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Abstract— We consider the problem of obtaining image quality
representations in a self-supervised manner. We use prediction
of distortion type and degree as an auxiliary task to learn
features from an unlabeled image dataset containing a mixture
of synthetic and realistic distortions. We then train a deep
Convolutional Neural Network (CNN) using a contrastive pair-
wise objective to solve the auxiliary problem. We refer to the
proposed training framework and resulting deep IQA model
as the CONTRastive Image QUality Evaluator (CONTRIQUE).
During evaluation, the CNN weights are frozen and a linear
regressor maps the learned representations to quality scores
in a No-Reference (NR) setting. We show through extensive
experiments that CONTRIQUE achieves competitive perfor-
mance when compared to state-of-the-art NR image quality
models, even without any additional fine-tuning of the CNN
backbone. The learned representations are highly robust and
generalize well across images afflicted by either synthetic or
authentic distortions. Our results suggest that powerful quality
representations with perceptual relevance can be obtained with-
out requiring large labeled subjective image quality datasets.
The implementations used in this paper are available at
https://github.com/pavancm/CONTRIQUE.

Index Terms— No reference image quality assessment, blind
image quality assessment, self-supervised learning, deep learning.

I. INTRODUCTION

IMAGE Quality Assessment (IQA) pertains to the problem
of quantifying and predicting human perceptual judgments

of image quality. No-Reference (NR) or blind IQA is focused
on estimating the quality of degraded images with no infor-
mation about any pristine reference images or of the types of
distortions that are present. The goal of NR-IQA models is to
make robust and accurate quality predictions that correlate well
with subjective judgments. The typical presence of multiple
types of artifacts, as well as the influence of image content on
perceived quality makes NR-IQA an interesting and challeng-
ing problem. NR-IQA has become a central technology for
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social media platforms such as Facebook, Instagram, Flickr
etc. where millions of digital user-generated content (UGC)
images are uploaded everyday. It is necessary to be able to
objectively determine and control the quality of these digital
photographs, and to guide subsequent processing tasks, such
as compression [1]. Additionally, IQA models can also be
employed as objectives when training image enhancement
models for image denoising, super-resolution etc. [2]–[4].

NR-IQA has been a topic of intense interest among the
research community for more than a decade, resulting in a
variety of IQA datasets and objective models. Legacy IQA
databases such as LIVE-IQA [5], CSIQ-IQA [6] etc. have been
influential in advancing the field of image quality prediction.
These early datasets contain images with synthetic distortions,
whereby a pristine high quality reference is artificially cor-
rupted by commonly observed distortions such as blur, white
noise, compression artifacts etc. However, a shortcoming of
these datasets is that in most instances, a ‘single’ distortion
type is applied on each image, whereas in reality images com-
monly are degraded by a combination of multiple distortions.
To address this, various recent databases have been introduced
that contain real, authentically distorted images [7]–[10], typ-
ically captured by casual users with handheld camera devices.
From the perspective of objective NR model design, it is
desirable to obtain a model that can perform well on both
synthetic and authentic distortions, so that it is applicable to
any image regardless of the type of impairments it is afflicted
with.

Well established NR-IQA models typically rely on para-
metric or learned approaches. Natural scene statistics (NSS)
based models [11]–[14] use features which are derived from
statistical observations, and use them to predict visual quality.
These kinds of algorithms have been very successful at ana-
lyzing synthetic artifacts, but their performance has proven to
be limited when evaluated on images afflicted by unknown,
often commingled authentic distortions. Over the last decade,
the many successes of deep Convolutional Neural Networks
(CNN) [15]–[17] trained on large databases has motivated the
development of many CNN based, data-driven IQA models
have been proposed [18]–[21].

One barrier to the development of CNN based IQA mod-
els is the lack of availability of sufficiently large labeled
IQA datasets. Annotating IQA datasets is an expensive and
labor intensive process. Most available IQA datasets are too
small to effectively train deep CNN models from scratch.
Because of this, most CNN based IQA models utilize transfer
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learning, where the CNN is pretrained on a large dataset
like ImageNet [22], then fine-tuned end-to-end on images
with subjective quality judgments. Although fine-tuned mod-
els achieve impressive performances on both synthetic and
authentic distortions, fine-tuning requires carefully chosen
hyper-parameters that can vary with different IQA databases.
Moreover, excessive fine-tuning can overfit the model on the
training data limiting its generalizability.

Here we introduce a contrastive learning based IQA training
framework aimed towards obtaining efficient image qual-
ity representations using unlabeled datasets. Our ideas are
motivated by the successes of unsupervised/self-supervised
pretraining methods [23]–[26] originally proposed for image
classification problems. We refer to the new model as
CONTRastive Image QUality Evaluator (CONTRIQUE). The
salient characteristics of CONTRIQUE are as follows:

1) We use prediction of distortion type and degree as an
auxiliary task to train a deep CNN from scratch. Training
is done on an unlabeled dataset containing both synthetic
and authentic distortions, using a contrastive objective
function.

2) To learn robust representations, multiscale and quality
preserving transformations are performed on the unla-
beled data during training.

3) During testing, the weights of the deep CNN are frozen,
and features from this network are mapped to quality
scores using a simple linear regressor. Quality pre-
dictions produced by CONTRIQUE are shown to be
competitive with those of state-of-the-art (SOTA) IQA
models across multiple databases. This is accomplished
with no additional fine-tuning of the CNN backbone.

4) The CONTRIQUE training framework is simple, and
results in in highly generalizable representations that
perform well on both synthetic and realistic distortions.
Additionally, we show that the CONTRIQUE features
can be easily extended to the Full-Reference (FR)
IQA problem with no additional training of the CNN
backbone.

The rest of the paper is organized as follows: In Section II
we discuss prior methods related to IQA and self-supervised
learning. In Section III we provide a detailed description
of the design of CONTRIQUE. Section IV analyzes and
compares various experimental results of CONTRIQUE, and
we conclude in Section VI.

II. RELATED WORK

In this section we review related work from the literature
concerning NR-IQA and self-supervised learning.

A. NR-IQA Models

Blind image quality prediction is a challenging problem
due to the diverse types of artifacts involved. The influence
of image content on different distortion types adds additional
complexity to the problem. Over the past decade, considerable
research effort has been expended on designing NR-IQA
models, with the goal of obtaining quality predictions that

have high correlations against human judgements. NR models
can be broadly categorized based on the design methodology -
traditional/hand-crafted models, and deep CNN based models.
Most prior models pursue a design philosophy of having a
feature extraction framework followed by a regressor to map
features to quality values. In traditional models, feature extrac-
tion is accomplished by modeling the image artifacts, Natural
Scene Statistics (NSS) based models are a popular example
employing this approach. NSS models extract features from
a transform domain, where deviations from expected statis-
tical regularities due to distortions are predictive of quality.
NSS models include DIIVINE [11], which employs steerable
pyramids, BLIINDS [12], which uses DCT coefficients, and
BRISQUE [13] and NIQE [14], which use mean subtracted
contrast normalized coefficients (MSCN) to obtain quality
aware features. In CORNIA [27] and HOSA [28], a visual
codebook constructed from local patches is used to obtain
quality representative features. Although traditional models
achieve impressive performances when evaluated on images
with synthetic distortions, their capabilities are often limited
when tested on images containing realistic distortions and
combinations of them.

The successes of deep learning on many computer vision
tasks [15]–[17] has inspired a large number of CNN-based
NR-IQA models. The motivation behind using CNN is to
obtain reliable semantic features from deep architectures, then
perform appropriate modifications to adapt them for quality
prediction. Due to a lack of large scale data pertaining to
image quality, the majority of CNN-based models use transfer
learning techniques, whereby a pretrained model (usually
pretrained on ImageNet [22]) is fine-tuned using ground-truth
image quality labels. In [29], it was shown that features
obtained from pretrained CNN architectures like Resnet [15]
can be particularly effective in capturing authentic distortions.
Ma et al. [30] used a multi-task model containing two sub-
networks, a distortion identification network, and a quality
prediction network, where both networks shared features from
early layers. In [18], two separate CNNs are employed to
account for synthetic and authentic artifacts, respectively.
Kim and Lee [19] employed FR-IQA maps as intermediate
regression targets during training. Zeng et al. [20] used a
statistical distribution of subjective scores when training which
led to faster convergence and resulted in superior quality
estimates. In [31], [32] the earth mover’s distance (EMD)
loss was used to train a CNN to predict the distribution of
human opinion scores. Su et al. [21] proposed an adap-
tive hyper network architecture to separate quality predic-
tion from content understanding. Talebi et al. [33] employ
a rank-smoothed loss where pairwise probabilities are regu-
larized with aggregated rankwise probabilities, and show that
this modified loss yielded superior correlations against human
judgments. In [34] meta-learning was employed to extract
prior knowledge that is shared among different types of dis-
tortions. Ying et al. [9] demonstrated that training with both
image and patch quality scores can significantly boost model
performance. The PaQ-2-PiQ algorithm developed by these
authors also benefited by the availability of an unusually large
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subjective database of realistically distorted images. All these
models rely on specific supervised fine-tuning mechanisms in
order to achieve improved performance. In contrast, our work
focuses on unsupervised feature learning with no fine-tuning
procedures.

The transformer [35] which was initially introduced for
natural language processing (NLP) tasks, has gathered sig-
nificant interest in the computer vision community for various
vision tasks [36]–[38]. For example, the Vision Transformer
(ViT) [38] employs a pure transformer based architecture
directed towards the image classification task by treating
images as a sequence of patches. Ke et al. [39] proposed a
multi-scale image quality (MUSIQ) transformer for processing
images with varying resolutions and aspect ratios, demonstrat-
ing superior performances on multiple IQA datasets. Trans-
former architectures are typically complex and often require
a significant amount of data and computational resources
for training. Here, our focus is instead directed towards
self-supervised feature learning, and having model complexity
similar to CNN based IQA models. Thus, we only use CNN
based architectures.

B. Self-Supervised Learning
Self-supervised learning or unsupervised pretraining aims

at obtaining representations using unlabeled data. These tech-
niques derive useful representations by exploiting existing
structural information available in the image data. Recent
SOTA methods rely on instance discrimination task, in which
each image and augmented versions of it are treated as a
single class [23], [25], [26]. Another form of self-supervision
involves learning features through auxiliary tasks (different
but related to the original task) for which data is abun-
dant, and which requires no annotations. Examples of these
self-supervised tasks include rotation prediction [40], obtain-
ing color images from grayscale and vice versa [41], [42],
and inpainting [43]. Liu et al. [44] proposed an NR-IQA
model using image ranking as an auxiliary task, and achieved
competitive performance on datasets with synthetic artifacts.
Here we use discrimination of distortion types and degrees,
which is related to quality assessment, as a self-supervision
task and then we use the learned representations for image
quality prediction.

III. METHOD

Our method is a transform domain approach where a
transformation f : R

3×H×W �→ R
d maps an image x to a rep-

resentation h. Bandpass transformations such as wavelet-like
decompositions are often used to model the responses of
visual neurons in primary visual cortex that are tuned to
visual stimuli having specific spatial locations, frequencies,
and orientations. Traditional NR-IQA models have been based
on band-pass transformations such as the DCT [12], steerable
pyramids [11], local mean-subtraction [13], [14] and so on,
have been highly effective at predicting perceptual quality.
Recently, transformations induced by deep CNNs have demon-
strated remarkable efficiency at capturing perceptual image
artifacts [18], [20], [21].

Here, our goal is to learn robust representations that can
be used to predict image quality, without employing any

ground-truth quality scores during training. Our proposed
training pipeline is illustrated in Fig. 1. In the following
sections each module present in the framework is discussed
in detail.

A. Auxiliary Task
An auxiliary task to learning problem is an alternate but

closely related task, for which the ground-truth labels are
known or can easily be obtained. In this approach, model is
trained to solve an auxiliary problem, then during the inference
stage, the trained model is evaluated on the original task. In the
case of IQA, the goal is to obtain discriminative representa-
tions that can distinguish different types of distortions, as well
as the degrees of degradations. Thus, we transform the IQA
representation learning problem to a classification problem,
where each class consists of images having a similar type of
distortion, as well as similar degree of quality degradation.
The goal of the auxiliary task is to learn features that can
differentiate images into distortion dependent classes, similar
to [18], [45], which employ a cross-entropy objective during
training to achieve this.

Let a pristine high quality image x be degraded by a
distortion di , i ∈ {1, . . . , D} with degradation degree li j , j ∈
{1, . . . , Li } resulting in a distorted image x̃ j

i . Here, D and Li

correspond to the number of distortion types and degradation
degrees, respectively. For a given x̃ j

i , the task of the model is
to identify di and li j . This task translates to a classification
problem having

∑D
i=1 Li +1 classes (total number of degrada-

tion levels + one pristine image). Motivated by the successes
of using contrastive loss [25], [26] for learning representations,
we incorporate a similar technique into the CONTRIQUE
framework. To extract embeddings, we define a deep model
consisting of two parts : an encoder and projector. The encoder
can be any popular CNN architecture such as VGG [46],
Resnet [15] etc., with any fully connected terminal layer
removed. The projector is a multi-layer perceptron (MLP)
that reduces the dimensionality of the representation produced
by the encoder. Let f (.) and g(.) denote the deep encoder
network and the projector network respectively. For a given
image x ∈ R

3×H×W

h = f (x), z = g(h) = g( f (x)) h ∈ R
B, z ∈ R

K (1)

where h is the B-dimensional output from the encoder. Similar
to [25], [26] the encoder output h is L2 normalized before
being fed to the projector network. Note that the output of
the entire model z is a K -dimensional vector (where K is a
hyperparameter in this design). The goal is to obtain similar
representations z of images belonging to the same class. The
similarity between a pair of representations is measured using
the dot product φ(a, b) = aT b/||a||2||b||2. The loss function
is a normalized temperature-scaled cross entropy (NT-Xent),
and for image xi is defined as

Lsyn
i = 1

|P(i)|
∑

j∈P(i)

− log
exp(φ(zi , z j )/τ )

∑N
k=1 �k �=i exp(φ(zi , zk)/τ )

, (2)

where N is the number of images present in the batch, � is the
indicator function, τ is the temperature parameter, P(i) is a set
containing image indices belonging to the same class as xi (but
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Fig. 1. Illustration of training pipeline of the CONTRIQUE Framework.

excluding the index i ) and |P(i)| is its cardinality. For example
if xi is an image corrupted with additive white Gaussian
noise (AWGN) with σ = 10, P(i) will contain indices of all
images (excluding index i ) present in the batch corrupted with
AWGN σ = 10. There exists transformed versions of image
xi (image transformations are discussed in Sec. III-B and
Sec. III-C) ensuring that P(i) contains atleast one sample. The
objective function (2) is similar to the supervised contrastive
loss proposed in [47]. However, in [47] it was employed in
the context of image classification with ground-truth labels,
while in our design we incorporate prior knowledge of syn-
thetic distortions as class labels. Another observation that
can be made about the objective described in (2) is that it
measures pairwise similarities between every pair of images
in a batch. This pairwise loss computation is a key charac-
teristic that differentiates it from the traditional cross-entropy
loss.

B. Multiscale Learning and Cropping

Images are inherently multi-scale, as are distortions of
them, and perceived image quality is influenced by both
local characteristics as well as global details. Prior IQA
models [11], [13], [14], [48] have attempted to simulate the
functionality of front-end visual processing in the brain by
employing multi-scale representations when predicting quality.
CNN based IQA models [21], [49], which use multi-scale
features, are able to achieve remarkable efficiency in capturing
visual quality. In CONTRIQUE, we employ two scales :
native/full resolution, and half-scale resolution obtained by
downsampling by a factor of two along both dimensions.
To avoid aliasing artifacts, an anti-aliasing filter is used before
downsampling as shown in Fig. 1. Note that the aspect ratio is
preserved in this resizing operation, since modifying this ratio
can affect the quality of the underlying image.

The images are then subjected to random cropping where
the input images are cropped to a random fixed size M × M .
A simplifying assumption we make here is that the cropped
version inherits the same distortion class as the original
version. Although the cropped version need not represent the
same perceived quality as the original image, we presume that
the distortion class remains nearly the same and is unaffected
by the cropping operation. For each input image, two random
crops are obtained, one each at full-scale and half-scale. For
cases where the size of the image was smaller than M × M ,
the entire image was employed with zero padding to maintain
the same resolution. Additionally, cropping provides images
of fixed resolution in a batch, which is essential when training
deep networks, since training with variable resolutions can be
challenging and unstable [9].

C. Quality Preserving Transformations/Augmentations

The goal of the objective function in (2) is to learn image
embeddings that demonstrate discriminative behavior among
images belonging to different classes, and at the same time
exhibit invariance to quality preserving transformations. Image
operations that do not modify image quality we collectively
refer to as quality preserving transforms. In the CONTRIQUE
framework, we employ two transforms: horizontal flipping and
color space conversion.

The motivation behind using different color spaces is
to extract complementary quality information that can be
present across different domains. In our proposed framework,
we employ 4 color spaces: RGB, LAB, HSV and grayscale.
Each of these color spaces have different types of perceptual
relevance and have earlier been used in NSS based mod-
els [50]–[52] to obtain quality features. We also employ a
band-pass transform, obtained using local Mean-Subtraction
(MS). MS coefficients have been shown to capture statistical
deviations arising due to distortions in images [53]–[55]. In the
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training pipeline shown in Fig. 1, the color space is randomly
chosen for each crop of the input image. By employing
different color spaces during training, as we show in Sec. IV-G
that using any color space during testing results in simi-
lar representations, making CONTRIQUE invariant to color
spaces. Note that we avoid employing aggressive augmentation
techniques such as color jitter, Gaussian blur, random-resize,
MixUp [56], AutoAugment [57] etc. as these methods
modify distortion information and hence are not quality
preserving.

D. Realistic Distortions

Prior knowledge about synthetic distortions was employed
in the contrastive objective (2) to learn image quality embed-
dings. However, for images containing realistic distortions,
such as User Generated Content (UGC) images, information
regarding the distortion types is usually not available. Being
able to handle authentic distortions is quite important since
several hundred billion images are uploaded and shared to
social media sites like Facebook, Instagram, YouTube etc.
every year. UGC images, which are often afflicted by diverse
mixtures of unknown distortions. Thus, the synthetic distortion
classes assumed in (2) are not applicable to UGC images.
In the CONTRIQUE framework, each UGC image is treated
as a unique class obtained by a distinctive combination of
multiple distortions, separate and distinct from other UGC
images, as well as from images with synthetic artifacts. Thus,
for a given UGC image xi , only its scaled (and transformed)
version x j belongs to the same class. To reflect this modifica-
tion, we redefine the contrastive objective as

LU GC
i = − log

exp(φ(zi , z j )/τ )
∑N

k=1 �k �=i exp(φ(zi , zk)/τ )
. (3)

This objective is similar to the one used in [25], [26] for
the instance discrimination task. As detailed in Sec. III-C,
for each image there exists two transformed versions, at full-
scale and half-scale. Thus, there are at least two datasamples
belonging to the same class making the objective (3) non-zero.
The expression described in (3) can also be considered as the
special case of (2) where P(i) = { j}, i.e. in a given batch
only image x j belongs to the same class as xi . The overall
training objective is then

L = 1

N

N∑

i=1

�(xi /∈U GC)Lsyn
i + �(xi∈U GC)LU GC

i , (4)

where N is the number of images present in the batch, and � is
the indicator function determining whether the input image is
non-synthetically distorted (UGC). During training, to avoid
bias, we randomly sampled equal numbers of synthetic and
authentically distorted images to form each batch, at each
iteration.

E. Patch Features
Local details present in image patches play a significant

role in determining global picture quality. Several patch-
wise learning based models have been proposed in the

literature [29], [58] and shown to be effective for quality
prediction. In order to capture distortion and image quality
characteristics in a more granular fashion, we partitioned
each input image into non-overlapping patches of size P ×
P . These patches were then fed to the encoder module to
obtain local features, and these representations are used in
the contrastive objective function (4). Similar to cropping
operation, we assume the patches inherit the distortion class
labels from the original image for both the synthetic as well
as the realistically distorted images. Note that patches need
not inherit the perceived quality of the original version, only
the distortion class is presumed to be same. In addition to
capturing local spatial neighborhood information, including
patches provides increased number of data samples for every
class, which can be beneficial for gradient descent based
learning schemes.

F. Evaluating Representations

We evaluate the learned representations by applying them
to the quality prediction problem, using the correlations of
human judgements against predicted quality scores as a proxy
for representation quality. Once the training is complete, the
projector network g(.) is discarded and the outputs of encoder
network h = f (x) are used as image representations. We use
a regularized linear regressor (ridge regression) trained on
top of the frozen encoder network. This is similar to the
linear evaluation protocol used in [41], [60], [61] to evaluate
the classification accuracy of self-supervised models. The
regression weights are learned on a suitable IQA database
containing ground-truth quality scores. The expression for
ridge regression is given by

y = Wh, W∗ = argmin
W

N∑

i=1

(GTi − yi )
2 + λ

M∑

j=1

W 2
j , (5)

where GT denotes ground-truth quality scores, y predicted
scores, W is a trainable vector having same dimensions as h,
λ is the regularization parameter, M is number of dimensions
of h, and N is the number of images present in the training
set. Similar to training, we follow multiscale convention, and
features are computed at two resolutions : full-scale and
half-scale, and the final representation is a concatenation of
both scales. During evaluation, all the representations are
calculated at the native resolution of the input image, and no
additional data augmentations are performed. Note that we
do not perform any additional fine-tuning whereby encoder
weights would have been modified using the supervision of
ground-truth quality scores. Although fine-tuning can poten-
tially yield better performance, we avoid it as it alters the
learned encoder weights, and it would not be a true indicator
of the efficiency of the unsupervised training process. Addi-
tionally, we show in Sec. IV-B that even without fine-tuning,
CONTRIQUE achieves competitive performance as compared
with SOTA IQA models.

IV. EXPERIMENTS AND RESULTS

In this section we evaluate the performance of
CONTRIQUE by conducting a series of experiments.
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We will first describe the experimental settings, evaluation
protocol and compared methods. Then we explain how
we evaluated CONTRIQUE against SOTA IQA models on
multiple IQA databases. We perform a variety of ablation
experiments to analyze the significance of distortion types
present in the pretraining data, importance of using different
color spaces during pretraining, multiscale learning as well as
the impact of training batch size and crop size. Additionally,
we study the generalizability of the CONTRIQUE features by
performing cross-dataset testing. At the end, we also highlight
some of the limitations of the CONTRIQUE representations.

A. Experimental Settings

1) Pretraining Data: The pretraining data contains a com-
bination of images impaired by synthetic and authentic
distortions.

• Synthetic Distortions : We utilized the KADIS dataset
[62] to learn synthetic artifacts. The KADIS dataset con-
tains 700k distorted images obtained from 140k pristine
images and contains no subjective quality scores. There
are 25 different types of distortions with each distortion
spanning 5 degrees of degradation. The distortion types
include compression, white noise, blur etc. Interested
readers can refer to [62] for more details about the
distortions present in this dataset. As there are D =
25 distortions and Li = 5 degrees for each distortion
type, a total of 25×5+1 (pristine image) = 126 synthetic
classes are used in the contrastive objective (4).

• Authentic Distortions : We use a combination of
4 datasets aimed at capturing realistic distortions.
a) The AVA dataset [63] contains 255k images orig-
inally designed for aesthetic visual analysis. (b) The
COCO dataset [64] contains 330k images designed to
assist learning the detection and segmentation of objects
occurring in common contexts. (c) The CERTH-Blur
dataset [65] contains 2450 images captured with realistic
blur. (d) The VOC [66] contains 33k images initially
proposed for object recognition task. We discarded all the
labels (if any) present in these datasets before training.

Thus, a total of 1.3 million images were used to train
CONTRIQUE.

2) Pretraining Details: We used a Resnet-50 [15] archi-
tecture as the encoder network f (.) and included 2 layers
of MLP as the projector network g(.). The hidden layers of
MLP contained 2048 neurons each. The dimension of the final
output z was chosen to be K = 128. The CONTRIQUE
framework is fairly generic in nature, and can easily be
extended to other CNN based architectures. The pretraining
was done using a batch size of N = 1024, with 512 images
randomly chosen from the synthetic distortion set and the
rest authentically distorted. The sampled images were cropped
to square blocks of size M = 256. These crops constitute
approximately 50% of the original dimensions of the images
present in the training data. When extracting patch features,
patches of size P = 64 were used, resulting in 4 patches
from each input image. Patch features were computed by using
an adaptive average pooling layer at the end of the encoder.

During training the images were loaded in RGB format, and
on each image a colorspace transform was applied resulting
in a 3-channel image matrix. For each image the choice of
colorspace was chosen in a stochastic manner. The resulting
3-channel matrix was normalized to lie in the range [0, 1]
before being given as input to the encoder. The temperature
parameter used in (2) and (3) was fixed at τ = 0.1. The model
was trained from scratch for 25 epochs using a stochastic
gradient descent (SGD) optimizer with initial learning rate of
1.2 for a batch size of N = 1024. Furthermore, the learning
rate was subjected to a linear warmup for the first two epochs
followed by a cosine decay schedule without restarts [69].
All the implementations were done in Python using the
PyTorch1 framework.

3) Evaluation Datasets: We ran experiments on 8 large IQA
databases spanning both synthetic and authentic distortions.

• Authentic Distortions

– KonIQ [8] : contains 10k images sampled from the
public media database YFCC100M [70].

– CLIVE [7] : contains 1162 images captured from
many diverse mobile devices.

– FLIVE [9] : contains 40k real-world images and
120k patches along with respective quality scores.
We only used images (and their corresponding
scores) for analysis, and did not include patch
information.

– SPAQ [10] : contains 11k images captured using
66 smartphones. We only used images and their cor-
responding scores, and did not utilize the additional
tag information available. Similar to [10], we resized
the images before evaluation such that the shorter
side is 512.

• Synthetic Distortions

– LIVE-IQA [5] : contains 779 distorted images
obtained from 29 pristine images using 5 synthetic
distortion types.

– CSIQ-IQA [6] : contains 866 distorted images
obtained from 30 source contents with 6 types of
distortions.

– TID2013 [67] : contains 3000 distorted images
obtained from 25 natural images with 24 distortion
types, each having 5 levels of degradation.

– KADID [68] : contains 10125 distorted images from
81 source contents spanning 25 different types of
distortions.

4) Compared Methods: We compare the performance of
CONTRIQUE against 14 SOTA NR IQA models. The
compared methods can be categorized into 4 categories :
(a) Traditional/hand-crafted features - BRISQUE [13] and
NIQE [14]. (b) Codebook-based features - CORNIA [27]
and HOSA [28]. Except NIQE, the rest use a support vec-
tor regressor (SVR) for quality prediction. (c) CNN based
models - DB-CNN [18], MEON [30], WaDIQaM [59],
PQR [20], BIECON [19], PaQ-2-PiQ [9], NIMA [31],
HyperIQA [21] and MetaIQA [34]. (d) Transformer based

1https://pytorch.org/
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TABLE I

PERFORMANCE COMPARISON OF CONTRIQUE AGAINST DIFFERENT NR MODELS ON IQA DATABASES CONTAINING AUTHENTIC DISTORTIONS.
MODELS ARE CATEGORIZED BASED ON THE TYPE OF FEATURE EXTRACTION USED. IN EACH COLUMN, THE THREE BEST MODELS ARE

BOLDFACED. ENTRIES MARKED ’-’ DENOTE THAT THE RESULTS ARE NOT AVAILABLE

model - MUSIQ [39]. For objective comparison of the above
IQA models, we copied the numbers as reported by the respec-
tive authors or as available in the literature. For PaQ-2-PiQ,
we consider the baseline model, since patch quality scores are
not employed for training. We also included a Resnet-50 [15]
model pretrained on Imagenet [22], using a similar linear
regression module as CONTRIQUE to predict quality. This
comparison enabled us to compare the effect of supervised
and unsupervised pretraining techniques.

5) Evaluation Protocol: Two commonly used evalua-
tion metrics Spearman’s rank order correlation coefficient
(SROCC) and Pearson’s linear correlation coefficient (PLCC)
were employed to evaluate and compare the IQA models.
Before computing PLCC, the quality predictions were passed
through a four-parameter logistic non-linearity as described
in [71].

Each dataset was randomly divided into 70%, 10% and 20%
corresponding to training, validation and test sets, respectively.
The validation set was used to determine the regularization
coefficient of the regressor using grid search. On datasets with
synthetic distortions, the splits were implemented based on
reference images, to ensure no overlap of contents. To avoid
any bias towards the choice of training set, we repeated the
train/test split operation 10 times and reported the median
performance. On FLIVE, due to the large size of the dataset,
we used a single split as reported by the authors in [9].

B. Correlation Against Human Judgments

We compared the performance of CONTRIQUE against
other models on IQA datasets containing authentic distor-
tions in Table I. It may be observed from the table that
CONTRIQUE achieves competitive performance when com-
pared to other SOTA models. In the table, we categorized
the models based on the type of feature extraction tech-
niques. Notably CONTRIQUE achieves performance com-
parable to CNN based fine-tuned models even without
fine-tuning, highlighting the effectiveness of our proposed
self-supervision methodology. Furthermore, it outperformed

Resnet-50 features, reinforcing the efficiency of the auxiliary
task employed in CONTRIQUE. Note that MUSIQ [39],
a transformer based IQA model, has a higher model complex-
ity than CONTRIQUE and other CNN based models, which
likely contributes to the better correlations.

In Table II model performances are compared on datasets
with synthetic distortions. Here as well, CONTRIQUE
achieved superior performance among the compared models,
indicating a better generalizability of learned representations
across both synthetic and authentic distortions.

C. Cross Dataset Evaluation
We conducted cross dataset evaluations whereby training

and testing was performed on different datasets to analyze the
dependence of training data, yielding the results reported in
Table III. For simplicity we only include 4 datasets for com-
parison, two each from synthetic and realistic distortion sets.
It may be inferred from the table that CONTRIQUE attains
performance comparable to other IQA models across both syn-
thetic and authentic distortions. Note that for CONTRIQUE,
even for cross-dataset evaluations, only the weights of the
linear regressor are modified depending on the training
data, while the weights of the encoder backbone were kept
intact.

D. Visual Comparison of Representations
The learned representations for CONTRIQUE are visual-

ized in Fig. 2 using t-sne [72]. In the figure, for plotting
purposes we used 4 commonly observed synthetic distortions:
white noise, Gaussian blur, JPEG, and JPEG200, along with
natural and UGC images. Each set contains 150 images,
with synthetic distortions taken from the CSIQ-IQA dataset,
while natural and UGC images sampled from the KADIS and
KonIQ datasets, respectively. For comparison, we also include
features from a Resnet-50 (Imagenet pretrained) in Fig. 2.
Since the auxiliary task was to learn distortion discriminable
embeddings, the learned CONTRIQUE features can be easily
clustered depending on the type of distortions, as shown in
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TABLE II

PERFORMANCE COMPARISON OF CONTRIQUE AGAINST DIFFERENT NR MODELS ON IQA DATABASES CONTAINING SYNTHETIC DISTORTIONS.
MODELS ARE CATEGORIZED BASED ON THE TYPE OF FEATURE EXTRACTION USED. IN EACH COLUMN, THE THREE BEST MODELS ARE

BOLDFACED. ENTRIES MARKED ’-’ DENOTE THAT THE RESULTS ARE NOT AVAILABLE

TABLE III

CROSS DATABASE SROCC COMPARISON OF IQA MODELS. IN EACH ROW
TOP PERFORMING MODEL IS HIGHLIGHTED

Fig. 2. Visualization of learned representations using t-sne. (c) and (d) are
zoomed versions of the white noise and JPEG compression clusters shown in
(a). (b) denotes Resnet-50 visualizations for same data shown in (a).

Fig. 2. However, the same is not true of Resnet-50 features,
as they appear to be scattered across the space and did not
form separable clusters. Fig. 2 also illustrates the degradation
level separability of CONTRIQUE features for the white noise
and JPEG compression distortions.

E. Significance of Training Data
During training of CONTRIQUE, we employed a mixed

dataset containing both synthetic and realistic distortions.
We conducted an ablation study whereby the effects of syn-
thetic and authentic distortions were analyzed in isolation.

TABLE IV

SROCC PERFORMANCE COMPARISON OF DIFFERENT TRAININGS OF
CONTRIQUE. syn AND UGC DENOTE MODELS TRAINED WITH DATA

CONTAINING ONLY SYNTHETIC AND AUTHENTIC DISTORTIONS

RESPECTIVELY. IN EACH COLUMN, THE TOP PERFORMING
MODEL IS BOLDFACED

In this experiment, CONTRIQUE was trained with data con-
taining either only synthetic or authentic artifacts, with the
performance numbers reported in Table IV. From the Table,
we can infer that training with only synthetic distortions boosts
performance on synthetic IQA datasets, while the same holds
true for authentic IQA datasets when trained on UGC data.
Employing mixed data achieves better generalization, with
negligible loss in performance as compared to the individual
trainings.

F. Robustness to Training Data

The CONTRIQUE features are mapped to quality scores
using a regularized linear regressor, as described in (5). The
weights of the regressor are learned using the human opinion
scores present in IQA datasets. In this experiment we studied
the performance variation of CONTRIQUE with respect to
the proportion of the IQA dataset employed for training.
In Table V we report the variation in performance when
the training set proportion of the IQA datasets was varied
from 20% to 80%. In each case the remaining samples were
used in the test set to obtain correlation values. From the
table it may be observed that using as little as 20% of the
dataset to train the regressor causes a maximum drop of only
8% against the highest attainable SROCC. This experiment
highlights the robustness and generalizability of CONTRIQUE
representations, and shows that competitive performance is
achievable even with limited training samples.
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TABLE V

SROCC PERFORMANCE VARIATION OF CONTRIQUE WITH TRAINING
SET PROPORTION. IN EACH COLUMN, THE TOP PERFORMING

MODEL IS BOLDFACED

TABLE VI

SROCC PERFORMANCE VARIATION OF CONTRIQUE FOR THE DIFFER-
ENT COLOR SPACES USED DURING TRAINING. IN EACH COLUMN THE

TOP PERFORMING MODEL IS BOLDFACED

TABLE VII

SROCC PERFORMANCE VARIATION OF CONTRIQUE WHEN EVALUATED

ON DIFFERENT COLOR SPACES

G. Importance of Different Color Spaces

In the CONTRIQUE, different color spaces were employed
in order to extract complementary quality information. In this
experiment we investigate the significance of each color space
by training CONTRIQUE on each of them individually. The
results are reported in Table VI, and it can be observed that
combined training yields superior correlations than for any of
the individual color spaces highlighting their complementary
nature. Note that during evaluation, the images were converted
to the respective color spaces on which they were trained.

Another interesting observation we make is the invariance
property of the learned CONTRIQUE representations to the
different color spaces. In other words, during evaluation, using
any color space yielded approximately similar embeddings.
This behavior is illustrated in Table VII, where during eval-
uation the images were converted to multiple color spaces.
From the Table it can be inferred that the performances
of CONTRIQUE remained approximately same across color
spaces. This property is a consequence of using multiple color
spaces during training. Furthermore, this property eliminates
the need of changing color spaces during evaluation without
significantly sacrificing performance.

H. Significance of Multiscale Learning

We included a multi-scale module in the training pipeline
of CONTRIQUE, as shown in Fig. 1 to learn representations

TABLE VIII

SROCC PERFORMANCE COMPARISON OF SINGLESCALE AND MULTI-
SCALE TRAININGS OF CONTRIQUE. IN EACH COLUMN, THE TOP

PERFORMING MODEL IS BOLDFACED

TABLE IX

SROCC PERFORMANCE COMPARISON FOR DIFFERENT CROP SIZES USED

TO TRAIN CONTRIQUE. IN EACH COLUMN, THE TOP PERFORMING
MODEL IS BOLDFACED

TABLE X

DISTORTION SPECIFIC PERFORMANCE COMPARISON OF CONTRIQUE
ON TID2013 [67] AND KADID [68] DATASETS. ONLY A SUBSET

OF DISTORTION TYPES WITH LOW CORRELATION VALUES ARE
REPORTED. THE LAST ROW INDICATES CORRELATION VALUES

WHEN ALL DISTORTIONS PRESENT IN THE

DATASET ARE INCLUDED

that can characterize local as well as global details. In this
ablation experiment we studied the significance of multiscale
learning by removing the downsampling module from the
CONTRIQUE pipeline. In this case, two crops of the image
from a single scale were employed instead of crops from native
and half-resolution images. During the evaluation phase only
single-scale features were used to learn the regressor mapping.
Table VIII compares the correlation values obtained by single
scale and multi-scale training. From the Table we can infer that
using multiscale learning offers significant performance gains,
underscoring the importance of capturing local and global
image characteristics for IQA.

I. Effect of Batch Size and Crop Size

Fig. 3 plots the variation in SROCC performance against
the batch size N used to train CONTRIQUE. From the
plot it can be seen that larger batch sizes always yielded
better correlations across all datasets. This observation is
in line with those made in prior works using contrastive
loss [25], [26], where larger batch size promotes better
convergence.

In Table IX we study the performance variation of
CONTRIQUE with different crop sizes M . From the Table it
may be observed that larger crop sizes yield better correla-
tions. This is expected since larger crops might contain more
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TABLE XI

FULL REFERENCE PERFORMANCE COMPARISON ACROSS 4 IQA DATABASES. IN EACH COLUMN, THE FIRST AND SECOND BEST MODELS ARE
BOLDFACED. ENTRIES MARKED ’-’ DENOTE THAT THE RESULTS ARE NOT AVAILABLE

Fig. 3. Variation of SROCC values with training batch size of CONTRIQUE
across 4 IQA datasets.

distortion relevant information which can help the learning of
better representations.

J. Limitations of the Model

Table I and II show that CONTRIQUE obtains impressive
performances on a variety of distortions. However, there
exist certain distortion types on which CONTRIQUE fea-
tures are less effective. For example, Table X reports per-
formance of CONTRIQUE on distortions that are present
in the TID2013 [67] and KADID [68] datasets, on which
we observed low correlation values. We hypothesize that for
these artifacts, the representations learned using distortion type
and degree discrimination do not transfer well when used for
quality prediction. Distortions such as non eccentricity pattern
noise and local block-wise artifacts are highly localized. Thus,
our assumption that cropped versions of pictures inheriting
the distortion class of the original image used during training
could be violated resulting in representations that are less
sensitive to these corruptions.

V. CONTRIQUE FULL-REFERENCE MODEL

CONTRIQUE framework offers the flexibility to employ
the learned representations on other IQA related tasks. We also
propose a simple extension to employ CONTRIQUE represen-
tations in a Full (FR) IQA setting, where we have access to
both pristine high quality reference images as well as their

corresponding distorted versions. To incorporate reference
information into the regressor, equation (5) is modified as

y = W |hre f − hdist |,

W∗ = argmin
W

N∑

i=1

(GTi − yi )
2 + λ

M∑

j=1

W 2
j , (6)

where absolute difference between the features of reference
and distorted images are used to predicting quality. We denote
this modified model as CONTRIQUE-FR. Note that we do not
perform any additional training or fine-tuning of the encoder
network for the FR-IQA task. The same trained encoder
obtained from CONTRIQUE was used with only the regressor
modified to include reference information.

The performance of CONTRIQUE-FR is compared in
Table XI. We followed a similar evaluation protocol of
dividing datasets into 70%/10%/20% as train/validation/test
sets, respectively based on content, and report the median
correlation values over 10 different train/test splits. Since
authentic IQA datasets do not contain reference images,
we only report performances on the synthetic IQA datasets.
For comparison, we include eight SOTA FR-IQA models :
(a) Traditional models - PSNR, SSIM [73], FSIM [74] and
VSI [75]. (b) Deep learning based models - PieAPP [76],
LPIPS [49], DISTS [77] and DRF-IQA [45]. From the Table it
can be observed that CONTRIQUE-FR achieves performance
comparable to SOTA FR-IQA models, highlighting the flexi-
bility as well as generalizability of the CONTRIQUE training
framework. Additionally, comparing the CONTRIQUE cor-
relation values in Table II and XI shows the performance
gains due to the knowledge of the high quality reference
images.

VI. CONCLUSION

We introduced an unsupervised training framework that
learns effective image quality representations. Distinguishing
characteristics of the proposed design include learning from
unlabeled data, and employing distortion type and degree
discrimination as an auxiliary task. We conducted holistic
evaluations of our proposed model across multiple IQA data-
bases, and found that CONTRIQUE achieves competitive
performance against other, supervised IQA models. The pro-
posed framework is simple, achieves superior performance
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with no additional fine-tuning, and generalizes well across
synthetic and realistic distortions. We conducted ablation
experiments to understand the significance of different color
spaces, and found surprisingly complementary quality predic-
tion power among them. We also analyzed the importance
of the distortion types present in the training data, and
deduced that using a combination of synthetic and authentic
artifacts helps achieve better generalization. We also proposed
CONTRIQUE-FR, an extension of CONTRIQUE to FR IQA
problem, which required no additional training of the CNN
backbone. CONTRIQUE-FR also achieved comparable perfor-
mance against SOTA FR-IQA models. A software release of
CONTRIQUE and CONTRiQUE-FR has been made available
online.2
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