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Abstract

The quality assessment (QA) of camera captured authen-
tically distorted images is important on account of its ubiq-
uitous applications and challenging due to the lack of a ref-
erence. While there exists a plethora of supervised no ref-
erence (NR) image QA (IQA) algorithms, there is a need to
study unsupervised or opinion unaware algorithms on ac-
count of their superior generalization performance. We ex-
plore self-supervised learning (SSL) for the feature design
on authentically distorted images to predict quality without
training on human labels. While SSL on synthetic distor-
tions has recently shown promise, there is a need to enrich
the feature learning on authentic distortions. The key chal-
lenge in achieving this is in the learning of quality sensi-
tive features with mitigated content dependence. We design
a self-supervised contrastive learning approach which only
requires positives and introduce a content separation loss
by estimating a bound on the mutual information between
the features learnt and the content information. We show
on multiple authentically distorted datasets that our self-
supervised features can predict image quality by comparing
with a corpus of pristine images and achieve state-of-the-art
performance.§

1. Introduction
Image quality assessment (IQA) is an important tool in

benchmarking and comparing different camera captured au-
thentically distorted images. Particularly, the setting of No
Reference (NR) IQA becomes important in this scenario
where a reference pristine image is not available for com-
parison. NR IQA algorithms are typically designed in a
learning framework by training on human opinion scores.

∗Equal contribution
†Work done by the author while at the Indian Institute of Science
§https://github.com/nithincbabu7/iqa-ContentSep

However, human labels are hard to obtain for training owing
to the need to conduct large scale subjective studies, which
are cumbersome. Further, exploring the full capability of
deep learning for NR IQA becomes challenging owing to
the need for a large number of annotated images. Thus, we
focus on the problem of unsupervised or opinion unaware
NR IQA for authentically distorted images without training
on human opinion scores.

Although supervised models trained with human labels
on a single large dataset are beginning to show promising
results in cross-dataset experiments [36, 34, 7, 27], as cam-
eras, sensors and algorithms keep evolving, the distortions
that one encounters also keep evolving with time. Conduct-
ing large scale studies continuously to design and update
supervised methods is expensive. Thus, there is a need to
study opinion unaware quality methods in parallel for bet-
ter scalability and easier model updates.

Perhaps, the most successful methods for unsupervised
NR IQA such as NIQE [22] and IL-NIQE [35] are based
on natural scene statistics (NSS). While NSS based features
have been successful for several distortions and they cap-
ture important aspects of quality, such approaches have not
yet achieved satisfactory performance on authentically dis-
torted images [10, 34, 6, 30]. Surprisingly, deep features
trained for image classification have been shown to contain
quality relevant information and can be trained to predict
perceptual quality. Nevertheless, it is important to explore
how deep networks can be trained to learn features that cap-
ture distortions in authentically distorted images more ex-
plicitly and without human supervision. The goal of our
work is to explore the quality feature learning for authenti-
cally distorted images and use them to predict quality with-
out the need of human label supervision in any step.

In this work, we consider the unsupervised NR IQA
problem through self-supervised feature learning. Thus no
human labels are involved in any step. This is an important
approach and a path towards attaining robust no reference
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IQA performance on various datasets. Recently, there has
been some work on self-supervised quality feature learning
for synthetic and authentic distortions [19, 3]. However,
the feature learning on authentically distorted images can
be further improved. Self-supervised quality feature learn-
ing on authentically distorted images is challenging because
multiple aspects such as content and quality can change
among different authentically distorted images. For exam-
ple, in contrastive learning, the identification of negatives
that vary only in quality is challenging on authentically dis-
torted images. Thus, the self-supervised learning of quality
features on authentically distorted images is non-trivial.

We adopt a two-stage approach of feature learning to en-
rich features pre-trained on synthetic datasets using authen-
tically distorted images. When we take patches from differ-
ent authentically distorted images for self-supervised learn-
ing, there can be multiple variations such as those in quality
and content. To more accurately learn quality related fea-
tures from image patches, we adopt a contrastive learning
method that not only discriminates image patches, but also
minimizes an estimate of the dependence of features on con-
tent related variations through a mutual information bound.

While the dependence of features on content for IQA
has been exploited for improving their performance in su-
pervised NR IQA [27], we believe that such dependence
can lead to a performance loss in unsupervised NR IQA ap-
proaches that compare features with a corpus of pristine im-
ages [22]. In supervised NR IQA, the availability of large
annotated datasets implicitly ensures effective use of the
content information to predict visual quality. On the other
hand, it is not clear how the content information can be re-
lated to quality without supervision. Thus, there is a need
to explicitly mitigate the content dependence of quality fea-
tures in unsupervised NR IQA of authentically distorted im-
ages.

To summarize, our main contributions are as follows:

• We present a two-stage self-supervised feature learn-
ing approach with different learning methodologies on
synthetic and authentically distorted images.

• While learning features on authentically distorted im-
ages, we only consider positives due to the difficulty in
obtaining negatives that vary in quality alone.

• We introduce a mutual information based loss func-
tion while learning on authentic distortions to mitigate
the dependence of features on content and enrich the
learning of quality representations.

• We introduce a contrastive likelihood loss to optimize
the variational approximation computed while estimat-
ing the bound on mutual information.

• We show that our self-supervised features can be used
to make perceptually consistent image quality predic-
tions without training on any human opinion scores.

2. Related Work
Supervised NR IQA: One of the most successful ap-

proaches to supervised NR IQA is based on NSS features
[21, 25, 23, 32] and modeling of the human visual sys-
tem [9]. BRISQUE [21], BLIINDS [25] and DIIVINE
[23] represent a few popular examples of methods inspired
from such an approach. While NSS based methods cap-
ture several synthetic distortions, their performance has
suffered on authentically distorted camera captured im-
ages. With the emergence of deep learning, several re-
searchers have studied end-to-end trained [2, 17, 12] and
pre-trained deep networks for NR IQA with some modi-
fications [27, 36, 7, 37, 34, 13]. The latter approach has
been reasonably successful for authentically distorted im-
ages. Hyper IQA [27] adopts a hyper network to model the
image semantics for NR IQA while DB-CNN [36] presents
a two-stream approach to capture both synthetic and authen-
tic distortions. The role of transformers to process the pre-
trained deep features for NR IQA has also been explored
[7]. MetaIQA [37] explores the meta learning on synthetic
distortions to quickly adapt the quality model to authentic
distortions.
Weakly Supervised NR IQA: Another class of NR IQA
methods such as [18, 16, 15] rely on weak supervision by
making use of existing Full Reference (FR) and NR IQA
metrics. Ma et al. [18] use multiple metrics and assign an
associated reliability for each of the annotators. A CNN
is finally trained to estimate quality by optimizing for con-
sistency with the annotators. DipIQ [16] first generates a
large number of quality discriminable image pairs using FR
measures and then uses a pairwise learning algorithm in
tandem with perceptual uncertainty levels to learn an opin-
ion unaware IQA metric. RankIQA [15] trains a Siamese
network to rank images between which the relative quality
is known based on relative distortion levels. However the
above methods cannot be used in the context of authenti-
cally distorted images where neither a reference is available
nor the distortion levels are known.
Self-supervised/Unsupervised feature learning for NR
IQA: One of the earliest approaches for learning quality
features without human labels was designed in CORNIA
[33]. A dictionary learning approach was adopted to learn
quality aware features. More recently, self-supervised fea-
ture learning methods have been explored for NR IQA.
CONTRIQUE [19] learns image features by predicting the
distortion types and levels as a pretext task while perform-
ing instance discrimination on authentically distorted im-
ages. However, since both content and quality can change
while discriminating instances, the learning of quality fea-
tures can get impacted. The same approach is also in-
vestigated on synthetically generated images through the
dead leaves model [20]. SPIQ [3] adopts a patch predic-
tion framework to learn contrastive features on synthetically
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distorted images. In this method, the inefficiency in patch
prediction can impact the feature learning process.
Unsupervised NR IQA: The NIQE [22] and IL-NIQE [35]
formulations represent examples of methods that compute a
distance between NSS features to a corpus of pristine nat-
ural image patches as a quality index. This represents an
unsupervised approach for NR IQA without having to train
the quality features on human scores. While NIQE works
with NSS features, IL-NIQE enriches the features by adding
other quality-aware features such as gradient features, log-
Gabor filter responses and color statistics. The goal of our
work is to show that by learning a richer set of features,
one can use this unsupervised approach to predict percep-
tual quality without the need for human labels in any step.

3. Method
We propose a two step approach for unsupervised NR-

IQA of authentically distorted images. We first learn qual-
ity features on a large corpus of synthetically distorted im-
ages and then fine tune the learning on authentic distortions.
CONTRIQUE [19] jointly learns features on synthetic dis-
tortions using distortion labels and uses authentic distor-
tions by deploying an instance discrimination framework
[31]. However, such a method does not clearly address the
learning of quality aware features on authentically distorted
images. For example, if every sample in the data is assigned
as a different class during instance discrimination, a heavy
content bias can overpower the learning procedure and mit-
igate the learning of quality aware features. Therefore, we
pre-train features on synthetically distorted images using
M-SCQALE [11] and introduce a novel method to fine-tune
these features and mitigate content bias on authentically dis-
torted images. Our pre-training framework is chosen to be
consistent with our fine-tuning framework.

3.1. Synthetic Data Pretraining

We provide an overview of M-SCQALE [11] used for
pre-training before describing our contributions in the next
subsection. M-SCQALE is a multi-view contrastive learn-
ing framework for IQA where the goal is to learn features
that discriminate positive and negative pairs of views. In
particular, a positive pair of views is chosen as a pair of
large patches from the same image to capture the global im-
age quality features while a negative pair is chosen from
different distorted versions of the same image. While M-
SCQALE was designed for low light image QA, we pre-
train using this framework for several synthetic distortions
as described in Section 4.2.1. Further, we only pre-trained
a single scale and did not observe much improvement us-
ing multiple scales in M-SCQALE when integrated with our
contributions in authentic fine-tuning. We observe that M-
SCQALE requires both positives and negatives for learning,
which are hard to design for authentically distorted images.

3.2. Authentic Fine-Tuning with Content Separa-
tion

Overview: As discussed in Section 1 and 3.1, there is
a challenge in determining the positives and negatives for
contrastive learning on authentically distorted images. This
motivates us to explore contrastive learning on authentically
distorted images without using negatives to fine-tune the
quality representations. Several recent contrastive learning
methods such as BYOL [8] and SimSiam [4] show excel-
lent performance without the need of negatives altogether.
BYOL uses two feature encoders such that the weights of
the alternate encoder are updated as a momentum based
moving average of the main feature encoder. The work
by Chen et al. [4] does away with the need of even hav-
ing an alternate momentum update based encoder and uses
the idea of stop gradients to prevent collapsing solutions.
We employ the SimSiam [4] framework to enable quality
aware feature learning without using negatives by drawing
patches from the same image as positives.

However patches taken from the same image can bias the
model towards learning the correlation between the content
and disturb the quality awareness of the pre-trained features.
The quality features are ideally not supposed to be sensi-
tive to the content of the image but only to the distortions.
While the role of content dependence has been explored in
supervised NR IQA [27, 7], we believe that content depen-
dence can impact performance in unsupervised NR IQA ap-
proaches based on computing distances to a corpus of pris-
tine images [22]. This motivates us to disentangle the con-
tent information from the learned features to mitigate the
impact of content bias. We achieve this by minimizing a
bound on the mutual information between the learnt fea-
tures and the image content. We describe our entire frame-
work as follows and in Figure 1.

Fine-Tuning Setup: We sample N images in a mini-
batch denoted by {I1, I2, · · · , IN}. Each sample is ran-
domly divided into either vertical or horizontal halves and
the largest square patch from each half is chosen. For
any image In, n ∈ {1, 2, . . . , N}, let Cn

1 (.) and Cn
2 (.)

be the functions which crop large non-overlapping patches
from In and resize them to a size of M × M . Let xn

1 =
Cn

1 (In) and xn
2 = Cn

2 (In) denote the two augmented
views/positives drawn from a sample In. f(.) here denotes
the feature encoder with weights initialized from the syn-
thetically pretrained network. We denote the prediction
MLP head by h(.). Let z(n)1 = f(xn

1 ), z
(n)
2 = f(xn

2 ),
p
(n)
1 = h(f(xn

1 )) and p
(n)
2 = h(f(xn

2 )). The loss that is
used to update the network weights is given by [4]

Lc =

N∑
n=1

D(p
(n)
1 , sg(z(n)2 ))

2
+

D(p
(n)
2 , sg(z(n)1 ))

2
. (1)

The function D(.) denotes the negative of normalized co-
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Figure 1: Block diagram describing our framework for authentic fine-tuning with content separation.

sine similarity. The sg(.) term indicates a stop gradient op-
eration, which ensures that the gradient from z

(n)
2 does not

flow back to the feature encoder on xn
2 to prevent collapsing

solutions [4]. The gradients from p
(n)
2 flow back to the fea-

ture encoder through the second term in the loss function. It
acts in a vice versa fashion for xn

1 .
Mitigation of Content Dependence: We introduce an-

other loss term to mitigate the dependence of the learnt
features on content information. Let e(.) denote a CNN
which extracts content aware information from an image.
Let the content aware features be denoted as y(n)1 = e(xn

1 )

and y
(n)
2 = e(xn

2 ). To disentangle content from our fea-
ture learning we try to minimize the mutual information
I(Yk;Zk) for k = {1, 2} where Yk and Zk are the random
variables with y

(n)
k and z

(n)
k as the corresponding samples.

Contrastive Log-ratio Upper Bound (CLUB): To min-
imize mutual information, we adopt the Contrastive Log-
ratio Upper Bound (CLUB) on mutual information [5], es-
timated as

Lmik =
1

N

N∑
n=1

[
log qθ

(
y
(n)
k |z(n)k

)
− 1

N

N∑
m=1

log qθ

(
y
(m)
k |z(n)k

)]
.

(2)

The above equation uses a variational distribution

qθ(Yk|Zk) that approximates p(Yk|Zk). The distribution
qθ(Yk|Zk) is modeled as a neural network parametrized by
θ whose output describes the parameters of the conditional
distribution. Further, the conditional distribution is modeled
as an independent multivariate Gaussian, whose parameters
need to be predicted. The neural network takes z

(n)
k as in-

put and predicts the mean µ(z
(n)
k ) and variance σ2(z

(n)
k ) of

Yk given Zk = z
(n)
k . According to [5], the neural network

parameters should be updated such that qθ(Yk, Zk) is sim-
ilar to the intractable joint distribution, p(Yk, Zk), than to
the product of the marginals, p(Yk)p(Zk). The authors fa-
cilitate this by minimizing KL(p(Yk, Zk)∥qθ(Yk, Zk)) over
θ, which is the same as maximizing the log-likelihood of
qθ(Yk|Zk), implemented as maximizing

Lθk =
1

N

N∑
n=1

log qθ(y
(n)
k |z(n)k ). (3)

Contrastive Likelihood Loss for Variational Approx-
imation: For the parameters θ of the variational ap-
proximation network to be effective in minimizing the
mutual information, we need qθ(Yk, Zk) to be simi-
lar to the joint distribution p(Yk, Zk) than to the prod-
uct of marginals p(Yk)p(Zk). The minimization of
KL(p(Yk, Zk)∥qθ(Yk, Zk)) ensures that the distributions
p(Yk, Zk) and qθ(Yk, Zk) are similar, but need not guaran-
tee that p(Yk)p(Zk) and qθ(Yk, Zk) are dissimilar. There-
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fore, we propose to minimize KL(p(Yk, Zk)∥qθ(Yk, Zk))
and maximize KL(p(Yk)p(Zk)∥qθ(Yk, Zk)) through the
following optimization

min
θ

[KL(p(Yk, Zk)∥qθ(Yk, Zk))

−KL(p(Yk)p(Zk)∥qθ(Yk, Zk))] .
(4)

Following [5], the above optimization problem can be
implemented as a maximization of the following loss func-
tion over θ,

Lθk =
1

N

N∑
n=1

[
log qθ(y

(n)
k |z(n)k )

− 1

N

N∑
m=1

log qθ(y
(m)
k |z(n)k )

]
.

(5)

The steps for obtaining Equation (5) from (4) are explained
in detail in the Supplementary Material.

The loss functions used in the equations (2) and (5) are
exactly the same. In one case, the loss is minimized by up-
dating the feature encoder parameters and in the other case
the loss is maximized by updating the variational approxi-
mation network. The final content dependence loss Lmi is
the average of Lmik over k = {1, 2}. Similarly, the varia-
tional approximation network is updated using Lθ, which is
again an average of Lθk over k. The overall multi-task loss
for updating the feature encoder f(.) and the predictor h(.)
is

L = Lc + λmiLmi, (6)

where λmi is a hyperparameter used to scale Lmi. We em-
ploy warm-start [1] on Lmi by adding it to the contrastive
loss function Lc after some iterations of training the fea-
ture encoder with the contrastive loss. The variational ap-
proximation network is updated alternately with the feature
encoder updates at each iteration of the learning process.

3.3. Quality Prediction

Similar to [11], we replace the NSS features with our
deep features in the popular completely blind quality pre-
diction framework NIQE [22]. Let (µr,Σr) correspond to
the Gaussian model parameters learnt on the quality fea-
tures of a set of sharp and colorful pristine patches and
(µd,Σd) correspond to that of the input image patches. The
quality score for each test image is predicted using

Q =

√√√√((µr − µd)
T

(
Σr +Σd

2

)−1

(µr − µd)

)
. (7)

We use the method described above for evaluating and com-
paring different features learnt using various feature learn-
ing methods.

4. Experiments
4.1. Databases

We evaluate the performance of different unsupervised
NR IQA methods on four authentically distorted datasets
namely CLIVE [6], KONIQ [10], FLIVE [34] and CID
[30]. CLIVE [6] contains a total of 1,162 images cap-
tured using multiple mobile devices. These images con-
tain a diverse mix of distortions such as noise, blur, under-
exposure, over-exposure etc. KONIQ [10] contains a to-
tal of 10,073 images with various distortions such as noise,
JPEG compression artifacts, motion blur, over-saturation
etc. These images were sampled from the YCC100M [28]
dataset. CID [30] contains 473 images, with camera cap-
tured distortions such as blur, noise, under-enhancement,
over-enhancement etc. FLIVE [34] contains a total of
40,000 images and 120,000 patches. We use only the
40,000 images from FLIVE and not the patches for all our
experiments. Images with different sizes and aspect ratios
with a mix of real world distortions make it a challenging
dataset for IQA.

4.2. Implementation Details

4.2.1 Synthetic Pretraining

We use 840,000 images from the KADIS [14] dataset for the
synthetic pretraining stage. We use 4 distorted versions per
scene and 16 number of scenes per mini-batch. We train
for 5 epochs using Adam optimizer and a learning rate of
0.01. We set temperature parameter as τ = 0.1. We use
ResNet-50 as our feature encoder f(.).

4.2.2 Authentic Fine-Tuning

We use 10,000 randomly sampled images from the AVA
[24] dataset such that there is no overlap with the images
used for testing. During this fine-tuning stage, we only fine-
tune the first convolutional layer and last bottleneck layer of
f(.). The prediction MLP head h(.) takes an input of size
2048 from global average pooling output of f(.). h(.) has
a hidden layer of size 512 with batch normalization applied
to it and outputs a feature of size 2048.

We use a ResNet-50 pre-trained on ImageNet as our
content-aware network e(.). We tap the final 1000-
dimensional softmax output as the content feature y. We do
not update the parameters of the network e(.). The varia-
tional approximation network approximates the conditional
distribution of content feature y given the encoded feature
output z. The network takes z as input through an Expo-
nential Linear Unit (ELU) activation function with its α pa-
rameter set to 1.0. The ELU output is passed through two
parallel MLP blocks, each with a hidden layer of size 1000.
One of the MLP blocks outputs the mean, and the other out-
puts the logarithm of variance of the content features y. The
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Dataset CLIVE [6] KONIQ [10] FLIVE [34] CID [30]

Method SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

NIQE [22] 0.46 0.48 0.53 0.54 0.21 0.29 0.23 0.22
IL-NIQE [35] 0.44 0.49 0.51 0.53 0.22 0.27 0.31 0.40

CORNIA* [33] 0.07 0.07 0.04 0.02 0.05 0.13 0.27 0.29
CONTRIQUE* [19] 0.38 0.42 0.63 0.61 0.26 0.29 0.74 0.76

Proposed 0.51 0.52 0.65 0.64 0.30 0.33 0.64 0.66

Table 1: Performance analysis. * denotes opinion unaware version as explained in Section 4.3 for fair comparison.

approximations of the mean and variance obtained from the
MLP blocks are used to obtain the conditional distribution,
which is further used in the loss functions Lmi and Lθ.

We use a batch size of N = 16 for updating the parame-
ters of f(.), h(.) and the variational approximation network.
We use learning rates of 0.001 and 0.0001 for f(.) and h(.)
respectively. We choose λmi = 1000 in Equation (6) and
set the learning rate for the variational approximation net-
work to be 10−7. We use a patch resize of M = 256 for
stability during training as authentic datasets have images
with varied resolutions. We fine-tune on the sampled im-
ages from the AVA [24] dataset for 5 epochs with the Lmi

term being added only after the first epoch. We use an RTX
2080 Ti GPU and PyTorch framework for all our experi-
ments.

4.2.3 Quality Prediction

We use the same set of 125 images as used by NIQE [22]
to learn the pristine MVG model in Equation (7). We use
patches of size R = 96 similar to NIQE [22]. As FLIVE
[34] has images with multiple resolutions, we resize each
image to 512×512 before employing the quality prediction
step.

4.3. Performance Comparisons and Analysis

We compare against popular unsupervised (opinion un-
aware) NR-IQA methods such as NIQE [22] and IL-NIQE
[35]. We also compare with the unsupervised feature learn-
ing method CORNIA [33] and the self-supervised feature
learning method CONTRIQUE [19]. Both these methods
are used to extract features and these features are used in
the prediction framework described in Section 3.3 for a fair
comparison in an unsupervised setting. We did not com-
pare with SPIQ [3], as the code and the pre-trained model
are unavailable and several implementation details are not
provided. The same set of 10,000 images which are used in
our authentic fine-tuning stage are used to build the dictio-
nary for CORNIA [33]. We use the pretrained model made
available by the authors of CONTRIQUE [19] to evaluate
the CONTRIQUE features. Since our goal is opinion un-

aware NR IQA for authentically distorted images, we do
not compare with other supervised NR IQA methods.

We employ the Spearman’s rank order correlation co-
efficient (SRCC) and Pearson’s linear correlation coeffi-
cient (PLCC) to evaluate the performance of different meth-
ods. The SRCC and PLCC are computed between the
set of ground truth quality scores and the predictions for
all images in each dataset as none of the compared meth-
ods require training on quality labels. Before computing
the PLCC, the predicted scores are passed through a non-
linearity [26].

We observe from Table 1 that our method outperforms
other comparable methods on CLIVE [6] and FLIVE [34]
with significant margins. We also see improvements on the
KONIQ [10] dataset. We observe that CONTRIQUE [19]
performs better than our method on CID [30]. We also ob-
serve that CORNIA [33] performs quite poorly on CLIVE
[6], KONIQ [10] and FLIVE [34] but performs better than
NIQE [22] on the CID [30] dataset. We note that the struc-
ture of the CID [30] dataset is very different as compared
to the other three, since there are only around eight unique
scenes. Although there are several distorted versions, the
variety of scenes is limited contributing to a reduced diver-
sity in this dataset. The performance on FLIVE [34] is typ-
ically lower when compared with other datasets, which can
be expected as it is a very challenging dataset even for the
supervised methods. Nevertheless, we achieve the best re-
sults among all other unsupervised NR methods.

4.4. Ablations

Strength of different components: We evaluate the
strength of each of our proposed components in terms of
the SRCC performance on authentically distorted datasets.
In particular, we evaluate the performance of the pretrained
features on the synthetic dataset, and the impact of fine-
tuning on the authentic dataset with and without the mutual
information based cost function. We see from Table 2 that
each component has its own merit. Adding the fine-tuning
on authentic datasets pushes up the performance on CLIVE
[6], FLIVE [34] and KONIQ [10]. The addition of the con-
tent dependence loss term in the authentic fine-tuning part
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Synthetic Authentic MI CLIVE [6] KONIQ [10] FLIVE [34] CID [30]
✓ ✗ ✗ 0.33 0.60 0.18 0.62
✓ ✓ ✗ 0.44 0.63 0.29 0.61
✓ ✓ ✓ 0.51 0.65 0.30 0.64

Table 2: Strength of adding different components in terms of SRCC Performance.

(a) Contrastive Loss (b) Test set SRCC

Figure 2: A comparison of training and test performance
curves when fine-tuning with and without MI loss term. The
contrastive loss term and the test set performance increase
after introducing the MI loss term at the first epoch.

improves the performance further on all the datasets.
Content Dependence Loss based Regularization: We
qualitatively analyze the effect of adding the content de-
pendence loss through the Mutual Information (MI) term
in Equation (2) during the authentic fine-tuning procedure
in Figure 2. We obtain the curve of the contrastive loss
term Lc at each iteration, and the SRCC performance on
CLIVE [6] dataset over each epoch of training. Introducing
the MI loss in the training procedure after the first epoch
affects the contrastive loss curve as we can see an increase
in the loss after the first epoch in Figure 2a. Further, Figure
2b shows an improvement in the test set accuracy over the
course of training when using the content dependence loss.
The improvement in the SRCC curve and the deterioration
in the contrastive loss curve are indicators of regularization
and improved generalization performance of the model af-
ter adding the content dependence loss.
Analysis of Features for Different Configurations: We
analyze the t-Distributed Stochastic Neighbor Embedding
(t-SNE) [29] plot of the feature outputs from three different
configurations of our algorithm in Figure 3. We do this for
the synthetically pretrained model and the fine-tuned model
with and without the content dependence loss term. We
take all samples from CLIVE [6] dataset for this analysis.
We assign each image to five coarse quality bins which are
color coded. We observe that as compared to the syntheti-
cally pretrained model, the vanilla fine-tuned model without
content dependence loss gives larger separation between the
samples of the dataset. The fine-tuned model with content
dependence loss is able to separate the different quality bins
even better thereby enabling better quality prediction.

Figure 3: t-SNE plot showing the spread of feature predic-
tions when different components of our method are used.
We observe a larger separation between quality bins as each
component is added.

Figure 4: t-SNE plot of the content aware features. Same
color implies same content with different distortions. Sam-
ples with same color tend to cluster together.

Analysis of Content Features: We evaluate the effective-
ness of the content-aware features from e(.) in capturing the
content relevant information. We qualitatively evaluate the
effectiveness of e(.) by conducting a t-SNE analysis on the
content features of a synthetic dataset. We randomly choose
20 reference images from the KADIS [14] dataset and ana-
lyze the t-SNE plots of the content aware features of the ref-
erence images and their distorted versions. Figure 4 shows
a plot of content features reduced to two dimensions using
t-SNE. Each color corresponds to a reference image. We
observe different distorted versions from the same reference
clustering together, showing us that the content feature cap-
tures rich content-relevant information. However that being
the case, this also points out that the content features are
not very sensitive to the distortions or quality. Thus, learn-
ing quality features to share minimal information with these
content features helps mitigate the content bias in the qual-
ity features.
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Figure 5: Impact of choosing
different values of λmi in the
contrastive loss curve.

λmi SRCC
0 0.42
1 0.41

10 0.47
100 0.47
1000 0.49

10000 0.47

Table 3: SRCC perfor-
mance variation on CLIVE
with respect to λmi

Figure 6: The SRCC performance when using log likeli-
hood vs contrastive likelihood formulations in the varia-
tional approximation network

Impact of varying hyperparameters: We show experi-
ments with respect to changing the scaling value (λmi) of
the MI loss. We plot the variation of Lc loss curve for
different values of λmi in Figure 5. However, we plot a
smoothed version of the contrastive loss for a better visu-
alization of the variations. Table 3 shows the variation in
SRCC performance on CLIVE[6] with respect to the vari-
ation in λmi. We report the performance at the end of five
epochs for each of the runs for fair comparison. We observe
that as λmi increases, the jump in Lc that corresponds to
the regularization becomes larger. As expected we find that
increasing λmi up to a certain value improves SRCC per-
formance. However once the regularization becomes too
aggressive (at λmi = 10000) we find that there is drop in
the SRCC performance.

Impact of Contrastive Likelihood in Variational Ap-
proximation: We also compare the performance of our
method when using the contrastive likelihood loss in Equa-
tion (5) for training the variational approximation network,
as compared to using a log-likelihood based loss in Equa-
tion (3). We see from Figure 6 that we get consistent im-
provement in the performance when using the contrastive
likelihood loss over the likelihood loss.

Figure 7: Qualitative analysis of the predicted scores. The
MOS prediction error is indicated on each image.

4.5. Qualitative Analysis

We now present a qualitative analysis of how our quality
prediction model performs. We compute the absolute error
in ground truth quality (or mean opinion score (MOS)) pre-
diction by computing a non-linear fit between our quality
prediction using Equation (7) and MOS on the CLIVE [6]
dataset. Figure 7 shows the images corresponding to differ-
ent relationships between the error and MOS. For low-MOS
images, we observe that the model can predict the quality of
dark images well while the error is higher for images with
a combination of distortions, such as low light and motion
blur. Most of the images where our model fails for high-
MOS images seem to have some aesthetic attribute while it
performs well on images that do not have such attributes.

5. Conclusion
Our two-stage self-supervised feature learning presents a

novel framework for unsupervised NR-IQA of authentically
distorted images with state-of-the-art performance on mul-
tiple authentically distorted datasets. We infer that the mit-
igation of content bias in unsupervised feature learning of
quality aware features has an integral part to play. Our mu-
tual information minimization based formulation and con-
trastive likelihood based optimization effectively address
this content bias and give significant improvements. This
is particularly important in the context of unsupervised NR
IQA where it is not clear how to use the content based fea-
tures without labels for supervision.
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