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Abstract—Adversarial attack methods can induce machine
learning classifiers to mislabel errors. Current methods pay much
attention to errors in the image space, i.e. the imperceptibility
of adversarial perturbations, to avoid attacks being detected by
humans. However, they overlook errors in the label space, i.e. the
similarity between the wrong label and the true label. It is easy for
humans to detect attacks if the wrong label has a big difference
with the true label, for example, a dog is mislabeled as a cat. In
this paper, we propose a novel attack method called LabelFool
which attacks images with undetectable errors in both label
space and image space. Given a classifier, for each input image,
LabelFool first predicts the true label by estimating its probability
distribution, then selects one label perceptually nearest to the
predicted true label as the target label. Then LabelFool generates
the adversarial sample by moving the input image towards the
classification boundary between the predicted true label and
the target label. The subjective experiments on ImageNet and
visual results on CASIA-WebFace show that LabelFool is less
detectable in the label space than other attack methods. Moreover,
LabelFool has low perceptibility in the image space together with
a high attack rate.

Index Terms—adversarial attack, target label, imperceptibility

I. INTRODUCTION

Deep neural networks are powerful learning models that
achieve state-of-the-art pattern recognition performance in
classification tasks [1], [2]. Nevertheless, it is found that adding
well-designed perturbations to original samples can lead to
mis-classification of deep neural networks [3]. These kinds of
samples are called adversarial samples. The wrong labels of
adversarial samples are called target labels. Techniques for
generating adversarial samples are called attack methods.

To judge whether an attack method is good or not, the attack
rate and the imperceptibility of attacks in the image space
are two primary evaluation metrics [4]–[7]. The attack rate
evaluates the effectiveness of an attack method. It calculates
the ratio of input samples which are turned into adversarial
samples by an attack method. To achieve a high attack rate,
previous works have tried many optimization methods, such as
gradient descent method [5], momentum method [8], Nesterov
method [9] and so on. The imperceptibility of attacks in the

image space affects how easily an attack method can be detected
by humans. Low perceptibility means the perturbation added
to the input sample is sufficiently small in the pixel level
that people cannot notice. Previous works tried to minimize
perturbations’ L0 norm [10], L2 norm [6], [7] or L∞ norm [5],
[8], [9] to achieve low perceptibility in the image space.

However, it is not enough to consider the imperceptibility
in the image space so that attacks cannot be detected by
humans. The imperceptibility of attacks in the label space
also affects how easily attacks are detected by humans. Here,
the imperceptibility in the label space represents the “similarity”
between the true label of an adversarial sample and its target
label. For example (see Figure 1), if an Alaskan Malamute is
mislabed as a cat, then the human detector will easily recognize
the mistake and detect attacks. By contrast, if an Alaskan
Malamute is mislabed as a Siberian Husky, then it will be
harder for the human detector to find the error. Existing attack
methods ignore the importance of target labels. Untargeted
attacks generate adversarial samples without regarding to a
target label [5], [6]. Targeted attacks only provide methods to
generate adversarial samples with specified target labels, but
they do not care how to select target labels. Usually, target
labels in targeted attacks are chosen randomly [4], [7].

We want to go further on making the attack less detectable
and focus on the imperceptibility in the label space. Label
imperceptibility is important in some security tracks where a
human is in the loop. For example, there is usually a human
guard to check the results in facial recognition systems. In this
paper, we propose an attack method called LabelFool to make
attacks hard to be detected in both image space and label space.
It contains two parts as Figure 2 shows. The first part is “label
selection” which is in charge of choosing target labels for input
samples. Specifically, the label selection algorithm is designed
to choose target labels which are perceptually similar to the
ground truth labels because they are less detectable in the label
space. If the ground truth label is not known, LabelFool will
speculate the true label through a probability model first. The
second part is “sample generation” which means generating the
adversarial samples so that they are mis-classified as the target
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labels. As for the sample generation part, LabelFool refers to
the thought in DeepFool [6], that is, moving the input towards
the classification boundary between the current class and the
target class. To evaluate the imperceptibility of attacks in the
label space, we also propose two metrics – confusion rate and
real confusion rate (introduced in Section IV-E).

target label

adversarial sample

label selection
algorithm

attack method

mis-classified

sample generationlabel selection

input sample

Fig. 2. The outline of LabelFool. LabelFool contains two parts. The first part is
“label selection” where a less detectable target label is chosen by an algorithm.
The second part is “sample generation” where attacks add perturbations to the
input sample so that it can be mis-classified as the specific label.

To demonstrate the good performance of LabelFool con-
fusing people in the label space, we conduct subjective
experiments on ImageNet [11] and show some visual results
on CASIA-WebFace [12]. For the integrity of the experiment,
we also report LabelFool’s performance on traditional metrics–
the attack rate and the imperceptibility in the image space.
Compared with FGSM [5], DeepFool and SparseFool [13],
LabelFool is about 1-8% higher than other methods on the
confusion rate and real confusion rate. At the same time,
LabelFool guarantees low imperceptibility in the image space
and maintains a high attack rate.

II. RELATED WORK

The phenomenon that neural networks are sensitive to
adversarial samples was observed by [3]. Since then, many

researchers study how to generate adversarial samples. Mean-
while, making the perturbations in the image space as im-
perceptible as possible becomes a default requirement for
attackers. However, few works focused on the imperceptibility
of adversarial perturbations in the label space.

A. Untargeted Attack

Untargeted attack methods are proposed to meet the need
that attackers just want to generate samples mis-classified
by networks without any other requirements. FGSM [5] uses
gradient sign method to generate adversarial samples. One-pixel
attack [10] and SparseFool [13] are two methods attacking
networks in a scenario where attackers perturb one pixel/a few
pixels and lead to mis-classifications.

These works do not care about the target labels at all. This
will cause an apparent mis-classification so that humans will
sound the defensive alarm quickly. DeepFool [6] generates
adversarial samples by directly moving the input sample to
the nearest class in the feature space. The mis-classified
labels for DeepFool are related to the ground truth labels
to some extent, because features extracted from classification
models can reflect images’ perceptual information. Moreover,
the classes which are close in the feature space are often
perceptually similar. However, DeepFool approximates the
multi-dimensional classification boundaries in two dimensions
and this might make big errors on finding the nearest class.

B. Targeted Attack

Targeted attacks aim to generate adversarial samples which
are mis-classified as specific target labels, but they do not tell
how to chose target labels. There is no way to annotate target
labels for each input sample in practical applications because of
the annotation cost. CW attack [4] is the first proposed method
that can cause targeted mis-classification on the ImageNet
dataset. This method generates adversarial samples by solving
an optimization problem based on Lp constraint, and it chooses
target labels through three simple methods, i.e. choosing a

Input sample:
an Alaskan Malamute 

Adversarial samples

input to 
the target model

Target label Reference image

input to 
the target model

Target model

output

output

a Siberian Husky

a tabby cat

Fig. 1. The input image is an Alaskan malamute, the perceptibility of attacks in the label space is low if the target label of the adversarial sample is “Siberian
Husky” because these two kinds of dogs look similar. Otherwise, attacks will be easily detected if the target label is “tabby cat”. In the last column of the
figure, we show the reference image of the corresponding target label.
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random label or choosing the least/most difficult label. TR
attack [7] uses the trust region algorithm to realize the targeted
attack and utilizes the same ways as CW attack to choose
target labels. However, these simple ways blindly choose target
labels and the authors did not give any scenes where these
label chosen methods are needed.

In this paper, we focus on the importance of adversarial
samples’ target labels and fill the gap that no works give a
guide about how to choose target labels appropriately. We
propose a novel attack method called LabelFool to choose
less detectable target labels and generate adversarial samples
efficiently. We compare LabelFool with FGSM, DeepFool and
SparseFool, to show that LabelFool is helpful in making the
attack less detectable by humans in the label space. We also
demonstrate that the performance gain in the label space is not
at the expense of the loss in the image space or attack rate.

III. LABELFOOL

In this section, we will introduce the label selection part
(Section III-A) and the sample generation part (Section III-B)
in LabelFool respectively. We use the same notation i (i =
1, 2, . . . ) for “class” and “label”, because “class” and “label”
are interchangeable in this paper.

A. Label Selection

Figure 3 shows the pipeline of label selection part for
LabelFool, whose task is choosing the target label t for an
input image x. LabelFool aims to find the most nearest label
to the input image’s ground truth. There are two problems
to be solved: (1) how to define the distance between labels?
(2) given the ground truth label g is unknown, how to choose
the nearest label to g? In this subsection, we will solve these
problems one by one.

For the first problem, we use the perceptual distance to
measure the distance between images, and utilize Hausdorff
distance to calculate the distance between labels. In detail, given

two images x, y, we first use pre-trained image classification
models extract perceptual features φx, φy for x, y. Because
features extracted by pre-trained image classification models
can reflect some perceptual information, Then we follow
previous works [14], [15] which use cosine distance to
measure perceptual distance between x and y, i.e. d(x, y) =
1− cos (φx, φy).

After calculating the distance between images, we can
compute the distance between labels. Each label corresponds
to a set of images. To measure the distance between two sets,
Hausdorff distance [16] is a good choice. The distance between
label i and label j is denoted as Di,j . For a dataset with n
labels, a matrix D ∈ Rn×n can be constructed by calculating
the distance between all pairs of labels in the dataset. Remark
that the computation of D considers all training images in a
dataset and D is stored for further use. Then, the first problem,
how to define the distance between labels, is solved.

There are two steps to solve the second problem, i.e. given
the ground truth label g is unknown, how to choose the nearest
label to g? First, we estimate the probability distribution of g by
the output of the target model (i.e. the model to be attacked) and
denote the estimated distribution as P̂ . According to P̂ , there
are two cases. For the first case where the maximum value in P̂
is large, we specify the label with the highest probability as the
ground truth. Then, it is easy to get the nearest label according
to the matrix D. For the second case where the maximum
value in P̂ is small, we estimate the expected distance between
label i and g under the distribution P̂ . Then the label with the
minimum expected distance is chosen as the target label t.

In detail, let x be an image whose ground truth is g and
f be a target model. The output of f is a probability vector
f(x) = (p̂1, . . . , p̂n)T where p̂i represents the probability of
x belonging to class i, i.e. P (x ∈ class i) = p̂i. Therefore,
f(x) can be taken as the estimated probability distribution of
g, i.e. P̂ = f(x). For simplicity, suppose p̂1, . . . , p̂n are sorted
in the descending order.

an image ↔ a point

a label ↔ a set⋯
label 𝑖𝑖 label 𝑗𝑗

𝐷𝐷𝑖𝑖,𝑗𝑗 = 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(label 𝑖𝑖, label 𝑗𝑗)

𝑫𝑫 =
𝑫𝑫1,1 ⋯ 𝑫𝑫1,𝑛𝑛
⋮ ⋱ ⋮

𝑫𝑫𝑛𝑛,1 ⋯ 𝑫𝑫𝑛𝑛,𝑛𝑛

target model

probability
vector

𝑥𝑥
𝑃𝑃 𝑥𝑥 ∈ 𝑖𝑖 = �𝑝𝑝𝑖𝑖

�̂�𝑝1 > 𝛿𝛿1 ?

where 𝑆𝑆 = {𝑗𝑗: �̂�𝑝𝑗𝑗 > 𝛿𝛿2}

: 𝑡𝑡 = argmin
𝑖𝑖=1…𝑛𝑛

�
𝑗𝑗∈𝑆𝑆

�𝑝𝑝𝑗𝑗 × 𝑫𝑫𝑖𝑖,𝑗𝑗

Label Selection

Yes

No

descending
order

�𝑝𝑝1
�𝑝𝑝2
⋮
�𝑝𝑝𝑛𝑛

MLE:

Importance 
Sampling

𝑡𝑡 = argmin
𝑖𝑖≠ �𝑔𝑔,𝑖𝑖=1…𝑛𝑛

𝑫𝑫𝑖𝑖, �𝑔𝑔�𝑔𝑔 = argmax
𝑖𝑖=1…𝑛𝑛

�𝑝𝑝𝑖𝑖

Fig. 3. Label selection algorithm for LabelFool, we first compute the distance Di,j between every two class i, j in a n-classes dataset. Then we choose
the target label tx for an input image x by two strategies according to the value of p̂1.
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(1) When p̂1 is larger than some threshold δ1, we use
Maximum Likelihood Estimation (MLE) [17] to estimate g.
That is, we take

ĝ = arg max
i=1,...,n

p̂i (1)

as the ground truth g. Then, the target label t is chosen as

t = arg min
i6=ĝ,i=1,...,n

Di,ĝ if p̂1 > δ1. (2)

(2) When p̂1 is smaller than the threshold δ1, the target
model f is not sure which label is true and meanwhile, it is
hard to sample from the real probability distribution. According
to Importance Sampling [18], some important labels can be
sampled to estimate the expected distance between label i and
the ground truth g under P̂ . Specifically, the sampled labels
are

S = {j : p̂j > δ2}, (3)

i.e., labels with probability larger than some threshold δ2. Then,
the distance between the label i and the ground truth g (with
g ∼ P̂ ) can be estimated by∑

j∈S
p̂j ·Di,j . (4)

Therefore, the target label is chosen as

t = arg min
i=1,...,n

∑
j∈S

p̂j ·Di,j if p̂1 ≤ δ1. (5)

In conclusion, the whole strategy for choosing the target
label t of an input image x is computed as

t =


arg min

i6=ĝ,i=1,...,n
Di,ĝ if p̂1 > δ1

arg min
i=1,...,n

∑
j∈S

p̂j ·Di,j otherwise
(6)

where S is formulated in Eq. (3).

B. Sample Generation

Figure 4 shows the pipeline of the sample generation part
for LabelFool. To achieve a relatively small perturbation
in the image space and a relatively fast speed to generate
adversarial samples, we design a method based on DeepFool.
The mathematical derivation in this step is similar to DeepFool
[6] and the only difference is that, we have a target label while
DeepFool does not.

As introduced in DeepFool [6], a high dimensional classifica-
tion boundary can be approximated by a line in two dimensions.
Given an image x0 and a target model f , the 2D approximated
boundary classification boundary between the current class ĝ
and the target class t is

Ft = {x : ∇fĝ(x0)x−∇ft(x0)x+fĝ(x0)−ft(x0) = 0}. (7)

Therefore, to make x0 misclassified as t, the perturbation with
minimum L2 norm is: moving x0 towards the direction

∇fĝ(x0)−∇ft(x0)

‖∇fĝ(x0)−∇ft(x0)‖22
, (8)

𝑥𝑥

ℱ𝑡𝑡

ℱ1

ℱ2

Sample Generation

𝑥𝑥 : the input image

ℱ𝑖𝑖 : the classification boundary between 
current class and class 𝑖𝑖

dashed lines: estimated 2-D 
classification boundaries

𝑡𝑡 : the target label

Fig. 4. Sample generation step for LabelFool. LabelFool moves the input
towards the boundary Ft, which is the boundary between the current class
and the target class. This operation will be repeated several times until it is
classified as t.

and the distance traveled is

|fĝ(x0)− ft(x0)|. (9)

We repeatedly move the current point towards Ft until it is
classified as label t or the maximum number of iterations has
been reached. A pseudo-code of the sample generation part is
shown in Algorithm 1.

Algorithm 1 : Sample Generation
Input: image x, target model f , target label t
Output: Adversarial image x̂

1: initialize x0 ← x, i← 0, f(x0) = (p̂1, . . . , p̂n)T

2: initialize ĝ ← arg maxi p̂i
3: while ĝ 6= t and i < max iter do
4: w ← ∇fĝ(xi)−∇ft(xi)
5: k ← fĝ(xi)− ft(xi)

6: ri ←
|k|
‖w‖22

w

7: xi+1 ← xi + ri
8: f(xi+1) = (p̂1, . . . , p̂n)T

9: ĝ ← arg maxi p̂i, i← i+ 1
10: end while
11: Return x̂ = xi+1

IV. EXPERIMENTS

We evaluate our method on two datasets: ImageNet [11] and
CASIA-WebFace [12].

ImageNet provides the CLS-LOC dataset for classification
tasks. Its train split contains about 1,300,000 images for 1,000
classes. Every class has a label, it is a word from WordNet.
Our experiments are conducted on the train split of the dataset.

CASIA-WebFace has nearly 500,000 face images for 10,575
people. Every person has an ID, which is a number from 1 to
10,575 (not a name), and several reference images. So for this
dataset, target label represents the target ID. This dataset is
chosen to show that LabelFool is effective on face datasets. As
the technique of face recognition is widely used in our daily
life, undetectable (in both image space and label space) attacks
will cause potential security problems in real life. Therefore,
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attacks with high imperceptibility in the label space are stronger
than those with low imperceptibility.

We first propose two metrics to measure the imperceptibility
of attacks in the label space and perform extensive experiments
to show LabelFool is less detectable than other attacks in the
label space (Section IV-A). Meanwhile, LabelFool has good
performance in the image space (Section IV-B). In Section
IV-C, we conduct attacks on several models to prove the
exceptional ability of LabelFool on attacking neural networks.
Computational cost is analyzed in Section IV-D. Section IV-E
introduces the ablation study where we compare the label
selection method in LabelFool and the simple selection methods
proposed by CW attack [4].

A. Imperceptibility in the Label Space

In this part, we will show the effectiveness of LabelFool
on being less detectable by human observers in the label
space. We will compare LabelFool with three attack methods:
DeepFool [6], FGSM [5] and SparseFool [13].

Newly proposed metrics. As no works have measured the
imperceptibility of attacks in the label space, we propose two
metrics, Confusion Rate (CR) and Real Confusion Rate (RCR),
for the imperceptibility in the label space. These metrics are
defined by how well human observers solve the puzzles in
subjective experiments. A puzzle is the combination of an
successfully-attacked adversarial image and its label. In the
subjective experiment, a human observer needs to determine
whether the label is correct for the image, answering “True”
or “False” for each puzzle. The rate with which the observer
answers incorrectly is called Confusion Rate (CR).

If the object corresponding to the target label in a wrong-
answered puzzle indeed exists in the image, we call it a fake
attack. Figure 5 illustrates what is a fake attack. In Figure 5,
the main object of the image is a dog but fake attacks would
choose “sunglasses” as the target label. However, there is a
man wearing sunglasses in the image, so “sunglasses” is not
exactly a wrong label.

Ground Truth Fake Attack LabelFool

Label Kuvasz Sunglasses Great Pyrenees

Label

Ground 
Truth Kuvasz

Fake 
Attack Sunglasses

LabelFool Great 
Pyrenees

Fig. 5. An example of fake attacks. The main object of the image is a dog
whose ground truth is “Kuvasz”. Fake attacks choose “sunglasses” as the target
label. However, sunglasses indeed exist in the image. By contrast, LabelFool
aims to choose a target label which is perceptually similar to the ground truth
label. In this example, LabelFool choose “Great Pyrenees” as the target label.

We annotate every wrong-answered puzzle whether it is a
fake attack. After getting rid of all fake attacks, the observer
has a new confusion rate, we call it Real Confusion Rate(RCR).

Figure 6 shows how to compute CR and RCR intuitively. The
higher of these two evaluations, the less detectable of attacks
in the label space.

all puzzles for an attack method
wrong-answered puzzles

fake attacks

CR=

RCR= −

�
number of puzzles

represents the

Fig. 6. A diagram about how to compute confusion rate and real confusion
rate. Here |·| means “the number of”.

Experiments on ImageNet. We sample 600 source images
from ImageNet split randomly which belong to different
classes. Each source image will derive four adversarial im-
ages by attacking ResNet-50 [19], namely DeepFool-attacked
image, LabelFool-attacked image, FGSM-attacked image and
SparseFool-attacked image. As the term “puzzles” is used
to describe the combination of an image and its label, this
experiment has 4× 600 = 2400 puzzles. The evaluations are
CR and RCR and ther are 10 observers (3 females and 7 males,
age between 20-29) doing the subjective experiment. Average
CR and RCR are reported in Figure 7.

25%

27%

29%

31%

33%

35%

37%

DeepFool FGSM SparseFool LabelFool

Confusion Rate (CR)
Real Confusion Rate (RCR)

Fig. 7. A line chart for average confusion rate (CR) and real confusion rate
(RCR) of 10 observers. The horizontal axis represents four attack methods. The
vertical axis represents the mean value of 10 human observers’ evaluations.

From Figure 7, we can see LabelFool wins in both
evaluations among all attack methods. Especially, there is
a huge improvement in RCR compared with other attack
methods, about 5-8 percent improvement. DeepFool achieves
a comparable CR with LabelFool but the RCR of DeepFool
is poor1. The drop for DeepFool from a relatively high CR
to a low RCR reflects that DeepFool has many fake attacks.
Compared with FGSM and SparseFool, LabelFool is ahead in
both evaluation.

Experiments on CASIA-WebFace. In this experiment, we
choose 1,000 images from CASIA-WebFace randomly which
have different IDs. Every sampled image will be fed into

1The RCR of DeepFool is significant lower than LabelFool by the hypothesis
significance test (p-value is 0.0055).
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SphereFace [20] model and then, we use LabelFool, DeepFool,
FGSM and SparseFool to attack the model respectively. Each
attack method can generate one adversarial sample with a target
ID. Therefore, 4 target IDs can be got for one input image.
Then one reference image is chosen for each target ID from its
reference images in the dataset. To evaluate the effectiveness
of attack methods in the label space, it is needed to judge
whether the person in the target ID’s reference image is the
same person in the input image.

In terms of evaluation, we do not conduct subject experiments
to compute CR/RCR for two reasons. First, it is hard for normal
people to judge whether the people in two images are the same.
Second, we have conducted some preliminary experiments
which show that there is huge individual difference between
human observers for this task. Instead, to show LabelFool’s
imperceptibility in the label space, we show two visual results
in Figure 8. The first column of Figure 8 is the input image
and its ID. The second column to the last column are the
ID generated by DeepFool, LabelFool, FGSM, SparseFool
respectively and the ID’s reference picture.

In Figure 8, we can see that the person with the ID chosen
by LabelFool looks most like the one with the ground truth
ID among all people with target IDs. Some methods even
get an ID whose sex is different from the real ID, such as
FGSM in the second visual example. We show more visual
examples on CASIA-WebFace in our supplementary materials
to demonstrate the excellence of LabelFool in being less
detectable in the label space.

17 7319 2609

DeepFool FGSM SparseFool

23 9525 98 924

6336 1157

LabelFool

3926

Ground Truth ID
& Input Sample Target ID & Reference Image

Fig. 8. Visual results on CASIA-WebFace. The first column shows the input
image and its ground truth ID. The second to the last columns show the target
ID (a number) generated by DeepFool, LabelFool, FGSM and SparseFool
respectively. The image beside the ID is a reference image for this ID.

B. Imperceptibility in the Image Space

In this subsection, we will show our performance in the
image space to demonstrate that our improvement in the
label space is not at the cost of huge loss in the image
space. We use the L2 norm of perturbations to evaluate the
imperceptibility in the image space. The definition is ‖∆‖ :=

1

WN ×HN

∑WN

w=1

∑HN

h=1
‖∆yw,h‖2, where WN×HN is the

size of the input image, ∆yw,h represents the perturbation
added to the pixel yw,h. This evaluation is also utilized in
previous works [3], [6]. The smaller ‖∆‖ is, the better the
adversarial samples are.

-12

-10

-8

-6

-4

-2

0
ResNet-50 ResNet-34 VGG-19 (bn) AlexNet SphereFace

DeepFool FGSM SparseFool LabelFool

Fig. 9. Log of the mean value of perceptibility for adversarial samples
generated by different attack methods on different models. The x-axis repre-
sents target model and the y-axis represents ln(mean(‖∆‖)). Different colors
represent different attack methods. The smaller ln(mean(‖∆‖)) represents
the better imperceptibility.

We randomly choose 1000 images from ImageNet and 1000
images from CASIA-WebFace, and then attack the classifier
to generate adversarial samples. We compute mean value of
‖∆‖ for these adversarial samples. In this experiment, we test
four classifiers for ImageNet: ResNet-34 [19], ResNet-50 [19],
VGG-19 (with batch normalization) [21] and AlexNet [1],
and one classifier for CASIA-WebFace: SphereFace [20]. The
results are shown in Figure 9. We can see although LabelFool
is significantly better than FGSM and SparseFool. Although
LabelFool is a little worse than DeepFool, visual results (Figure
10) indicate that human observers can not notice the difference
between LabelFool and DeepFool in the image space.

Ground Truth DeepFool-attacked LabelFool -attacked

Input/ 
Adversarial 

sample
&

ln ∆

−10.35 −10.08

−10.32 −10.23

Input/ 
Adversarial 

sample
&

ln ∆

Fig. 10. Two visual results of adversarial samples generated by DeepFool and
LabelFool against AlexNet with ln ‖∆‖ reported below. Although ln ‖∆‖ of
LabelFool is a little higher, we can hardly distinguish the difference between
adversarial samples generated by LabelFool and DeepFool.

C. Attack Rate

We will show the attack rate in the last experiment which
is a fundamental requirement for an attack method. Results
are shown in Table I. As for ImageNet, we randomly choose
3000 original images and use these original images to gen-
erate adversarial images for ResNet-34, ResNet-50, VGG-19
(with batch normalization) and AlexNet respectively. As for
CASIA-WebFace, 3000 original images are chosen and then
3000 adversarial images are generated for SphereFace. We
surprisingly find that LabelFool has the highest attack rate on
all models compared with other methods. This might benefit
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from our probability model which is used to choose the target
label. Because in our strategy, when p̂1 ≤ δ1, we do not use
the predicted label as the ground truth. Instead, we consider all
labels whose probability are larger than δ2 and choose the label
nearest to all these labels as the target label. This operation
can avoid some mistakes and improve the attack rate when the
classifier doesn’t give a correct classification result.

TABLE I
ATTACK RATE OF DIFFERENT METHODS ON DIFFERENT MODELS.

Model DeepFool FGSM SparseFool LabelFool
Dataset: ImageNet

ResNet-34 92.7% 95.0% 92.6% 97.5%
ResNet-50 93.1% 95.1% 92.5% 97.9%
VGG-19(bn) 92.0% 94.6% 83.7% 97.5%
AlexNet 90.4% 96.4% 89.1% 97.4%

Dataset: CASIA-WebFace
SphereFace 98.7% 99.2% 97.8% 99.3%

D. Computational Cost

The computational cost of LabelFool consists of two parts.
The first part is the cost of an extra preprocessing step for
images to compute the matrix D in the label selection step. The
computational complexity of this process is O(n2) where n is
the number of images in the training set. Although computing
D takes some time, it is only computed once for each dataset
and stored for further uses.

The second part is the cost of generating adversarial examples
in the sample generation step. This process is common
to all attack methods. We calculate the average time for
different methods to generate an adversarial example over
3000 ImageNet images against ResNet50 in Table II. Our
experiment was conducted with Intel(R) Core(TM) i7-8700K
CPU @ 3.70Hz CPU and NVIDIA GeForce GTX 1080. The
operating system is Ubuntu 16.04.7 LTS. From Table II, it can
be seen that LabelFool has comparable computation time to
DeepFool.

TABLE II
COMPUTATION TIME OF DIFFERENT METHODS WHERE “s” REPRESENTS

SECOND.

Method DeepFool FGSM SparseFool LabelFool
Time per image 0.91s 0.08s 9.54s 0.33s

E. Ablation Studies

In this subsection, we compare our label selection method
(Section 3) with two common simple label selection methods
proposed in CW attack. They are:
• Random label: select the target label uniformly at random

among the labels that are not the correct label.

• Easiest label: select the target label that is least difficult
to attack. That is to say, choose the second highest label
of the output f(x).

In particular, we replace our label selection methods with
these methods and attack in the same way to generate
adversarial samples We design a toy subjective experiment
to show the drawbacks of these simple methods. We first
sample 600 source images from ImageNet randomly, and these
images are in different classes. The target model is ResNet-
50 [19]. We use the easiest label, random label and our label
selection method respectively in the label selection part, and
use the same method (method in Algorithm 1) in the sample
generation part. Each source image will derive three adversarial
images, and each adversarial image has its target label. There
are 3× 600 = 1800 puzzles in this experiment.

From Table III, the drawbacks for simple methods are
obvious. Random label has an extremely low CR which means
it can hardly confuse people. We did not annotate fake attacks
for random labels’ puzzles because CR is a upper bound of
RCR, and CR for random labels’ puzzles is too low to compare
with other methods. Easiest label method is less detectable
than random label method, but it has a poor performance on
RCR which means the objects corresponding to the easiest
labels usually indeed exist in the image2. That is, there are
many fake attacks in easiest labels’ puzzles. This feature of
easiest label may be useful in some special applications, but
in this paper, we need a high RCR on which easiest label is
not as good as our label selection method.

TABLE III
CR AND RCR FOR DIFFERENT LABEL SELECTION METHODS.

Method Confusion Rate Real Confusion Rate

Random 0.83% -
Easiest 49.17% 38.00%
Ours 44.00% 41.83%

V. CONCLUSION AND FURTHER DISCUSSION

Conclusion. In this study, we observe two important issues:
(1) the target label selection is necessary for attackers and (2)
how to choose a less detectable target label.

As for the first issue, the target label selection is important
because when attacks are utilized in real life, attackers usually
have some special needs on target labels. While previous works
do not care about the target label selection, we add the target
label selection as a part of our attack method. Actually, the
target label selection part in this paper is a flexible module,
because attackers can choose or design label selection methods
according to their actual needs.

For the second issue, a natural need for attackers is
making attacks undetectable by humans. Therefore, we provide

2The RCR of our method is significantly higher than the easiest label
selection method by the hypothesis significance test (p-value is 0.0274).

Authorized licensed use limited to: Peking University. Downloaded on October 04,2022 at 01:53:07 UTC from IEEE Xplore.  Restrictions apply. 



LabelFool to identify a target label perceptually similar to
an input image’s ground truth, so that a human observer
will overlook the mis-classification. Our experiments show
that, LabelFool’s CR and RCR is 2-8 percentage higher than
other methods on ImageNet. Meanwhile, the perceptibility of
LabelFool in the image space, measured by the mean L2 norm
of perturbations, is low. As for attack rate, LabelFool is the
highest among compared methods.

Further discussion. In this paper, we just consider the need
for attacks being undetectable by humans and propose a feasible
way to generate adversarial samples which can confuse people
in the label space. However, there are other needs in some
important and special applications. For example, to ensure the
security of network content, we usually use neural networks to
check whether a message contains violence, eroticism or other
undesirable content. In this applications, an attacker may hope
to attack undesirable messages to be mis-classified as healthy
messages and do great harm to network security. Works can
be carried out on such needs.

For LabelFool, there is still some room for improvement.
First, the computational complexity of this process is O(n2)
where n is the number of images in the training set. Although
D is computed once for each dataset and it is stored for further
uses, the computational time is still high which needs to be
optimized. Second, we only consider perceptual distance in
this paper, but semantic distance also has its significance of
confusing people in the label space. We may take the semantic
tree into consideration and make a trade off between perceptual
distance and semantic distance in future research.

Our results provide the following avenues for future research.

• Adversarial attacks are real threat to both human users
and networks designers when they can be used into real
applications. Therefore, considering how to make attacks
applicable may be more urgent than how to generate an
adversarial sample.

• The label selection part is more important for attacks
than the sample generation part as there have been many
optional methods for the sample generation part. If we can
categorize the needs in real applications and design general
label selection methods for each category, it will be very
convenient to make attacks applicable in applications.
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