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Abstract. The aim of this work is to decompose shapes into parts which
are consistent to human perception. We propose a novel shape decom-
position method which utilizes the three perception rules suggested by
psychological study: the Minima rule, the Short-cut rule and the Convex-
ity rule. Unlike the previous work, we focus on improving the convexity of
the decomposed parts while minimizing the cut length as much as possi-
ble. The problem is formulated as a combinatorial optimization problem
and solved by a quadratic programming method. In addition, we con-
sider the curved branches which introduce “false” concavity. To solve
this problem, we straighten the curved branches before shape decompo-
sition which makes the results more consistent with human perception.
We test our approach on the MPEG-7 shape dataset, and the compari-
son results to previous work show that the proposed method can improve
the part convexity while keeping the cuts short, and the decomposition
is more consistent with human perception.

1 Introduction

Part-based shape representation is a popular representation for objects in the
community of computer vision (e.g., [1]). However, there is a question always
hovering around us — What is an optimal set of parts for representing an object
(shape)? In this paper, we propose to address this question by referring to the
clues adopted by human perception, as human beings are apt at identifying
shape parts very easily and quickly, as well as generally consistently.

Psychological studies show that when presenting a single shape, people tend
to use generic and simple perception rules to decompose it into parts, e.g., the
Minima rule [2], the Short-cut rule [3] and the Convexity rule [4,5]. The Minima
rule considers the signed curvature of the shape boundary, and enforces that a
shape is divided at places where the curvature is local minimum. Convezity is
also an important perceptual clue to determine visual parts. Both rules reflect
the “saliency” of a part w.r.t. the global shape and the easiness to extract and
identify parts for shape perception [6]. The Short-cut rule takes the cut length
as a constraint and optimizes the decomposition by minimizing the total cut
length. This shows that human vision prefers to use the shortest possible cuts
to parse shapes, leading to a “compact” part-based representation.
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Fig. 1. Comparison of our decomposition results to previous work. (a) [7]’s result. (b)
[8]’s result. (c) [11]’s result. (d) Our result without straightening. (e) Our result with
straightening.

In this paper, we propose a novel shape decomposition method by jointly
considering the three generic perception rules to find an optimal shape decom-
position consistent to human perception. Specifically, the problem is formulated
as selecting an optimal subset of candidate cuts, from which object parts are de-
rived. The Minima rule is used to propose prospective candidate cuts. The cut
length is the cost of choosing one cut which corresponds to the Short-cut rule. On
the other hand, the benefit of choosing one cut is designed as the improvement of
the convexity of generated parts which corresponds to the convexity rule. There-
fore, the three generic perception rules are integrated naturally into a quadratic
integer programming formulation that optimizes the totality of the perception
criterion. To further improve the decomposition, we first detect curved branches
and apply a straightening process before the decomposition. This can avoid the
superfluous cuts due to the “false concavity” of curved branches (shown as the
highlighted parts of Fig. 1(a)-(d)) and make the decomposition more consistent
to human perception.

Besides the shape decomposition method, another contribution of the paper
is that we propose a quantitative measure for the first time to evaluate decom-
position results. Most of previous methods justified improvement by showing a
limited number of selected good decomposition results and compared with the
results from other methods side by side only by eyeballing. This kind of evalua-
tion methodology is subjective and could be inaccurate. In this paper we propose
a quantitative evaluation measure based on statistical data from a considerable
amount of decomposition results. This makes the comparison more convincing.

To verify our method, we design an experiment which asks people to decom-
pose the given shapes manually into perceptual meaningful parts. By comparing
the human decomposition to different results generated by our algorithm as well
as previous work, it can be seen that our results are closer to human decompo-
sition which proves the consistency between our method and human perception.

Related Work  Most previous work on generating shape parts can be
classified into two strategies: one is “bottom up” strategy which is grouping small
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shape elements into large shape parts [9], and the other is “top down” strategy
which is shape decomposition. For the former strategy, people use bottom-up
grouping method to learn parts as hierarchical shape vocabularies from a large
number of shape instances, e.g. [9,10]. This type of approaches consider the
joint statistics between the object and curve fragments at different levels of
hierarchies, whereas ignore shape perceptual properties such as convexity and
cut length at all.

The latter strategy exploits perceptual cues to decompose shapes, it is in the
same vein of the proposed method. Based on different cues, computer vision sci-
entists have developed various optimization algorithms for shape decomposition.
For example, based on convexity, Gopalan et al. [7] proposed an algorithm to do
approximate convex decomposition. Liu et al. [8] considered both convexity and
the Short-cut rule to optimize the shape decomposition. Based on their work,
Ren et al. [11] further encoded the Minima rule and the number of shape parts
into the objective function during optimization.

Besides these two classes, there are some previous work using symmetry [12]
and Relatability [13] to find shape parts.

In this paper, the way we formulate the problem is different from previous
work, including [8,7,11]. Both [8] and [7] only applied one or two rules. Al-
though [11] considered all three rules, their focus is to minimize the number of
parts which has overlap with the Short-cut rule, and to optimize the “visual
naturalness” which is different from our goal. In addition, they did not provide
a rigorous way to define and evaluate the “visual naturalness”. Compared to the
previous work, we optimize the totality of the perception criterion by encoding
the contribution of each cut as “cut-income” and formulating the problem as a
quadratic programming problem, instead of requiring each part’s convexity sim-
ply above a threshold as [8,11]. Thus our decomposition results will be sensitive
to the improvement of convexity and consistent to human perception.

The rest of the paper is organized as follows. Section 2 formulates the shape
decomposition problem as an optimization problem. Section 3 reviews the related
preliminary work. Section 4 introduces our approach and Section 5 shows the
experimental results. Finally, Section 6 concludes the paper.

2 Problem Formulation

Given a planar shape S which is simply connected, a partition of S is defined as

S=JP, st,vP, P,CS; Vij, P[|P;=0, (1)
7

which means that S is composed of several parts {P;} and these parts do not
overlap each other. On the other hand, a partition of S is associated with a set
of cuts {C;} = {p;1p;2} where each cut is a line segment p;1p;2 and both points
pj1 and pjo lie on the boundary of S. These cuts do not intersect each other.
The boundary of P; is composed of the boundary of S and a subset of {C}}.
Based on the above notations, we can explain the three rules as follows:
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— The Minima rule [2] suggests that the cut points {p;1,p;2} are located at
the points where the curvature is local minimum.

— The Short-cut rule [3] suggests to minimize the total length of the cuts, i.e.,
min ), L(C;) where L(Cj) denotes the length of cut C; which is usually
computed as the Euclidean distance between points p;; and pja.

— The Convexity rule [4,5] suggests to maximize the convexity of parts or
minimize the concavity of parts. Based on this rule, Rosin [14] proposed a
weighted average convexity to evaluate the decomposition quality as follows,

Convexity({P;}) = > %Convexity(PZ—)‘ (2)

where A; denotes the area of P; and A is the area of shape S or A =3, A;.

Based on these rules, the goal of shape decomposition can be formulated as
i L(C Aig ity (P
mm@ (©)+ 3 7 Concavity(P) (3)
s.t. cut points have local minimal curvatures and cuts do not intersect.

3 Preliminary Work

Given the above problem formulation, the remaining questions include : (i) how
to measure Concavity(P;)? (2) how to encourage the cut points {p;i,p;2} to
have the local minimal curvatures? (3) how to optimize the objective function
based on the measurements? We will introduce the preliminary work related to
these questions in the following sections.

3.1 Convexity/Concavity Measurement

There are several choices for the measurement of convexity. One classical defi-
nition of convexity is the ratio of the area of the part to the area of its convex
hull [14]. But this convexity measure is criticized due to its insensitivity to deep
(but thin) protrusions of the boundary because it is area-based.

Inner Distance Recently, the inner distance (ID) is becoming a popular mea-
sure for convexity [15,7] because it is sensitive to the deep protrusions. The
convexity of a part P; is defined as the minimal ratio of the Euclidean distance
(ED) over ID of a pair of points within this part, and the concavity of P; is
defined as follows,

Convexity(P;) = mér}) ED(p, q)/ID(p, q), Concavity(P;) = 1 — Convexity(FP;).
p,qc i
(4)
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Fig. 2. (a) Illustration of a mutex pair of regions (A and B), a candidate cut (red line)
and its income. f is the Morse function. Point ps is the saddle point which corresponds
to the mutex pair (A and B). peyt is the cut point. pa is the lowest point in part
A w.r.t. the direction of Morse function f. f(pcut) and f(pa) are the Morse function
values of points peu+ and pa. The income of the red cut is f(peut) — f(pa). (b) One cut
can satisfy two mutex pairs of regions. Cut C3 can satisfy two mutex pairs of regions
(A2 and Ba, As and B3). One mutex pair of regions A; and B; can be separated by
two different cuts C1 and C2 with income I; and I respectively.

Morse Function Besides the above measure, Liu et al. proposed a new mea-
sure [8] for concavity. By this measure, for each point pair (p,¢) within part P;,
their concavity concave(p, q) is defined by a path which can minimize the max-
imal perpendicular distance between the line passing (p,q) and the projected
contour points between p and ¢ on this path w.r.t. all Morse functions. Based
on this, the concavity for a part P; is defined as follows:

concave(P;) = max concave(p, q). (5)
P,qEP;
Although this definition of concavity is different from Eqn. 4, we can prove
that the two definitions are inherently consistent for shapes without holes:

Theorem : Given a shape S without holes, for any point pair (p,q) € S, the
path R which corresponds to the inner distance between p and ¢ is also the path
which can minimize the concavity as defined in Eqn. 5.

The proof is provided in the supplemental material.

3.2 Mutex Pair and Candidate Cuts

The shape decomposition problem can be also viewed as a selection problem.
Since there are infinite cuts inside a shape, the goal is to select a subset of cuts
which can optimize an objective function. How to propose qualified candidate
cuts is a challenging problem. Liu et al. [8] proposed a way to generate candidate
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Fig. 3. Comparisons of the candidate cuts by previous work and our new cuts as well
as the resulted shape decompositions. (a) Candidate cuts by [8]. (b) New candidate
cuts. (c) Shape decomposition by [8]. (d) Our decomposition result.

cuts. The idea is to find pairs of components which cannot be kept together
otherwise the concavity of the part containing both components will be high.
Each pair of such components is defined as a “mutex pair” of regions. Specifically,
it is a pair of regions A and B with

m(A,B) = Lin concave(p, q) (6)
above a threshold € (See Fig. 2(a)). Given a fixed threshold e, let M P denote all
the mutex pairs to be separated and |M P| = n,,,. The motivation of generating
candidate cuts is to separate these mutex pairs of regions. Fig. 3 (a) shows an
example of generated candidate cuts by this method. Due to the limited number
of Morse functions being sampled (16 directions in the experiments), the “best”
cut which can separate the bottom piece is missing.

4 Our Approach

4.1 New Candidate Cuts

In Liu et al. [8]’s work, they only consider the Convexity rule to propose a set
of candidate cuts Cr. However, the Minima rule can also help to propose useful
candidate cuts. We add a new set of candidate cuts Cj; s.t. both cut points of
each new cut have local minimum curvatures. Fig. 3 (b) shows a set of new cuts
generated by this rule. By combining Cy, and C,,, it can be seen that the set of
candidate cuts C, = Cr U Cjs is more comprehensive and complete which will
improve the final solution (See Fig. 3 (c¢) and (d)).

4.2 Cut Income

If the length of a cut is thought as the cost for choosing this cut, the contribution
of a cut for reducing the concavity of parts can be viewed as its “income”. For
each mutex pair mp and each cut C, let I(mp,C) denote the income of C for
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mp. For example, in Fig. 2(a), without the red cut, the concavity of A and B
is f(ps) — f(pa) by the definition of Eqn. 5. With the red cut, the concavity
of the left part becomes f(ps) — f(peut). So the reduction of the concavity is
f(Deut) — f(pa) which is the income of this cut for mutex pair A and B.

A cut can satisfy multiple mutex pairs and a mutex pair can also be satisfied
by multiple cuts (Fig. 2(b)). Let mp denote a mutex pair and C(mp) denote the
set of candidate cuts which can satisfy mp. Let M(C) denote the set of mutex
pairs which can be satisfied by C'. So the real income of a candidate cut is deter-
mined by the mutex pairs it satisfies in the final shape decomposition. However,
which mutex pairs it can really satisfy is unknown before the decomposition is
finalized. If multiple cuts satisfying mp are chosen in the final solution, only
the cut C* which maximizes I(mp,C) can get its income I(mp,C*) and other
cuts have no income. For example, in Fig. 2(b), both cuts Cy and Cs can satisfy
mutex pair A; and Bj, but the income of C is larger. Thus if both cuts are
chosen, only C7 makes income for this mutex pair.

We estimate the expected income of each candidate cut by stochastic analysis.
Here we make an assumption that for any final solution, whether one cut is chosen
or not is independent of other cuts. So the probability of choosing one candidate
cut is 1/2. For each mutex pair, we rank C(mp) by I(mp, C) and get a sequence
of candidate cuts as C"",C3"", ..., C;"" s.t. I(mp,C{"") > I(mp,C3"") > ... >
I(mp, C;"). Let r(mp,C) be the ranking of the cut C' w.r.t. mp. For example,
r(mp, C{"") = 1. If a subset of C(mp) is chosen in the final solution, only the
cut with maximum I (mp, C') counts, the others do not make any income for this
mutex pair. The probability for cut C' being counted for mutex pair mp depends
on its ranking r(mp, C). If r(mp,C') = 1, the probability for C' being counted
for mp is 1/2. Because once C' is chosen, it will be counted for mp no matter
whether any other cut is chosen. The probability of choosing C'is 1/2. In general,
it is easy to show the probability for C' being counted for mp is

1
Pr(C counted for mp) = Pr(C' is 1st chosen in ranked C(mp)) = PEETXaR

(7)
It is expected that the summation of this probability over all candidate cuts
which can satisfy this mutex pair is 1. If cut I(mp,C) = 0 or C' does not make
any income for mp, Pr(C is counted for mp) = 0. Based on this observation, we
can estimate the expected income of a cut C' as follows:

— 1
)= > Srmpoy L (mp, C). (8)
mpeM(C)

4.3 Optimization

Assume that there are n candidate cuts in the proposed candidate cut set C, =
{C;}}—1- The final decomposition chooses a subset of C,, denoted by C*. With
the expected income for each candidate cut, we can reformulate Eqn. 3 as:

min{ Y [L(C;) — I(C))]} (9)

C,;eCx
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because minimization of the part concavity is equivalent to maximization of the
reduction of concavity, i.e., the expected income of chosen cuts.

Design a binary vector x s.t.:x; =1 <= (; € C*. Let vector L represent
the cut length of C, s.t. L; = L(C}). Let vector I be the expected income of
C, s.t. I; = I(C}). Design a penalty matrix H,,, s.t. if C; and C}, intersects
H(j, k) = +00. So Eqn. 9 can be rewritten as

min L7x — aI”x + x"Hx st. Ax>1, xe€{0,1}", (10)

X

where A is a matrix of size n.,, x n. It denotes the relationship between the
mutex pairs M P = {mpk}zg’ and the candidate cuts C,. If a mutex pair mpy,
can be satisfied by cut C}, then A(k, j) = 1, otherwise it is zero. a is parameter
to adjust the impact of cuts’ income.

The above formulation considers the cut length, the expected cut income,
the intersection of cuts and the mutex pairs to be separated. If we relax x to be

x; € [0, 1], this problem becomes a standard quadratic programming problem:

minx? Hx + (LT —al)x st. Ax>1, x€[0,1]". (11)

In Eqn. 11, H might not be positive definite and thus the function might be non-
convex. We use a global solver called “bmibnb” provided by YALMIP [16]. It is
based on a standard spatial branch-and-bound strategy. After solving Eqn. 11,
we can get a soft assignment of x and then incrementally choose the cut with
maximal x; until all mutex pairs are satisfied. Because we considered the cut
intersections by H, there will be no intersecting cuts chosen in our final decom-
position while this is possible in [8].

4.4 Straighten the Curved Branches

If the above method is applied on a shape with curved branches directly, it will
be cut into small pieces. For example, in Fig. 4(f), the tail of the ray is cut into
four pieces. To keep the decomposition of the curved branches consistent with
human perception, we design a preprocessing step to straighten these branches
before the shape decomposition. The idea is to first detect curved branches and
then straighten them. Similar work has been done in [17] for shape classification.
But they only detect the curved branches without straightening and assume
that the curved branch must be attached to a single base structure. Here we
do both detection and straightening for curved branches without the single base
assumption. Notice that we cannot take the detected curved branches as the
expected final parts because one curved branch could contain multiple parts.
For example, in Fig. 6, the elephant’s nose can be detected as a curved branch
but this branch can be further decomposed as two parts (see final column).

To detect the curved branches, the skeleton of the shape is extracted by [18]
and represented as a tree shown in Fig. 4(b). Each possible curved branch corre-
sponds to a subtree. For a subtree, we find the longest path from the root in this
subtree and define it as the “trunk”. For example, in Fig. 4(b), the red curve
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Fig. 4. Illustration of straightening process. (a) The original shape. (b)Detection of
curved branches. Red curve AB is the trunk. Green area is the corresponding curved
branch. A; and As are two points on the shape contour which are equally distant from
A. C; and (s> are neighboring points of C' on the trunk. a denotes the change of the
direction of the trunk at point C. P is the closest trunk point to Q. 6 is the angle
between PQ and the tangent direction of the trunk at P. (c) Straightened green part.
A’B’, P', Q' correspond to AB, P, Q respectively in (b). (d) Decomposition on the
straightened shape. D1 D is the cut. (e) Decomposition on the original shape. DD}
is the corresponding cut to D1D-.(f) Decomposition without straightening.

is the “trunk” for the subtree with the root node A. A; and As are two points
on the shape contour which are equally distant from A. The green area is the
corresponding part to the red trunk. Let the trunk be represented by a set of
points. For each point on the trunk, connect it to the neighboring two points
and get two line segments. The angle between the two line segments is defined as
the change of the direction at this point. For example, in Fig. 4(b), the change

of the direction at point C is « which is the angle between Cﬁ and CCs.

For each trunk, the following three criteria shown in Fig. 4(b) are used to
check whether the corresponding branch is curved and need straightening: (1)
“slimness” which can be measured by the ratio of the length of the trunk over
the average width of the corresponding branch along the trunk; (2) curved angle
which is the maximum change of the direction of the trunk; (3) the ratio of the
branch area over the total area of the shape.

Next a straightening procedure is applied on the detected curved branches.
For each curved branch, first straighten its corresponding trunk and then use it
as a reference. In Fig. 4(c), A’B’ is a straight line segment corresponding to trunk
AB in Fig. 4(b). For each point @ on the branch contour, find its corresponding
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point @’ on the straightened shape as follows. First, find its closest point P on
the trunk. Denote the angle between line segment PQ and the tangent direction
of the trunk at P as 6. Second, find the corresponding point P’ of P on A'B’.
Third, map Q to Q' by keeping the angle between line segment P’@Q)’ and A’B’
as 6 and the length of P'Q’ equal to PQ . Therefore, Q' can be located.

After straightening, the proposed decomposition method above can be ap-
plied and the curved branches will not be cut into pieces (Fig. 4(d)). Last, the
generated cut set on the straighten shape can be mapped back to the original
shape as shown on Fig. 4(e).

5 Experimental Results

To evaluate the proposed method on 2D shape decomposition, we choose 20 cat-
egories from the MPEG-7 shape dataset [19] as Fig. 6 shows. For each category,
there are 20 shapes. In total, there are 20 x 20 shapes for evaluation.

We propose two measures to evaluate the performance of the decomposition
result: cut length and convexity which correspond to the first two items in the
designed objective function Eqn. 10. The cut length is measured by the ratio of
the total cut length over ® which is the maximum distance between points of
the shape. Specifically, we choose 16 Morse functions and set the threshold e for
generating mutex pairs as 0.05®. These settings are same for both our method
and [8]. The parameter a in our method is set as 0.1. For straightening, the
threshold for slimness is 13, the curve angle is expected between 20 — 75°, and
the maximal ratio of the part area over the total shape area is set as 0.2.

5.1 Shape Decomposition

To test the performance of our method, we compare it to [8], [7] and [11]. Fig. 5
shows the comparison result. For each shape, we first obtain the four different
decomposition results and then evaluate the cut length and the convexity by
Eqn. 2. For each category, we calculate the mean and standard variance of the cut
length across 20 instances for each method respectively. Similarly, the convexity
is computed based on inner distance. From Fig. 5, it can be seen that our cut
length(pink and red) are shorter than the other three methods (green, yellow
and cyan) in most cases on average while our convexity is about the same as
those methods. This proves that our method can achieve same convexity with
shorter cuts compared to previous work. Further, straightening improves the
decomposition results for several classes including camel, elephants, octopus and
ray. The cut length is reduced for these classes because the superfluous cuts
are removed by straightening. But the convexity does not change too much.
Fig. 6 and Fig. 1 show some decomposition examples of the four methods. From
these examples, we can see that our results can achieve a good balance between
convexity and cut length. Compared to [8], ours can reduce the cut length while
keeping a good convexity by the added new candidate cuts. For example, in
Fig. 1, the elephant’s nose is cut better by our method because the elephant is
first straightened and won’t introduce concavity during shape decomposition.



Toward Perception-based Shape Decomposition 11

C——m
| —
 E—E
[N ours without straightening
15 I ours vith straightening
<
=
jo)]
c
Q
-
=4
O
PN [}
g8
P
E=)
<
(3]
>
c
o
O
2 §F 2 P & T L L 5 § g OE S XK & 5 2 > ¢
28§ 755 5§ F8F &5 8L L LEF RS
g & @8 5 % g5 5 5 & £ 8
& S s 3 <1

Fig. 5. Comparisons of the cut length and part convexity of the shape decomposition
results from [7](yellow), [8](green), [11](cyan), our method without(pink) and with(red)
straightening. The black lines denote the standard variance.

5.2 Human Perception

To verify whether the decomposition results are consistent with human per-
ception, we conduct an experiment which asks people to decompose the shape
examples into perceptually meaningful parts. For each of the 20 categories from
the MPEG-7 shape dataset, we select 10 shapes for testing. And for each selected
shape, 12 people decompose it manually. The cuts provided by the participants
are taken as the set of “ground truth” cuts, called CT. To measure the discrep-
ancy between our decomposition result C* and the “ground truth” cuts C*, we
define the distance between two cuts C7 = p1pz and Cs = p3ps as follows:

D1 (C1,C2) = min{ED(p1, p3) + ED(p2,p4), ED(p1,ps) + ED(p2,p3)}.  (12)
The distance between one cut C' and one cut set C is defined as :
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Fig. 6. Examples of decomposition results for 20 categories of MPEG-7. On the left,
there are six results for each shape. One the right, there are five results for each shape
because the decomposition does not change with straightening. From left to right: (a)
human decomposition result, (b) [7]’s result, (c) [8]’s result, (d) [11]’s result, (e) our
result without straightening and (f) our result with straightening.
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which is the distance between the cut and its nearest cut in the cut sets. And
the distance between two cut sets C; and Cs is defined as:

1, 1 1
D(Cy,Co) = g(m > Da(Ci,Cs) + Gl > Dy(Cj,Ch)). (14)
e 2l ciec,
which is the average of the average distance from C; to Cy and that from Cs
to C;. This distance is symmetric and called as “cut distance”.

0.4 Cm
| —
C Oy
[ ours without straightening
I ours with straightening

0.3

Cut distance

Fig. 7. Distances between the human cuts and out results without(pink)/with straight-
ening(red), [8](green), [7](yellow) and [11](cyan) respectively for the MPEG-7 shape
dataset. The black line denotes the standard variance.

Fig. 7 shows the computed “cut distance” of our results as well as [8], [7] and
[11]. Tt is also measured by the ratio of the cut distance over ®. It can be seen
that our result is closer to the ground truth compared to the previous work for
most categories. Straightening is helpful to improve the cut accuracy for some
classes such as octopus and ray. This shows that combining the three generic
rules and straightening is useful to learn perceptually meaningful shape parts.
Fig. 6 shows examples of the decomposition results from experiments. For each
category, we choose one example shape and display the decomposition results
by human, [7], [8], [11] and ours. It can be seen that for most categories, our
decomposition results are closer to human results.

6 Conclusion

We proposed a method to solve the shape decomposition problem for learning
perceptually meaningful parts. By jointly considering three generic rules, we
formulate the shape decomposition problem as an optimization problem and
design a new metric “cut income” to measure the contribution of candidate
cuts for improving the convexity of decomposed parts. By using this metric, the
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original problem is solved as a quadratic programming problem. In addition,
straightening is applied to avoid the superfluous cuts. The experimental results
show that our approach is promising to keep a good tradeoff between cut length
and convexity, and the results are more consistent with human perception.
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