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Abstract— Existing classification techniques assign a pre-
determined categorical label to each sample and can not
recognize the new categories that might appear after the
training stage. This limitation has led to the advent of new
paradigms in machine learning such as zero-shot learning
(ZSL). ZSL aims to recognize unseen categories by having a
high-level description of them. While deep learning has pushed
the limits of ZSL for object recognition, ZSL for temporal
problems such as unfamiliar gesture recognition (ZSGL) remain
unexplored. Previous attempts to address ZSGL were focused
on the creation of gesture attributes, attribute-based datasets,
and algorithmic improvements, and there is little or no re-
search concerned with feature selection for ZSGL problems.
It is indisputable that deep learning has obviated the need
for feature engineering for the problems with large datasets.
However, when the data is scarce, it is critical to leverage the
domain information to create discriminative input features. The
main goal of this work is to study the effect of three different
feature extraction techniques (raw features, engineered features,
and deep learning features) on the performance of ZSGL.
Next, we propose a new approach for ZSGL that jointly
minimizes the reconstruction loss, semantic and classification
losses. Our methodology yields an unseen class accuracy of
(38%) which parallels the accuracies obtained through state-
of-the-art approaches.

I. INTRODUCTION

Gestures play a crucial role in human-human communi-
cations and while we interact with gaming consoles, smart
devices and touch interfaces [1], [2]. Current gesture powered
interfaces such as Microsoft HoloLens, PACS and Xbox
consoles [3], [4] are constrained to a pre-determined set of
hand gestures and can not adapt to the new gestures that users
might prefer to use. This limitation has led to the advent
of new paradigms in machine learning such as Zero shot
learning (ZSL) [5], [6]. Figure 1 illustrates the problem of
ZSL for unfamiliar gesture recognition.

ZSL aims to recognize the unseen object categories/classes
by just having a high-level description of them [7], [8].
In other words, the trained ZSL models are expected to
recognize the novel classes/gestures that were not present
during the training period. ZSL is inspired by the way
humans identify new species or children recognize unseen
animals or new objects just by knowing their high-level
properties/attributes such as color, shape, texture etc [9]. In
a similar manner, ZSL relies on such attributes to transfer
the knowledge gained from a finite set of seen classes to the
categories that were never seen before [10].
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ZSL is particularly beneficial in the scenarios where there
are uncountable number of classes (as in the case of gestures)
or when the data is extremely scarce for some classes while
there is a plenty of data for others [11]. Furthermore, this
paradigm has the potential to naturally adapt to the new
classes without having to re-train the entire network from
scratch to increase the number of classes [10]. Hence, it has
been a hot topic in the machine learning community with a
plethora of academic articles published every year pushing
the limits of unseen class accuracies [12]–[14]. In this work,
we propose a new bi-linear approach inspired from [15], [16]
for ZSL that takes into account the reconstruction loss in
addition to the classification and semantic losses.

Fig. 1: An example of ZSL for gesture recognition (ZSGL).
Browse is the new command appeared after training stage.

While deep learning techniques have pushed the limits of
unseen object recognition, the problem of ZSL for gestures
(ZSGL) remains unexplored. Feature selection (determining
the best set of features) is the first important step towards
improving the performance of ZSGL methods. However,
previous works concerned with this problem have mainly
focused on attributes and algorithmic improvements, and
there is a lack of studies regarding the choice of features
for ZSGL tasks [17], [18]. This work addresses this issue
of feature selection and in addition, we conduct rigorous
experiments to study the effect of several feature extraction
techniques in the context of ZSGL.

The main contributions of this work are to: 1. Propose a
new methodology for ZSGL that jointly optimizes classifica-
tion and semantic losses, 2. Propose an approach to extract
deep features and engineered features for ZSGL problems,
and 3. Explore three feature extraction methods and perform
experiments to compare and contrast them.
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II. RELATED WORK

Zero Shot Learning (ZSL) is a transfer learning paradigm
in which the classes present in the training stage and testing
stage are mutually exclusive [11], [19]. The survey conducted
by Wang et al. details several transfer learning tasks (for
e.g. domain adaptation, ZSL, etc.) and their relation to the
existing machine learning approaches [11]. In contrast to
regular classification, ZSL methods often suffer from the
domain-shift problems due to disparate seen and unseen data
distributions [20].

The central idea behind ZSL is to represent classes as a
sequence of high-level properties or attributes or semantic
descriptors. These descriptors act as the powerful facilitators
of knowledge transfer between seen and unseen classes.
Hence, the objective of ZSL is to first recognize the pres-
ence/absence of these attributes and thereby recognize the
class label. Recent surveys conducted by Wang et al. [19]
and Fu et al. [21] explained in detail the various kinds of
attributes (for e.g. user-defined, word embedding or latent
descriptions, etc.), existing methodologies and datasets for
ZSL tasks.

It has been learnt that the problem of ZSL has been
extensively studied in the static domains such as neural
decoding [5], scene understanding [22] and animal/bird
recognition [6]. Popular ZSL methods in object recognition
include but not limited to DAP [10], ESZSL [16], SAE [15],
ConSE [23], SynC [24] etc. The presence of several publicly
available datasets (SUN [22], aPascal [6] and AwA [7])
and benchmarks has encouraged researchers to thoroughly
investigate ZSL for object recognition. Hence, we have seen
a consistent increase in the unseen class accuracies on AwA
dataset from 57% in 2013 [7] to 86% in 2017 [15]. However,
the problem of ZSL for temporal problems such as unfamiliar
gesture recognition (ZSGL) is ill-defined and has hardly been
investigated in the computer vision community. The lack of
large-scale attribute-based datasets coupled with the intrinsic
complexities associated with the temporal data makes ZSGL
a particularly challenging problem.

Fig. 2: Our proposed approach (SAE-CL) for ZSL.

Thomason et al. utilized word embeddings of gestures’
function as an intermediate semantic representation to rec-
ognize a single held out zero-shot class and used human
assessment to evaluate the performance of ZSGL [25].
Madapana et al. introduced the first attribute-based gesture

dataset consisting of 26 categories and 34 attributes, and
provided the benchmarks using popular ZSL methods [17],
[18]. Further, Wu et al. constructed a dataset of hand gestures
to control robots and utilized recurrent neural networks to
create gesture features and thereby recognize the untrained
gestures using SAE [26]. Overall, the previous attempts
to address ZSGL had focused on creating a database of
gesture attributes, datasets and algorithmic improvements.
However, there is a lack of research or studies concerned
with determining the best feature representations for ZSGL
problems.

III. METHODOLOGY

Let us start by defining the notations. Let S be a set of
training (seen) classes, U be a set of unseen classes, zs be
the number of seen classes and zu be the number of unseen
classes. Let a be the number of attributes. Note that S and
U share the attribute space i.e. they have equal number of
attributes. Let ms be the number of instances in seen/training
data. For ZSL, note that S ∩ U = φ. Let X ∈ R

d×ms be the
input feature matrix, Y ∈ {−1, 1}ms×zs be the ground truth
labels, S ∈ [0, 1]a×zs and Σ ∈ [0, 1]ms×a be the per-class
and per-instance semantic descriptions of the seen classes
respectively. Let V ∈ R

d×a be the weight matrix learned
using our SAE-CL approach (Fig. 2). Without the loss of
generality, it is assumed that each frame of a gesture sample
is represented by a fixed one dimensional vector, and the
samples are allowed to have varying number of frames. In
other words, a gesture instance would be of size (M × T ),
where T is the number of frames in the instance.

A. SAE with Classification Loss (SAE-CL)

An encoder-decoder paradigm similar to Kodriov et al.
[15] was used in this work to model the ZSL problem.
In addition to the reconstruction loss, we incorporated the
semantic and the classification errors into the loss function.
This forces the learned weights to jointly minimize the
semantic loss while clustering instances belonging to the
same class together.

1) Reconstruction Loss: The encoder maps the feature
vectors to a latent space while the decoder re-maps the
latent vectors back to the feature space. This loss ensures
that the learned latent space representations contain enough
information to reconstruct the original feature vectors.

Lr =
∥
∥X − V V TX

∥
∥
2

s.t V TX = Σ

⇒ Lr = ‖X − V Σ‖2 (1)

2) Semantic-Classification loss: The latent representa-
tions learnt by the auto encoder should be forced to have
the semantic meaning as the class attributes are obtained
through human annotations. Hence it is essential to add a
component to the loss function that simultaneously optimizes
for semantic and classification losses.

Lsc =
∥
∥XT W − Y

∥
∥
2

where W = V S

Lsc =
∥
∥XT V S − Y

∥
∥
2

(2)
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3) Overall Loss: The overall loss is nothing but the
weighted sum of Lr, Lsc and the regularization term.

L = Lsc + αLr + β ‖V ‖2 (3)

L = ‖X − V Σ‖2 + α
∥
∥XT V S − Y

∥
∥
2
+ β ‖V ‖2 (4)

Optimizing the loss function given in Equation 4 i.e.
∂L/∂V T = 0 yields a solvable Sylvester Equation 5 of form
AV +V B = C. Sylvester equation can be easily solved using
linear algebra packages of Matlab or NumPy [27]. Note that
α and β are the hyperparameters.

⇒ XXTV + V β(SST + αI)−1 = (XY ST + αXΣT ) . . .

(SST + αI)−1 (5)

TABLE I: List of engineered features. Note that x, y and
z indicate the Cartesian axes. + and − indicate the positive
and negative values of the first derivative. This acts as the 28-
dimensional feature vector (ordered using rastor scanning).

A+
x A+

y A+
z A+

x A+
z A+

x A+
y A+

y A+
z A+

x A+
y A+

z

A−
x A−

y A−
z A−

x A−
z A−

x A−
y A−

y A−
z A−

x A−
y A−

z

Rx Ry Rz RxRz RxRy RyRz RxRyRz

Mx My Mz MxMz MxMy MyMz MxMyMz

B. Feature Extraction for Gestures

The main goal of this part is to find out the feature
representation that yields best performance on ZSGL tasks.
For simplicity, the coordinates of both the left and right hand
of the gesture performer with respect to the shoulder were
used as the initial set of raw features. Three feature extraction
methods were explored in this paper, namely, 1. Sampled raw
features, 2. Engineered features and 3. Deep features.

1) Sampled raw features: This method uses a trivial
concatenation of raw features of every frame to obtain a final
feature vector. First, each gesture instance was re-sampled
to a fixed number of frames using interpolation techniques
and then, the raw features corresponding to each frame were
concatenated against each other. Each instance was sampled
to 10 frames and each frame was represented as a six-
dimensional vector (3 for each hand - first derivative of 3D
position of left and right hands). Overall, this method resulted
in a 60-dimensional feature vector.

2) Engineered Features: In this approach, features were
manually designed based on the prior knowledge about
the gesture recognition task and the semantic descriptors.
For instance, our descriptors include direction of motion
(leftward, upward, etc.). Hence the principal directions on
Cartesian plane (x-axis, y-axis and z-axis) were used to
extract time-independent features. This method maps the
variable length instances to a fixed length features. Initially,
first derivative of the trajectory of both the left and right
hands was computed along x, y, z directions and then, the
features depicted in Table I were computed. A+

x was the sum
of positive values along x-axis for both the hands, A−

x was
the sum of negative values along x-axis for both the hands.
Rx was the range of motion along x-axis computed as the
difference between the maximum and minimum values for
both the hands. Mx was the mean of all values along x-axis

for both the hands. Similar method was followed to compute
the features along other directions. Finally, the polynomial
features were computed for each feature type as shown in
Table I. Overall, each gesture instance was represented as a
28-dimensional vector.

3) Deep features: In this method, a trained bi-directional
LSTM (BLSTM) shown in the Figure 3 was used as a
feature extractor. First, a BLSTM was trained on CGD 2013
dataset [28] consisting of 18 gesture classes. Each gesture
class consisted of approximately 240 samples (depends on
the class label) and each sample has varying number of
skeleton frames. Similar to the previous approaches, relative
3D position of both the hands w.r.t the shoulder was used to
train the BLSTM. The last layer of a trained BLSTM was
used as a feature vector. If the hidden size of BLSTM is 32,
this method resulted in a 64-dimensional feature vector.

Fig. 3: BLSTM Model for feature extraction.

IV. EXPERIMENTS AND RESULTS

The gesture attribute dataset developed by Madapana et
al. was used in our experiments to validate our methodol-
ogy [18]. This dataset consisted of 26 gesture classes: 18
from CGD 2013 dataset [28] and 8 from MSRC-12 dataset
[29]. Each gesture class in CGD dataset has approximately
400 examples while each class in MSRC dataset has 600
examples. Segmented skeletal data was available in each of
these datasets. Further, there were 34 binary gesture attributes
available in their dataset. These gesture attributes comprised
of direction of motion for both the hands, plane of motion
for both the hands, part of the body referred to and average
position of the overall gesture. The meaning or the function
of these gesture classes do not alter when the hands were
interchanged. Hence, the gesture attributes of left and right
hands were combined to obtain a reduced set of 22 attributes.
The semantic description matrix of these 26 categories w.r.t
the 22 attributes was depicted as a binary image in Figure 4.
Note that a value of zero (dark color) indicates the absence
of an attribute while a value of one (white color) indicates
the presence of an attribute.

The next step in the pipeline was to compute the features
following the three methods described in section III-B.
Overall, the gesture instances were represented as a 60, 28
and 64 dimensional feature vectors. For the deep features
approach, a bi-directional LSTM (BLSTM) was trained with
the skeletal features of both hands (3D coordinates w.r.t
the shoulder) to classify the seen classes accurately. A five-
fold cross validation procedure was used to determine the
hyperparameters of the BLSTM model. The final model
consisted of two LSTM cells, the hidden layer size of 32
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and a dropout probability of 0.5. The trained model yielded
a classification accuracy of 80% - 90% (varies depending
on the gestures present in the seen classes) on the test set.
Such high classification accuracies indicate that the features
generated from the trained BLSTM model are discriminative
and representative of the gesture classes. Hence this trained
model was used to extract features for all of the 26 gesture
categories.

Fig. 4: Semantic description matrix of the gestures. Rows
represent gesture classes and columns represent attributes.

Further, the approach proposed in this paper (SAE-
CL) was compared against three popular ZSL approaches,
namely, 1. DAP [10], 2. ESZSL [16] and 3. SAE [15].
In DAP, a binary SVM classifier was trained per each
attribute resulting in 22 classifiers. The congregation of these
classifiers was used to recognize the unseen classes. We
followed the experimental protocol proposed by Madapana
et al. to split the dataset into seen and unseen classes [18].
However, we considered 20 random seen-unseen class splits,
and mean and standard deviation of the accuracies were
reported. 80 % of the classes (21/26) were considered for
training and 20 % (5/26) of the classes were considered for
testing stage.

Data imbalance is a very critical issue in ZSGL tasks.
In the Figure 4, it can be noticed clearly that there is a
significant amount of data imbalance at an attribute level
(note the sparsity of the semantic description matrix). In
the ideal scenario, we want each attribute to be present
in half of the seen classes and absent in the other half.
However, in this dataset, some attributes are either present
or absent for most of the classes. Such attributes are very
difficult to learn and appropriate techniques such as data
augmentation should be used to account for data imbalance.
In addition to the data augmentation, we have re-structured
the mis-classification costs of DAP for the majority and
minority classes to inherently handle the issues related to the
data imbalance. The class priors (probability) were used to
compute the mis-classification costs. Let p be the probability
of encountering an example from the minority class. The
error corresponding to the minority and majority classes were
punished with a weight of (1− p)/p and unity respectively.

The unseen class accuracies obtained using four ZSL
approaches were summarized in the Table II. There are
several ways of designing the features leveraging the domain

information. In this work, we presented a particular set
of engineered features to study how well they perform in
relation to deep learning features. Overall, it was found that
engineered features outperformed other feature extraction
techniques with a significant margin which was confirmed
by a paired t-test (p < 0.05). Our approach obtained an
accuracy of 38.1 ± 7.3% for engineered features i.e. 38%
of the gesture samples belonging to the unseen classes were
accurately classified.

Further, SAE-CL approach performed slightly better than
SAE for engineered features while SAE outperforms our
method marginally for other feature types. Note that the
standard deviation of the accuracies is considerably high
indicating that unseen class accuracies majorly depend on
the seen-unseen class splits. When the class splits are made,
it is quite possible that there might be some attributes that
are present in only one class making it very difficult for
the learning algorithm to predict that attribute. Hence, it
is crucial to have large attribute-based datasets in order to
alleviate the problem of data imbalance.

Though deep learning is known for learning features
automatically, we found that the features obtained from a
pre-trained BLSTM were not effective at ZSGL tasks. This
was partly due to the fact that we have limited number of
classes and training data. However, with the increase in the
size of the dataset, we expect the deep learning features to
perform better than other features.

TABLE II: Comparison of unseen accuracy of several ZSL
approaches (%). Columns indicate the feature extraction
techniques. Third column refers to the engineered features.

Raw Deep Eng.
DAP 26.7 ± 7.2 29.6 ± 9.04 37.6 ± 11.1

ESZSL 21.8 ± 9.96 19.6 ± 3.7 19.8 ± 10.1
SAE 33.76 ± 11.2 22.85 ± 7.3 36.2 ± 9.2

SAE-CL* 30.6 ± 10.2 23.5 ± 8.7 38.1 ± 7.3

V. CONCLUSIONS

Deep learning has greatly pushed the limits of ZSL for
object recognition due to the presence of large-scale attribute
datasets. However, the temporal problems such as ZSGL
were unexplored and had hardly been studied in the computer
vision research. Moreover, it is indisputable that the deep
learning methods are extremely capable of learning features
from the data. Nevertheless, when the data is scarce as in the
case of ZSGL problems, it is critical to utilize the domain
knowledge to create the discriminative features to achieve
superior accuracies. In this regard, we explore three feature
extraction techniques, namely, raw features engineered fea-
tures and deep learning features, and conducted experiments
to compare unseen class accuracies obtained through these
approaches. It was found that engineered features perform
significantly better than deep learning features due to the
fact that there is little data to learn from. Moreover, we
proposed a new bi-linear auto-encoder approach for ZSL
that jointly optimizes reconstruction and classification error.
Results show that the accuracies obtained via our approach
parallel the ones obtained using state-of-the-art approaches.
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V. Athitsos, and H. Escalante, “Multi-modal gesture recognition chal-
lenge 2013: Dataset and results,” in Proceedings of the 15th ACM
on International conference on multimodal interaction, pp. 445–452,
ACM, 2013.

[29] S. Fothergill, H. Mentis, P. Kohli, and S. Nowozin, “Instructing People
for Training Gestural Interactive Systems,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI
’12, (New York, NY, USA), pp. 1737–1746, ACM, 2012.

Authorized licensed use limited to: Peking University. Downloaded on February 25,2021 at 04:08:29 UTC from IEEE Xplore.  Restrictions apply. 




