

OAFORMER: LEARNING OCCLUSION DISTINGUISHABLE FEATURE FOR AMODAL INSTANCE SEGMENTATION

¹ Advanced Institute of Information Technology, Peking University, Hangzhou, China ² National Engineering Research Center of Visual Technology, School of Computer Science, Peking University, Beijing, China

What is amodal instance segmentation?

Predict the complete mask of the occluded instance, including both visible and invisible regions.

Visible Instance Segmentation

Amodal Instance Segmentation

Problems in existing AIS methods:

confused for distinguishing whether the

object is occluded

Occlusion Confusing Problem

Zhixuan Li^{1,2}, Ruohua Shi², Tiejun Huang² and Tingting Jiang^{\boxtimes 1,2}

Occlusion Distinguish Module

Experiments:

Comparison with SOTA

Method	Supervision	D2SA			COCOA-cls		
		AP_{avg}	AP_{50}	AP_{75}	AP_{avg}	AP_{50}	AP_{75}
Mask-RCNN [22]	bbox, mask, cls	63.6	83.9	68.0	33.7	56.5	35.8
ORCNN [7]	bbox, mask, cls	64.2	83.6	69.1	28.0	53.7	25.4
SLN [13]	bbox, mask, cls	25.1	30.8	29.4	14.4	23.6	15.8
BCNet [11]	bbox, mask, cls	50.9	66.9	57.2	22.1	32.3	24.5
ShapeDict [15]	bbox, mask, cls	70.3	85.1	75.8	35.4	56.0	38.7
A3D [16]	bbox, mask, cls	68.5	N/A	N/A	34.9	N/A	N/A
Ours (w/o ODM)	mask, cls	61.7	78.7	63.3	33.9	45.0	35.8
Ours (w/ ODM)	mask, cls	72.5	86.5	76.1	37.4	49.7	40.5

- occlusion confusing problem in the AIS task
- from instance-level and spatial-level
- cls datasets.

- [22] He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. ICCV. 2017 End-to-end trainable amodal instance segmentation. WACV. 2019
- [13] Zhang Z., Chen A., Xie L., Yu J., and Gao S., "Learning semantics-aware distance map with
- CVPR. 2021
- segmentation and shape prior. AAAI. 2020
- ECCV, 2022.

Summary:

1. This paper proposes an end-to-end transformerbased method named OAFormer to handle the

2. OAFormer contains two novel components that learn and embed each instance's occlusion information

3. Experiments show that OAFormer can achieve stateof-the-art performance on the D2SA and COCOA-

References:

[7] Follmann, P., Konig, R., Hartinger, P., Klostermann, M., Bottger, T.: Learning to see the invisible:

semantics layering network for amodal instance segmentation," in ACM MM, 2019, pp. 2124–2132. [11] Ke, L., Tai, Y.W., Tang, C.K.: Deep occlusion-aware instance segmentation with overlapping bilayers.

[15] Xiao, Y., Xu, Y., Zhong, Z., Luo, W., Li, J., Gao, S.: Amodal segmentation based on visible region

[16] Li Z., Ye W., Jiang T., and Huang T., "2D amodal instance segmentation guided by 3D shape prior," in