversarial robustness and
generalization increase simultaneously in the initial interpo-
lation process, indicating that these two characteristics can



Robust Acc Drop -3.16 -18.89 -23.04 -52.01 -9.47 -35.79 -34.49 -51.83 -2.86 -50.32 -49.75 -53.03 -7.22 -52.58 -53.03 -53.03 -7.09 -6.47

con
v1

lay
er1

.0.
con

v1

lay
er1

.0.
con

v2

lay
er1

.1.
con

v1

lay
er1

.1.
con

v2

lay
er2

.0.
con

v1

lay
er2

.0.
con

v2

lay
er2

.1.
con

v1

lay
er

2.1
.co

nv
2

lay
er3

.0.
con

v1

lay
er3

.0.
con

v2

lay
er3

.1.
con

v1

lay
er3

.1.
con

v2

lay
er4

.0.
con

v1

lay
er4

.0.
con

v2

lay
er

4.1
.co

nv
1

lay
er4

.1.
con

v2
line

ar

Module Robust Criticality 0.12 0.57 0.93 7.76 0.27 1.82 1.69 3.94 0.09 5.67 5.78 9.80 0.25 6.83 11.19 12.94 0.23 0.19

Figure 3. Example of module robust criticality (MRC) and its corresponding robust accuracy drop of ResNet18 trained on CIFAR10. Each
column represents an individual module. The first row represents the corresponding robust accuracy drop and the second row represents
the MRC value of each module. The higher the MRC value is, the more robust-critical the module is. Some modules are not critical
to robustness, exhibiting redundant characteristics for contributing to robustness. However, some modules are critical to robustness. For
example, the robust acc drop is only 2.86% for layer2.1.conv2 while for layer4.1.conv1 the robust acc drop is up to 53.03%.

Table 1. Results of RiFT on different datasets and backbones. Std means the standard test accuracy for in distribution generalization, OOD
denotes the OOD robust accuracy of corresponding corruption dataset (e.g., CIFAR10-C). Adv denotes the adversarial robust accuracy. In
each column, we bold the entry with the higher accuracy. RiFT improves both generalization and OOD robustness across architectures and
datasets while maintaining adversarial robustness.

Architecture Method CIFAR10 CIFAR100 Tiny-ImageNet

Std OOD Adv Std OOD Adv Std OOD Adv

ResNet18
AT 81.46 73.56 53.63 57.10 46.43 30.15 49.10 27.68 23.28

AT+RiFT 83.44 75.69 53.65 58.74 48.06 30.17 50.61 28.73 23.34
∆ +1.98 +2.13 +0.02 +1.64 +1.63 +0.02 +1.51 +1.05 +0.06

ResNet34
AT 84.23 75.37 55.31 58.67 48.24 30.50 50.96 27.91 24.27

AT+RiFT 85.41 77.15 55.34 60.88 49.97 30.58 52.54 30.07 24.37
∆ +1.18 +1.78 +0.03 +2.21 +1.73 +0.08 +1.58 +2.16 +0.10

WRN34-10
AT 87.41 78.75 55.40 62.35 50.61 31.66 52.78 31.81 26.07

AT+RiFT 87.89 79.31 55.41 64.56 52.69 31.64 55.31 33.86 26.17
∆ +0.48 +0.56 +0.01 +2.21 +2.08 -0.02 +2.53 +2.05 +0.10

Avg ∆ +1.21 +1.49 +0.02 +2.02 +1.81 +0.02 +1.87 +1.75 +0.08

be improved together. This trend is observed across differ-
ent datasets and network architectures; see Appendix C.5
for more illustrations. This finding challenges the no-
tion that the features of optimal standard and optimal ro-
bust classifiers are fundamentally different, as previously
claimed by Tsipras et al. [44], as fine-tuning procedures can
increase both robustness and generalization.

Fine-tuning improves OOD robustness Second, our
study also investigated the out-of-distribution (OOD) ro-
bustness of the fine-tuned models and observed an improve-
ment of approximately 2%. This observation is noteworthy
because recent work [2, 24, 47] showed that fine-tuning pre-
trained models can distort learned features and result in un-
derperformance in OOD samples. Furthermore, Yi et al.
[50] demonstrated that adversarial training enhances OOD
robustness, but it is unclear whether fine-tuning on adver-
sarially trained models distorts robust features. Our results
indicate that fine-tuning adversarially trained models does
not distort the robust features learned by adversarial train-

ing and instead helps improve OOD robustness. We suggest
fine-tuning adversarially trained models may be a promising
avenue for further improving OOD robustness.

5.4. Incorporate RiFT to Other AT Methods

To further validate the effectiveness of RiFT, we con-
duct experiments on ResNet18 [17] trained on CIFAR10
and CIFAR100 [23] using four different adversarial train-
ing techniques: TRADES [55], MART [46], AWP [48], and
SCORE [31], and then apply our RiFT to the resulting mod-
els. As shown in Table 2, our approach is compatible with
various adversarial training methods and improves general-
ization and OOD robustness.

5.5. Ablation Study

Fine-tuning on different modules To evaluate the effi-
cacy of fine-tuning the non-robust-critical module, we con-
ducted further experiments by fine-tuning the adversarially
trained model on different modules. Specifically, we used
four fine-tuning methods: fully fine-tuning, linear probing



Table 2. Results of RiFT + other AT methods.

Method CIFAR10 CIFAR100

Std OOD Adv Std OOD Adv

TRADES 81.54 73.42 53.31 57.44 47.23 30.20
TRADES+RiFT 81.87 74.09 53.30 57.78 47.52 30.22

∆ +0.33 +0.67 -0.01 +0.34 +0.29 +0.02

MART 76.77 68.62 56.90 51.46 42.07 31.47
MART+RiFT 77.14 69.41 56.92 52.42 43.35 31.48

∆ +0.37 +0.79 +0.02 +0.96 +1.28 +0.01

AWP 78.40 70.48 53.83 52.85 43.10 31.00
AWP+RiFT 78.79 71.12 53.84 54.89 45.08 31.05

∆ + 0.39 +0.64 +0.01 +2.04 +1.98 +0.05

SCORE 84.20 75.82 54.59 54.83 45.39 29.49
SCORE+RiFT 85.65 77.37 54.62 57.63 47.77 29.50

∆ +1.45 +1.55 +0.03 +2.80 +2.38 +0.01

Table 3. Results of fine-tuning on different modules.

Method Std OOD Adv

All layers 83.56 75.48 52.66
Last layer 83.35 75.16 52.75

Robust-critical 83.36 75.42 52.48
Non-robust-critical 83.44 75.69 53.65

Table 4. Results of fine-tuning on multiple non-robust-
critical modules.

Method Std OOD Adv

Top 1 83.44 75.69 53.65
Top 2 83.41 75.61 52.47
Top 3 83.59 75.77 52.22
Top 5 83.70 75.82 52.35

(fine-tuning on the last layer), fine-tuning on the non-robust-
critical module, and fine-tuning on the robust-critical mod-
ule. The experiment was conducted using ResNet18 on
CIFAR-10, and the results are presented in Figure 1 and
Table 3. As described in Section 3.2, MRC is an upper
bound for weight perturbation, indicating the criticality of
a module in terms of model robustness. Fine-tuning on
a non-robust-critical module can help preserve adversarial
robustness but does not guarantee improvement in general-
ization. Similarly, fine-tuning on the robust-critical mod-
ule does not necessarily hurt robustness. However, our ex-
periments observed that all fine-tuning methods improved
generalization ability, but only fine-tuning on non-robust-
critical module preserved adversarial robustness. Moreover,
fine-tuning on the robust-critical module exhibited the worst
trade-off between generalization and robustness compared
to fine-tuning on all layers.

More non-robust-critical modules, more useful? To in-
vestigate whether fine-tuning on more non-critical modules
could further improve generalization, we additionally fine-
tune on the top two, top three, and top five non-robust-
critical modules. However, Table 3 reveals that gener-
alization and OOD robustness did not surpass the results
achieved by fine-tuning a singular non-robust-critical mod-
ule. Notably, performance deteriorated when fine-tuning
multiple non-critical modules compared to fine-tuning all
layers. It’s pivotal to note that this doesn’t negate MRC’s
applicability to several modules. The MRC for module i
is evaluated with other module parameters held constant,
making it challenging to discern the impact of worst-case
perturbations across multiple modules using the MRC of a
single one. We posit that broadening MRC’s definition to
encompass multiple modules might address this problem.

Ablation on interpolation factor α∗ The value of α∗ is
closely related to the fine-tuning learning rate. Specifically,
a large learning rate can result in substantial weight updates
that may push the fine-tuned weights θFT away from their
adversarially trained counterparts θAT . Our empirical re-
sults indicate that a fine-tuning learning rate of 0.001 is
suitable for most cases and that the corresponding α∗ value
generally ranges between 0.6 to 0.9.

Factors related to the generalization gain of RiFT ”Our
results unveiled patterns and behaviors that offer insights
into the determinants of the generalization gains observed
with RiFT. First, the generalization gain of RiFT is a func-
tion of both the neural network’s inherent capacity and the
inherent difficulty posed by the classification task. Specif-
ically, as the classification task becomes more challenging,
the robust criticality of each module increases, which in turn
decreases the generalization gain of RiFT. This effect can
be mitigated by using a model with a larger capacity. For
instance, we observe that the generalization gain of RiFT
increases as we switch from ResNet18 to ResNet34 and
to WRN34-10 when evaluating on CIFAR100 and Tiny-
ImageNet. Further, We observed that the generalization
gain of RiFT with WRN34-10 on CIFAR10 is notably
lower, at approximately 0.5%, compared to 2% on other
datasets. This might be attributed to the minimal gen-
eralization disparity between adversarially trained models
and their standard-trained counterparts; specifically, while
WRN34-10’s standard test accuracy stands at around 95%,
its adversarial counterpart registers at 87%. It is evident that
fine-tuning on a single module may not yield significant im-
provements. Investigating these patterns further could offer
strategies for enhancing the robustness and generalization
capabilities of deep neural networks.



6. Conclusion
In this paper, we aim to exploit the redundant capacity

of the adversarially trained models. Our proposed RiFT
leverages the concept of module robust criticality (MRC)
to guide the fine-tuning process, which leads to improved
generalization and OOD robustness. The extensive experi-
ments demonstrate the effectiveness of RiFT across various
network architectures and datasets. Our findings shed light
on the intricate relationship between generalization, adver-
sarial robustness, and OOD robustness. RiFT is a primary
exploration of fine-tuning the adversarially trained models.
We believe that fine-tuning holds great promise, and we call
for more theoretical and empirical analyses to advance our
understanding of this important technique.

References
[1] Armen Aghajanyan, Akshat Shrivastava, Anchit Gupta, Na-

man Goyal, Luke Zettlemoyer, and Sonal Gupta. Better
fine-tuning by reducing representational collapse. In Inter-
national Conference on Learning Representations, 2021. 3

[2] Anders Andreassen, Yasaman Bahri, Behnam Neyshabur,
and Rebecca Roelofs. The evolution of out-of-distribution
robustness throughout fine-tuning. arXiv preprint
arXiv:2106.15831, 2021. 3, 7

[3] Devansh Arpit, Stanislaw Jastrzkebski, Nicolas Ballas,
David Krueger, Emmanuel Bengio, Maxinder S Kanwal,
Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Ben-
gio, et al. A closer look at memorization in deep networks. In
International Conference on Machine Learning, pages 233–
242. PMLR, 2017. 3

[4] Anish Athalye, Nicholas Carlini, and David Wagner. Obfus-
cated gradients give a false sense of security: Circumventing
defenses to adversarial examples. In Jennifer Dy and An-
dreas Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceed-
ings of Machine Learning Research, pages 274–283. PMLR,
10–15 Jul 2018. 1

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in Neural In-
formation Processing Systems, 33:1877–1901, 2020. 3

[6] N. Carlini and D. Wagner. Towards evaluating the robustness
of neural networks. In 2017 IEEE Symposium on Security
and Privacy, pages 39–57, Los Alamitos, CA, USA, may
2017. IEEE Computer Society. 1

[7] Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C
Duchi, and Percy S Liang. Unlabeled data improves ad-
versarial robustness. In H. Wallach, H. Larochelle, A.
Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, ed-
itors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. 3

[8] Alvin Chan, Yi Tay, Yew Soon Ong, and Jie Fu. Jacobian
adversarially regularized networks for robustness. In Inter-
national Conference on Learning Representations, 2020. 1

[9] Niladri Chatterji, Behnam Neyshabur, and Hanie Sedghi.
The intriguing role of module criticality in the generalization
of deep networks. In International Conference on Learning
Representations, 2020. 2, 3, 4

[10] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified
adversarial robustness via randomized smoothing. In Ka-
malika Chaudhuri and Ruslan Salakhutdinov, editors, Pro-
ceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning
Research, pages 1310–1320. PMLR, 09–15 Jun 2019. 1

[11] Francesco Croce and Matthias Hein. Reliable evalua-
tion of adversarial robustness with an ensemble of diverse
parameter-free attacks. In International Conference on Ma-
chine Learning, pages 2206–2216. PMLR, 2020. 1

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representa-
tions, 2021. 3

[13] Justin Gilmer, Nicolas Ford, Nicholas Carlini, and Ekin
Cubuk. Adversarial examples are a natural consequence of
test error in noise. In International Conference on Machine
Learning, pages 2280–2289. PMLR, 2019. 1

[14] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. In Inter-
national Conference on Learning Representations, 2015. 1

[15] Sven Gowal, Sylvestre-Alvise Rebuffi, Olivia Wiles, Florian
Stimberg, Dan Andrei Calian, and Timothy A Mann. Im-
proving robustness using generated data. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Process-
ing Systems, volume 34, pages 4218–4233. Curran Asso-
ciates, Inc., 2021. 1

[16] Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015. 3

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016. 6, 7

[18] Dan Hendrycks, Kimin Lee, and Mantas Mazeika. Using
pre-training can improve model robustness and uncertainty.
In International Conference on Machine Learning, pages
2712–2721. PMLR, 2019. 1, 3, 6

[19] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 3

[20] Adel Javanmard, Mahdi Soltanolkotabi, and Hamed Hassani.
Precise tradeoffs in adversarial training for linear regression.
In Jacob Abernethy and Shivani Agarwal, editors, Proceed-
ings of Thirty Third Conference on Learning Theory, volume
125 of Proceedings of Machine Learning Research, pages
2034–2078. PMLR, 09–12 Jul 2020. 2

[21] Klim Kireev, Maksym Andriushchenko, and Nicolas Flam-
marion. On the effectiveness of adversarial training against



common corruptions. In Uncertainty in Artificial Intelli-
gence, pages 1012–1021. PMLR, 2022. 1

[22] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan
Puigcerver, Jessica Yung, Sylvain Gelly, and Neil Houlsby.
Big transfer (bit): General visual representation learning. In
Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part V 16,
pages 491–507. Springer, 2020. 3

[23] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 6, 7

[24] Ananya Kumar, Aditi Raghunathan, Robbie Matthew Jones,
Tengyu Ma, and Percy Liang. Fine-tuning can distort pre-
trained features and underperform out-of-distribution. In In-
ternational Conference on Learning Representations, 2022.
2, 3, 7

[25] Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and
In Kwon Choi. Asam: Adaptive sharpness-aware minimiza-
tion for scale-invariant learning of deep neural networks. In
Marina Meila and Tong Zhang, editors, Proceedings of the
38th International Conference on Machine Learning, vol-
ume 139 of Proceedings of Machine Learning Research,
pages 5905–5914. PMLR, 18–24 Jul 2021. 4

[26] Ya Le and Xuan Yang. Tiny imagenet visual recognition
challenge. CS 231N, 7(7):3, 2015. 6

[27] Yoonho Lee, Annie S Chen, Fahim Tajwar, Ananya Kumar,
Huaxiu Yao, Percy Liang, and Chelsea Finn. Surgical fine-
tuning improves adaptation to distribution shifts. In The
Eleventh International Conference on Learning Representa-
tions, 2023. 3

[28] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. In International
Conference on Learning Representations, 2018. 1, 3, 6

[29] John P Miller, Rohan Taori, Aditi Raghunathan, Shiori
Sagawa, Pang Wei Koh, Vaishaal Shankar, Percy Liang,
Yair Carmon, and Ludwig Schmidt. Accuracy on the line:
on the strong correlation between out-of-distribution and
in-distribution generalization. In Marina Meila and Tong
Zhang, editors, Proceedings of the 38th International Con-
ference on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pages 7721–7735. PMLR,
18–24 Jul 2021. 3

[30] Aamir Mustafa, Salman Khan, Munawar Hayat, Roland
Goecke, Jianbing Shen, and Ling Shao. Adversarial defense
by restricting the hidden space of deep neural networks. In
The IEEE International Conference on Computer Vision, Oc-
tober 2019. 1

[31] Tianyu Pang, Min Lin, Xiao Yang, Jun Zhu, and Shuicheng
Yan. Robustness and accuracy could be reconcilable
by (Proper) definition. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan
Sabato, editors, Proceedings of the 39th International Con-
ference on Machine Learning, volume 162 of Proceedings
of Machine Learning Research, pages 17258–17277. PMLR,
17–23 Jul 2022. 1, 2, 3, 7

[32] Tianyu Pang, Kun Xu, Yinpeng Dong, Chao Du, Ning Chen,
and Jun Zhu. Rethinking softmax cross-entropy loss for ad-

versarial robustness. In International Conference on Learn-
ing Representations, 2020. 1

[33] Tianyu Pang, Xiao Yang, Yinpeng Dong, Hang Su, and Jun
Zhu. Bag of tricks for adversarial training. In International
Conference on Learning Representations, 2021. 6

[34] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, Ilya Sutskever, et al. Language models are unsu-
pervised multitask learners. OpenAI blog, 1(8):9, 2019. 3

[35] Aditi Raghunathan, Sang Michael Xie, Fanny Yang, John
Duchi, and Percy Liang. Understanding and mitigating the
tradeoff between robustness and accuracy. In Hal Daumé
III and Aarti Singh, editors, Proceedings of the 37th Interna-
tional Conference on Machine Learning, volume 119 of Pro-
ceedings of Machine Learning Research, pages 7909–7919.
PMLR, 13–18 Jul 2020. 1, 2, 3

[36] Sylvestre-Alvise Rebuffi, Sven Gowal, Dan A Calian, Flo-
rian Stimberg, Olivia Wiles, and Timothy Mann. Fixing
data augmentation to improve adversarial robustness. arXiv
preprint arXiv:2103.01946, 2021. 1

[37] Leslie Rice, Eric Wong, and Zico Kolter. Overfitting in ad-
versarially robust deep learning. In Hal Daumé III and Aarti
Singh, editors, Proceedings of the 37th International Con-
ference on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pages 8093–8104. PMLR,
13–18 Jul 2020. 6

[38] Amir Rosenfeld and John K Tsotsos. Intriguing properties of
randomly weighted networks: Generalizing while learning
next to nothing. In 2019 16th Conference on Computer and
Robot Vision (CRV), pages 9–16. IEEE, 2019. 3

[39] Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish
Kapoor, and Aleksander Madry. Do adversarially robust im-
agenet models transfer better? Advances in Neural Informa-
tion Processing Systems, 33:3533–3545, 2020. 3

[40] Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal
Talwar, and Aleksander Madry. Adversarially robust gener-
alization requires more data. In S. Bengio, H. Wallach, H.
Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
editors, Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018. 1, 2

[41] David Stutz, Matthias Hein, and Bernt Schiele. Relating ad-
versarially robust generalization to flat minima. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 7807–7817, 2021. 4

[42] Ilya Sutskever, James Martens, George Dahl, and Geoffrey
Hinton. On the importance of initialization and momentum
in deep learning. In International Conference on Machine
Learning, pages 1139–1147. PMLR, 2013. 5, 6

[43] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.
Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013. 1

[44] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom,
Alexander Turner, and Aleksander Madry. Robustness may
be at odds with accuracy. In International Conference on
Learning Representations, 2019. 1, 2, 7

[45] Andreas Veit, Michael J Wilber, and Serge Belongie. Resid-
ual networks behave like ensembles of relatively shallow net-



works. Advances in Neural Information Processing Systems,
29, 2016. 2, 3

[46] Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun
Ma, and Quanquan Gu. Improving adversarial robustness
requires revisiting misclassified examples. In International
Conference on Learning Representations, 2020. 2, 3, 7

[47] Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim,
Mike Li, Simon Kornblith, Rebecca Roelofs, Raphael Gon-
tijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok
Namkoong, and Ludwig Schmidt. Robust fine-tuning of
zero-shot models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
7959–7971, June 2022. 3, 5, 7

[48] Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversar-
ial weight perturbation helps robust generalization. In H.
Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems,
volume 33, pages 2958–2969. Curran Associates, Inc., 2020.
2, 3, 4, 7

[49] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and
Alan Yuille. Mitigating adversarial effects through random-
ization. In International Conference on Learning Represen-
tations, 2018. 1

[50] Mingyang Yi, Lu Hou, Jiacheng Sun, Lifeng Shang, Xin
Jiang, Qun Liu, and Zhiming Ma. Improved ood gener-
alization via adversarial training and pretraing. In Marina
Meila and Tong Zhang, editors, Proceedings of the 38th In-
ternational Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages 11987–
11997. PMLR, 18–24 Jul 2021. 1, 7

[51] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. In Edwin R. Hancock Richard C. Wilson and William
A. P. Smith, editors, Proceedings of the British Machine Vi-
sion Conference, pages 87.1–87.12. BMVA Press, Septem-
ber 2016. 6

[52] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin
Recht, and Oriol Vinyals. Understanding deep learning re-
quires rethinking generalization. In International Confer-
ence on Learning Representations, 2017. 2, 3

[53] Chiyuan Zhang, Samy Bengio, and Yoram Singer. Are all
layers created equal? Journal of Machine Learning Re-
search, 23(67):1–28, 2022. 3, 4

[54] Haichao Zhang and Jianyu Wang. Defense against adversar-
ial attacks using feature scattering-based adversarial training.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. 1

[55] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Lau-
rent El Ghaoui, and Michael Jordan. Theoretically princi-
pled trade-off between robustness and accuracy. In Kamalika
Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings
of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research,
pages 7472–7482. PMLR, 09–15 Jun 2019. 1, 2, 3, 7

[56] Jingfeng Zhang, Jianing Zhu, Gang Niu, Bo Han, Masashi
Sugiyama, and Mohan Kankanhalli. Geometry-aware

instance-reweighted adversarial training. In International
Conference on Learning Representations, 2021. 2, 3



A. Proof of the scale-invariant property
Without loss of generality, assume a two layers neural

network f and ϕ is a ReLU-based activation function.

f(θf ,x) = θ(2)ϕ(θ(1)x). (10)

The corresponding scaled neural network g is:

g(θg,x) =
1

β
θ(2)ϕ(βθ(1)x), (11)

where the non-negative β is the scaling factor.
Suppose we calculate the MRC value of the first module

θ(1) and 1
βθ

(1).

Theorem A.1. The rectified function ϕ(x) = max(x, 0) is
a homogeneous function where

∀(z, β) ∈ R× R+, ϕ(βz) = βϕ(z). (12)

Proof.

ϕ(βz) = max(βz, 0) = βmax(z, 0) = βϕ(z). (13)

Theorem A.2. ∀x, f(θf ,x) ≡ g(θg,x).

Proof.

g(θg,x) =
1

β
θ(2)ϕ(βθ(1)x) (14)

≡ 1

β
βθ(2)ϕ(θ(1)x) (15)

≡ θ(2)ϕ(θ(1)x) (16)
≡ f(θf ,x) (17)

Theorem A.3. The robust losses of f and g are equal:

R(f(θf ),D) ≡ R(g(θg),D). (18)

Proof. According to Theorem A.2,

∀x+∆x, f(θf ,x+∆x) ≡ g(θg,x+∆x). (19)

Thus,

max
∆x∈S

ℓ(f(θf ,x+∆x), y) (20)

≡ max
∆x∈S

ℓ(g(θg,x+∆x), y). (21)

Thus,

R(f(θf ),D) =
∑

(x,y)∈D

max
∆x∈S

ℓ(f(θf ,x+∆x), y) (22)

≡
∑

(x,y)∈D

max
∆x∈S

ℓ(g(θg,x+∆x), y) (23)

= R(g(θg),D) (24)

Theorem A.4. The Module Robustness Criticality (MRC)
proposed in Definition 3.1 is invariant to the scaling of the
parameters.

Proof. Let ∆θf = {∆θ
(1)
f ,0},∆θg = {∆θ

(1)
g ,0} be the

perturbation of the first layer for network f and g respec-
tively. First, we prove

max
∆θf∈Cθf

R(f(θf +∆θf ),D) (25)

≤ max
∆θg∈Cθg

R(g(θg +∆θg),D). (26)

Let

∆θ∗
f = argmax

∆θf∈Cθf

R(f(θf +∆θf ),D), (27)

∆θ∗
g = argmax

∆θg∈Cθg

R(g(θg +∆θg),D). (28)

Consider the perturbation ∆θ̃g = β∆θ∗
f for g, it is easy

to show that ∆θ̃g ∈ Cθg ,

Cθf
= {∆θf

∣∣ ∥∆θf∥p ≤ ϵ∥θ(1)
f ∥p}, (29)

Cθg
= {∆θg

∣∣ ∥∆θg∥p ≤ ϵ∥θ(1)
g ∥p} (30)

= {∆θg
∣∣∆θg = β∥∆θf∥p ≤ ϵβ∥θ(1)

f ∥p}. (31)

Therefore,

R(g(θg +∆θ̃g),D) ≤ max
∆θg∈Cθg

R(g(θg +∆θg),D) (32)

= R(g(θg +∆θ∗
g),D). (33)

Repeat the same analysis as presented in Theorem A.2,

g(θg +∆θ̃g) (34)

=
1

β
θ(2)ϕ((βθ(1) + β∆θ∗

f )x) (35)

=θ(2)ϕ((θ(1) +∆θ∗
f )x) (36)

≡f(θf +∆θ∗
f ). (37)

According to Theorem A.3,

R(f(θf +∆θ∗
f ),D) ≡ R(g(θg +∆θ̃g),D) (38)

≤ R(g(θg +∆θ∗
g),D). (39)

Similarly, we can prove

max
∆θg∈Cθg

R(g(θg +∆θg),D) (40)

≤ max
∆θf∈Cθf

R(f(θf +∆θf ),D). (41)

Thus,

max
∆θf∈Cθf

R(f(θf +∆θf ),D) (42)

= max
∆θg∈Cθg

R(g(θg +∆θg),D). (43)

Such that the proof ends.



B. Algorithm of RiFT
The complete algorithm of RiFT is presented in Algo-

rithm 2.

Algorithm 2 Robust Critical Fine-Tuning
Input: adversarially trained model weights θAT , standard

dataset Dstd, weight perturbation scaling factor α, fine-
tuning optimization iteration steps T and learning rate
γ, weight decay facotr λ.

Output: The fine-tuned model weights θ∗
AT .

1: Step 1: Calculate MRC for each module
2: for Module weight θ(j) do
3: Calculate MRC value of θ(j) using Algorithm 1.
4: end for
5: Select the module with lowest MRC value, denote as

non-robust critical module θ(i)

6: Step 2: Fine-tuning on Non-robust critical module
7: θ1 = θAT

8: for t = 1, . . . , T do ▷ Fine-tuning T epochs
9: for Batch Bk ∈ Dstd do

10: Calculate loss: L(f(θt),Bk))

11: θ
(i)
t+1 = θ

(i)
t+1 − γ∇θt(L) ▷ Gradient Descent

12: end for
13: θFT = θt if θt obtain highest std test acc.
14: end for
15: Step 3: Interpolation
16: for α ∈ (0, 1, 0.05) do
17: θα = (1− α)θAT + αθFT

18: θ∗
FT = θα if it reaches best standard test acc while

preserve the robustness as θAT .
19: end for
20: Return Fine-tuned model weights θ∗

FT

C. Training Details
C.1. Experiment Environment

All experiments are conducted on a workstation
equipped with an NVIDIA GeForce RTX 3090 GPU with
24GB memory and NVIDIA A100 with 80GB memory.
The PyTorch version is 1.11.0.

C.2. Adversarial Training Details

For vanilla adversarial training, We set the initial learn-
ing rate as 0.1, which decays at 100 and 105 epochs with
factor 10. When generating adversarial examples, we set
BN as train mode since it usually achieves higher robust-
ness.

When incorporating RiFT with other adversarial train-
ing methods, the SCORE method is incorporated with
TRADES. For the CIFAR100 training, we ran with three
different learning rate and select the best model weights as

the one with highest robust accuracy. The hyper-parameter
settings are either based on their original paper or same as
the vanilla AT, depends on which method achieves better
robust accuracy.

C.3. Fine-tuning Details

The hyper-parameter that most affects fine-tuning is the
initial learning rate. According to our experience, we find a
small learning rate usually performs better. If the adversar-
ial robustness of the final fine-tuned weights is still higher
than the robustness of the initial adversarial training, we
then increase the learning rate.

C.4. The MRC value of ResNet34 and WRN34-10

Figure C.1 and Figure C.2 shows the Module Ro-
bust Criticality (MRC) value of each module in ResNet34
trained on CIFAR100 and WideResNet34 trained on Tiny-
ImageNet, respectively. It can be observed that both mod-
els exhibit redundant capacity. Additionally, Figure C.3
and Figure C.4 shows the MRC value of each module in
ResNet18 trained on CIFAR100 and Tiny-ImageNet, re-
spectively. As we discussed in Section 5.3 and Section 5.5,
ResNet18 has a lower redundant capacity compared to
ResNet34 and WideResNet34, and the redundant capacity
decreases as the classification task becomes more complex.

C.5. More interpolation results

Figure C.5 shows the interpolation results of different
modules of ResNet18 trained on CIFAR100 dataset. It can
be observed that fine-tuning on robust-critical module can
also help improve generalization and robustness. This does
not mean that our MRC is wrong, as we claimed in Sec-
tion 5.2, fine-tuning on robust-critical module does not nec-
essarily hurt robustness. The MRC provides guidance on
which module to fine-tune for optimal results, and still, fine-
tuning on non-robust-critical module achieves the highest
test accuracy while preserving robustness.

D. Analysis of the complexity of MRC algo-
rithm

When identifying the most non-robust-critical module,
it is required to iterate all modules of the model. Suppose
a model with n modules, for each module, the calculation
complexity depends on the iteration steps in Algorithm 1.
Considering the different overheads for each iterative com-
putation of the modules at different locations, for example,
when calculating the last module’s MRC value, it only re-
quires forward-backward iteration of the last layer of pa-
rameters. Thus, the average total forward-backward itera-
tion of each module is n/2. In our experiments, we set the
learning rate as 1 and the iteration step as 10. Thus, in our
experiments, the complexity of MRC algorithm cost 5n to-
tal forward-backward propagation.



Robust Acc Drop -0.05 -0.83 -0.71 -13.37 -0.64 -22.84 -0.57 -4.21 -0.61 -1.31 -0.24 -1.92 -0.21 -2.89 -0.20 -1.47 -0.76 -0.17 -0.01 -0.48 -0.18 -5.52 -0.16 -5.52 -0.40 -0.52 -0.24 -18.75 -4.72 -24.44 -4.33 -6.33 -2.41 -10.23

con
v1

lay
er1

.0.
con

v1

lay
er1

.0.
con

v2

lay
er1

.1.
con

v1

lay
er1

.1.
con

v2

lay
er1

.2.
con

v1

lay
er1

.2.
con

v2

lay
er2

.0.
con

v1

lay
er2

.0.
con

v2

lay
er2

.1.
con

v1

lay
er2

.1.
con

v2

lay
er2

.2.
con

v1

lay
er2

.2.
con

v2

lay
er2

.3.
con

v1

lay
er2

.3.
con

v2

lay
er3

.0.
con

v1

lay
er3

.0.
con

v2

lay
er3

.1.
con

v1

lay
er3

.1.
con

v2

lay
er3

.2.
con

v1

lay
er3

.2.
con

v2

lay
er3

.3.
con

v1

lay
er3

.3.
con

v2

lay
er3

.4.
con

v1

lay
er3

.4.
con

v2

lay
er3

.5.
con

v1

lay
er3

.5.
con

v2

lay
er4

.0.
con

v1

lay
er4

.0.
con

v2

lay
er4

.1.
con

v1

lay
er4

.1.
con

v2

lay
er4

.2.
con

v1

lay
er4

.2.
con

v2
line

ar

Module Robust Criticality 0.04 0.06 0.04 1.16 0.03 2.82 0.04 0.34 0.06 0.10 0.02 0.15 0.02 0.17 0.02 0.21 0.13 0.01 0.02 0.07 0.02 0.53 0.03 0.52 0.03 0.02 0.03 3.20 0.63 5.31 0.41 0.58 0.17 0.83

Figure C.1. Example of module robust criticality (MRC) and its corresponding robust accuracy drop of ResNet34 trained on CIFAR100.

Robust Acc Drop -0.29 -2.29 -3.72 -4.03 -0.05 -6.69 -0.05 -19.54 -0.60 -34.77 -1.25 -15.85 -16.27 -34.75 -1.07 -7.64 -0.40 -10.56 -0.69 -30.97 -0.64 -32.87 -14.20 -41.21 -14.90 -40.39 -5.44 -27.12 -17.09 -38.11 -9.28 -30.64

con
v1

blo
ck1

.la
ye

r.0
.co

nv
1

blo
ck1

.la
ye

r.0
.co

nv
2

blo
ck1

.la
ye

r.1
.co

nv
1

blo
ck1

.la
ye

r.1
.co

nv
2

blo
ck1

.la
ye

r.2
.co

nv
1

blo
ck1

.la
ye

r.2
.co

nv
2

blo
ck1

.la
ye

r.3
.co

nv
1

blo
ck1

.la
ye

r.3
.co

nv
2

blo
ck1

.la
ye

r.4
.co

nv
1

blo
ck1

.la
ye

r.4
.co

nv
2

blo
ck2

.la
ye

r.0
.co

nv
1

blo
ck2

.la
ye

r.0
.co

nv
2

blo
ck2

.la
ye

r.1
.co

nv
1

blo
ck2

.la
ye

r.1
.co

nv
2

blo
ck2

.la
ye

r.2
.co

nv
1

blo
ck2

.la
ye

r.2
.co

nv
2

blo
ck2

.la
ye

r.3
.co

nv
1

blo
ck2

.la
ye

r.3
.co

nv
2

blo
ck2

.la
ye

r.4
.co

nv
1

blo
ck2

.la
ye

r.4
.co

nv
2

blo
ck3

.la
ye

r.0
.co

nv
1

blo
ck3

.la
ye

r.0
.co

nv
2

blo
ck3

.la
ye

r.1
.co

nv
1

blo
ck3

.la
ye

r.1
.co

nv
2

blo
ck3

.la
ye

r.2
.co

nv
1

blo
ck3

.la
ye

r.2
.co

nv
2

blo
ck3

.la
ye

r.3
.co

nv
1

blo
ck3

.la
ye

r.3
.co

nv
2

blo
ck3

.la
ye

r.4
.co

nv
1

blo
ck3

.la
ye

r.4
.co

nv
2 fc

Module Robust Criticality 0.02 0.14 0.25 0.24 0.01 0.43 0.01 1.64 0.03 4.11 0.07 1.17 1.42 5.27 0.05 0.42 0.02 0.66 0.03 3.70 0.03 5.77 1.25 3.90 1.02 1.35 0.33 4.18 1.77 0.14 0.47 2.37

Figure C.2. Example of module robust criticality (MRC) and its corresponding robust accuracy drop of WideResNet34 trained on Tiny-
ImageNet.

Robust Acc Drop -1.13 -23.00 -14.87 -29.10 -23.87 -27.67 -24.41 -29.09 -17.45 -28.35 -27.03 -29.09 -12.01 -29.02 -28.94 -29.09 -25.51 -26.45

con
v1

lay
er1

.0.
con

v1

lay
er1

.0.
con

v2

lay
er1

.1.
con

v1

lay
er1

.1.
con

v2

lay
er2

.0.
con

v1

lay
er2

.0.
con

v2

lay
er2

.1.
con

v1

lay
er2

.1.
con

v2

lay
er3

.0.
con

v1

lay
er3

.0.
con

v2

lay
er3

.1.
con

v1

lay
er3

.1.
con

v2

lay
er4

.0.
con

v1

lay
er4

.0.
con

v2

lay
er4

.1.
con

v1

lay
er4

.1.
con

v2
line

ar

Module Robust Criticality 0.09 2.31 1.30 6.53 2.92 6.06 3.66 10.54 1.61 6.53 13.06 21.28 1.06 21.33 24.24 41.72 4.99 3.26

Figure C.3. Example of module robust criticality (MRC) and its corresponding robust accuracy drop of ResNet18 trained on CIFAR100.

Robust Acc Drop -6.45 -34.66 -34.00 -34.93 -34.72 -34.92 -34.67 -34.92 -33.63 -34.93 -34.77 -34.93 -26.73 -34.93 -34.93 -34.93 -34.61 -34.93

con
v1

lay
er1

.0.
con

v1

lay
er1

.0.
con

v2

lay
er1

.1.
con

v1

lay
er1

.1.
con

v2

lay
er2

.0.
con

v1

lay
er2

.0.
con

v2

lay
er2

.1.
con

v1

lay
er2

.1.
con

v2

lay
er3

.0.
con

v1

lay
er3

.0.
con

v2

lay
er3

.1.
con

v1

lay
er3

.1.
con

v2

lay
er4

.0.
con

v1

lay
er4

.0.
con

v2

lay
er4

.1.
con

v1

lay
er4

.1.
con

v2
line

ar

Module Robust Criticality 0.38 6.33 8.99 14.26 7.01 9.85 15.14 15.15 7.27 18.89 14.33 57.21 4.82 80.39 100.67 103.50 11.15 11.29

Figure C.4. Example of module robust criticality (MRC) and its corresponding robust accuracy drop of ResNet18 trained on Tiny-ImageNet.



57.0 57.5 58.0 58.5 59.0
Standard Accuracy

29.4

29.6

29.8

30.0

30.2

30.4

Ad
ve

rs
ar

ia
l R

ob
us

t A
cc

ur
ac

y

Non-robust-critical module
Linear layer
All layers
Robust-critical module
Vertical Line

Figure C.5. Interpolation results of fine-tuning on different mod-
ules of ResNet18 on CIFAR100 dataset. Dots denote different in-
terpolation points between the final fine-tuned weights of RiFT
and the initial adversarially trained weights.


