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Abstract

Semantic amodal segmentation is a recently proposed

extension to instance-aware segmentation that includes the

prediction of the invisible region of each object instance.

We present the first all-in-one end-to-end trainable model

for semantic amodal segmentation that predicts the amodal

instance masks as well as their visible and invisible part in

a single forward pass.

In a detailed analysis, we provide experiments to show

which architecture choices are beneficial for an all-in-

one amodal segmentation model. On the COCO amodal
dataset, our model outperforms the current baseline for

amodal segmentation by a large margin. To further eval-

uate our model, we provide two new datasets with ground

truth for semantic amodal segmentation, D2S amodal and

COCOA cls. For both datasets, our model provides a strong

baseline performance. Using special data augmentation

techniques, we show that amodal segmentation on D2S
amodal is possible with reasonable performance, even with-

out providing amodal training data.

1. Introduction

Humans, with their strong visual system, have no diffi-
culties reasoning about foreground and background objects
in a two-dimensional image. At the same time, humans
have the ability of amodal perception, i.e. to reason about
the invisible, occluded parts of objects [10, 11]. Robots that
should navigate in their environment and pick or place ob-
jects need to know if the objects are occluded or hidden
by one or several other instances. This problem leads to the
task of semantic amodal segmentation, i.e., the combination
of segmenting each instance within an image by predicting
its amodal mask and determining which parts of the seg-
mented instances are occluded and what the corresponding
occluder is. A typical example is shown in Figure 1.

The amodal mask is defined as the union of the visible
mask (which we will also refer to as modal mask) and the

amodal  mask 
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Figure 1. Learning the Invisible. Top: explanation of different

mask types; Bottom, from left to right input image, ground-truth

amodal instance annotations, predictions of our model: amodal

instance masks and occlusion masks. The mask color encodes the

object class and occlusion masks are highlighted in light color.

invisible occlusion mask of the object (c.f . Figure 1). Pre-
dicting amodal and visible masks simultaneously provides
a deeper understanding of the scene. For example, it allows
to calculate regions of occlusion and lets the robot know
which objects have to be removed or in which direction to
move in order to get free access to the object of interest.

Predicting the invisible part of an object is difficult: If
the object is occluded by an object from another category,
the model has no visual cues how to extend the visible mask
into the occluded object part. There are generally no edges
or other visual features that indicate the contour of the oc-
cluded object. In contrast, if the object is occluded by an-
other instance of the same category, it is very hard for the
model to judge where to stop expanding the mask into the
occlusion part as the category-specific features are present
all around.

We propose a model that can predict the visible, invis-
ible, and amodal masks for each instance simultaneously
without much additional computational effort. In summary,
our paper contains the following contributions:

• To the best of our knowledge, we are the first to
propose an all-in-one, end-to-end trainable multi-task
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model for semantic segmentation that simultaneously
predicts amodal masks, visible masks, and occlusion
masks for each object instance in a single forward pass.

• We provide the new semantic amodal segmentation
dataset D2S amodal, which is based on D2S [3], with
guaranteed annotation-completeness and high-quality
annotations. In comparison to the class-agnostic
COCO amodal dataset [19], D2S amodal contains
60 different object categories and allows to predict
amodal and occlusion masks class-specifically.

• By merging the categories of the modal COCO dataset
with the instances of COCO amodal we obtain the new
amodal dataset COCO amodal cls with class labels.

• Our architecture ORCNN outperforms the current
baseline on COCO amodal [19] and sets a strong base-
line on D2S amodal. We provide extensive evaluations
in order to compare different architectural choices.

• The training set of D2S allows to apply extensive data
augmentation. This allows to train a semantic amodal
method without any amodally annotated data. The
model achieves competitive results on D2S amodal.

Note that throughout the paper, we will call annotations
containing only visible masks and models predicting vis-
ible masks modal, in contrast to amodal annotations and
methods. We will also use the terms occlusion masks and
invisible masks as synonyms.

2. Related Work

The topic of amodal perception has already been ad-
dressed in various fields of computer vision research.

Semantic Segmentation and 3D Scene Reconstruction.

Two tasks, where amodal completion has already been used
for some years, are semantic segmentation and 3D scene re-
construction. The task of semantic segmentation is to pre-
dict a category label for each pixel in an image. Semantic
segmentation does not take different object instances into
account, but returns a single region for each of the pos-
sible classes. Classes are often related to background or
stuff, such as sky, water, ground, wall, etc. In [5], Guo and
Hoiem describe a method to infer the entire region of oc-
cluded background surfaces. Their algorithm detects the
occluding objects and fills their regions with the underlying
or surrounding surface.

In 3D reconstruction, parts of the scene can often not
be reconstructed because of occlusions. Gupta et al. [6]
combine depth information, superpixels, and hierarchical
segmentations for amodal completion of semantic surfaces.
Also Silberman et al. [17] address the problem of surface

completion in the setting of a 2.5D sensor. They use a con-
ditional random field in order to complete contours. The
completed contours are subsequently used for surface com-
pletion.

In contrast to the above mentioned semantic segmenta-
tion methods, our work does not deal with the amodal com-
pletion of background regions or 3D object surfaces, but
focuses on object instances in 2D images.

Object Detection. In the context of object detection, Kar
et al. [9] use a CNN to predict amodal bounding boxes of
objects. By additionally estimating the depth of the bound-
ing boxes and the focal length of the camera, object dimen-
sions can be derived. However, neither the object mask nor
the occluded part of the object is predicted.

Instance Segmentation. More recent methods extend the
object detection task to the more challenging instance seg-

mentation task to predict the category and visible segmen-
tation mask of each object instance in an image [14, 7, 12].
Yang et al. [18] propose a probabilistic model that uses the
output of object detectors to predict instance shapes and
their depth ordering. However, no occlusion regions are
predicted. In [1], Chen et al. propose a graph-cut algorithm
with occlusion handling in order to improve the quality of
visible masks. However, they neither predict occlusion nor
amodal masks.

Amodal Instance Segmentation. Research on amodal
instance segmentation or semantic amodal segmentation
has just started to emerge. Li and Malik [13] were the first to
provide a method for amodal instance segmentation. They
extend their instance segmentation approach [12] by itera-
tively enlarging the modal bounding box of an object into
the directions of high heatmap values and recomputing the
heatmap. Due to the lack of amodal instance segmentation
ground truth, they use modally annotated data and data aug-
mentation in order to train and evaluate their model.

In [19], Zhu et al. provide a new and pioneering dataset
COCO amodal for amodal instance segmentation based on
images from the original COCO [15] dataset. The au-
thors did not restrict the annotations to the usual COCO

classes and annotators could assign arbitrary names to the
objects. Therefore, all objects in the dataset belong to a
single class object and the variety of objects in this class
is very large. Additionally, the authors provide annotations
of background regions, which are sometimes extending to
the full image domain, labeled as stuff. In order to pro-
vide a baseline, Zhu et al. use AmodalMask, which is the
SharpMask [16] model trained on the amodal ground truth.
The model suggests object candidates with a relatively high
recall. However, the predictions of the model are class-
agnostic. They also trained a ResNet-50 [8] to predict the
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Figure 2. ORCNN architecture.

foreground object given two input object masks and the cor-
responding image-patches.

In contrast to [13] and [19], our model is class-specific,
end-to-end trainable, lightweight, and can predict amodal,
visible, and invisible instance masks in a single forward-
pass.

3. End-to-End Architecture for Prediction of
Amodal, Visible, and Invisible Masks

3.1. Architecture

We name our method Occlusion R-CNN (ORCNN), as
the architecture is based on Mask R-CNN [7] (MRCNN).
In the ORCNN architecture we extend MRCNN with ad-
ditional heads for the prediction of amodal masks (amodal
mask head) and the occlusion mask (occlusion mask head).
An overview of the ORCNN architecture is shown in
Figure 2.

The visible mask head and the amodal mask head share
the same architecture and use four 3 × 3 convolutions and
ReLU layers to generate meaningful features for mask pre-
diction. Their inputs are the extracted features from the
RoIAlign [7] layer. Note that during training and infer-
ence, the amodal and visible mask prediction heads of OR-
CNN share the same box proposals generated by the region
proposal network (RPN). The target ground truth masks of
the RPN are the bounding boxes of the amodal instances.
Therefore, the visible mask prediction head has to predict
the visible mask of an instance from the amodal bounding
box. This is a major difference to a modal model that is
trained using the bounding boxes of the modal, i.e. visible
masks of the instances.

A key component is that we link the modal and amodal
mask heads with the occlusion mask head. The occlusion
mask head essentially subtracts the visible from the amodal
mask logits in order to obtain the occlusion mask logits.
It is crucial to apply a ReLU-operation on the visible mask

logits before subtraction to avoid occlusion mask prediction
for pixels where neither the amodal nor the modal mask are
predicted.

Mounting both the modal, as well as the amodal head
on the same RoI-feature extraction module leads to sev-
eral advantages: First, this makes the additional amodal
and occlusion mask prediction light-weight as only five ad-
ditional convolution modules and two sigmoid layers are
necessary. Second, using the same RoIs for the amodal
and visible mask prediction guarantees that both predicted
masks correspond to the same object prediction. In com-
parison, if one uses an ensemble of two separate models
for amodal and visible mask predictions, it is not straight-
forward to fuse the results of these models. And third, by
sharing the same architecture for the amodal and visible
mask prediction head, we can initialize both heads with the
same weights that have been pre-trained on a large modal
instance-segmentation dataset, such as COCO.

3.2. Training

In order to obtain meaningful predictions for the visible,
invisible, and occlusion masks, we have to formulate the
corresponding losses for each of the tasks. As the tasks are
similar and only the ground truth differs, we use a similar
sigmoid-cross-entropy loss for all three mask types: First
applying a per-pixel sigmoid and thereafter an average bi-
nary cross-entropy loss like in [7]. In combination with the
losses for the class (cls) and bounding box (box), we obtain
the total loss L:

L = Lcls + Lbox + LAM + LVM + LIVM , (1)

where AM, VM, IVM are abbreviations for amodal, visible,
and invisible mask, respectively. In theory, one of the three
losses LAM , LVM and LIVM is redundant, as for ground
truth we have IVM = AM − VM . Nevertheless, adding
an additional loss for occlusion masks leads to amodal mask
logits and visible mask logits that are on the same scale.
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Otherwise, consider the case that for a pixel we have high
probability for the amodal and the visible mask. E.g., let the
logit activations be 14 and 10, respectively. This leads to a
probability of 1/(1 + e−(14−10)) = 0.982for the occlusion
mask to be present at this pixel, although occlusion should
not be predicted.

In order to test the influence of adding the visible and
invisible mask losses, we experiment with four different
model variants: standard ORCNN is using a loss for each
of the three mask types (amodal, visible and invisible). For
ORCNN (w/o LIV ) and ORCNN (w/o LV ) the loss for in-
visible or visible mask prediction is switched off, respec-
tively. ORCNN (independent) is a model including LIV

and LV but where the gradients with respect to LIV and
LV are not propagated to the amodal mask head nor to the
RoI feature extraction part.

As an alternative to include the invisible mask prediction
by the model, we will also show results where the invisible
masks are computed as the difference between the amodal
and visible mask outputs. However, for ORCNN, the direct
prediction of invisible masks comes at negligible cost.

3.3. Evaluation

To judge which model is the best for the task of amodal
instance segmentation, we propose extending the mean av-
erage precision (AP ) and mean average recall (AR) evalu-
ation measures commonly used for instance segmentation,
e.g. on Pascal VOC [2] and COCO [15] benchmarks. For
brevity, in the following we will describe the extension of
the measure only for the case of AP . The extension for AR
is straight-forward. As in the COCO benchmark, we com-
pute the final AP by taking the mean of the per-category
AP s. As is common practice, the per-category AP s are
averaged over ten equally spaced intersection over union
(IoU) thresholds from 0.5 to 0.95 to highlight more precise
results.

In order to evaluate the individual tasks, we calculate the
AP values independently for amodal and visible masks to
obtain APA and APV , respectively. We can then include
both of the masks into the definition of a true positive in-
stance to obtain a combined AP measure APAV (amodal-
visible AP). For example, in order to obtain a true posi-
tive result in the APAV setting, for a given IoU thresh-
old t, we need the correct predicted class and additionally,
IoU(AMG, AMP ) > t and IoU(VMG,VM P ) > t both
need to be satisfied. Here, AMG and AMP denote the
amodal mask ground truth and the amodal mask prediction
AMP , respectively.

The invisible masks are included only indirectly into the
overall measure APAV due to the following issues: First,
for non-occluded objects, the invisible mask is not present
and it is not straight-forward to define recall on something

that is not present1. Second, for most objects in COCO

amodal or D2S amodal, the invisible mask areas are rather
small compared to the amodal or visible masks. Hence,
small differences in invisible mask predictions have a large
influence on the IoU.

To measure the quality of predicted occlusions, we do
separate evaluations, where we ignore all non-occluded
ground truth objects. For these evaluations, we also calcu-
late the average precision of invisible masks AP 0.5

IV at IoU-
threshold 0.5. We use a low IoU threshold as the invisible
masks are often of very small size and to take the difficulty
of the task into account. For the calculation of APIV , we
only use results where the amodal segmentation has an IoU
higher than 0.5 with a ground truth amodal mask of an oc-
cluded object. I.e., if the predicted amodal mask is a false
positive, we ignore the corresponding invisible mask.

For models that do not predict any visible or invisible
masks, we calculate the measures APAV and APV by using
amodal masks also as predictions for the visible masks.

When invisible masks are calculated as the difference
of amodal and visible masks, we denote the corresponding
measure APIV diff.

4. Experiments

In the following, we compare our models to previous re-
sults on COCO amodal (COCOA) and set new benchmarks
for the new semantic amodal datasets COCO amodal cls

and D2S amodal. All models were trained using the Detec-
tron [4] framework. More information on the settings is in
the supplementary material.

4.1. COCOA

COCOA [19] is the first dataset with ground truth for se-
mantic amodal segmentation. The dataset consists of 2500
training, 1323 validation, and 1250 test images. In each im-
age, most objects and background stuff areas are annotated
with amodal masks. Occluded objects are additionally an-
notated with visible and invisible masks. All objects belong
to a single category object and have an additional stuff la-
bel.

Amodal Mask Prediction. As a baseline result for
amodal semantic segmentation we train MRCNN with a
ResNet-50 or ResNet-101 backbone on the amodal anno-
tations. We call these models ARCNN-50/ARCNN. Table 1
compares ARCNN to the baseline AmodalMask of [19] us-
ing their evaluation tool. ARCNN outperforms Amodal-
Mask by a large margin in terms of average precision.
AmodalMask achieves a high recall, since it always pre-
dicts 1000 regions for each image. Nevertheless, ARCNN

1Generally, recall is increasing with more proposals. In case of an
empty invisible mask this is not the case, which prevents the usual way
of computing the AP measure.
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all things stuff

APA ARA APA ARA APA ARA

AmodalMask [19] 5.7 43.4 5.9 45.8 0.8 36.7

ARCNN-50 29.9 45.8 33.2 50.4 5.8 33.0

Table 1. Baseline results for COCOA. Amodal mean average pre-

cision and average recall values for AmodalMask [19] compared

to ARCNN.

achieves even higher recall while predicting only 30 results
per image on average. An exception is the category stuff,
since stuff regions are often very large areas in the back-
ground of the image and ARCNN predicts no object pro-
posals for these areas.

In the following, our focus is on things, as masks for
stuff are hard to define and therefore, the variance of anno-
tations between different annotators is high. Thus, in CO-

COA no stuff, we exclude stuff annotations during training
and evaluation. We found that for ARCNN and ORCNN
AR is generally in line with AP since recall is already cap-
tured within the AP measure. Therefore, for the following
evaluations we will just show AP values. In order to high-
light the performance on occluded objects, we also evaluate
the architectures ignoring all non-occluded instances.

Occlusion Prediction. As a baseline for a model like OR-
CNN that can predict amodal, visible, and invisible masks
at the same time, we use ARCNN and standard MRCNN.
Since both models do only predict amodal or visible masks,
respectively, in the evaluation, we use the amodal masks
also as visible mask predictions and vice-versa.

To combine the benefits of MRCNN and ARCNN,
we also use an ensemble-approach applying both models
and merging the results (mergedAMRCNN). Therefor, we
match the modal results to the amodal results greedily: We
merge the modal result with highest IoU to the amodal result
(if IoU > 0.5) if the predicted classes match. The score of a
match is set to the mean of amodal and visible mask scores.
If an amodal result is not matched, the amodal mask is used
as visible mask and the invisible mask is set to an empty re-
gion. The best results are obtained if the unmatched modal
results are ignored (thrown away).

The results on COCOA are summarized in the top two
sections of Table 2.The multi-task model ORCNN improves
the quality of visible masks compared to ARCNN and
sometimes even compared to MRCNN, while at the same
time predicting occlusion masks. The best result for the
combined measure APAV is obtained using the variant OR-
CNN (independent). This variant combines the benefits of
the ensemble mergedAMRCNN into a single model with
only a slight performance decrease for some of the mea-
sures. Standard ORCNN is the best choice for the predic-
tion of invisible masks. Qualitative results for COCOA are

shown in the supplementary material.

4.2. COCOA cls

For amodal completion the model has to get some in-
tuition about the common shape of objects. We evaluate
whether the prediction of amodal masks is a class-specific
task. Therefore, we generated a new dataset COCOA cls by
merging the usual COCO 2014 annotations with the CO-

COA dataset. COCOA contains many objects of categories
(e.g. sandals, sneakers, or stuff categories) that are not part
of COCO. Although, each object in COCOA has a name tag,
the annotators were free to choose a name. Furthermore, not
all objects present in the ground truth of COCO have been
annotated in COCOA. Therefore, to assign a class-label to
the objects in COCOA, we calculate the IoUs of the visible
masks with the masks given for the corresponding image-
id in COCO. Only annotations, for which the IoU between
visible mask and any COCO annotation exceeds a threshold
of 0.75 (and not labeled as stuff or crowd), were kept for
COCOA cls. Overall, COCOA cls has 3,501 images with
10,592 objects compared to the 3,823 images and 34,916
objects of COCOA. Note that using this merging scheme,
some COCO classes, e.g. hairdryer, are not present in the
training set of COCOA cls. Furthermore, for many images
not all COCO annotations can be matched to a correspond-
ing COCOA label.

As shown in Table 2, models perform a lot better on CO-

COA cls compared to COCOA. On COCOA cls the ensem-
ble mergedAMRCNN is the best choice, slightly increas-
ing the performance compared to the multi-task-model OR-
CNN (independent). The ensemble is in favor, as it averages
the scores of both predictions: Only if both models are con-
fident, the final score is high. Also false positive predictions
of MRCNN are filtered out in mergedAMRCNN if there is
no corresponding false positive of ARCNN. This reduces
the total number of false positives.

In order to see if class-specific mask prediction improves
the results, ARCNN and ORCNN were also trained using
class-agnostic mask proposals. On COCOA cls, using class-
specific mask proposals helps for almost all measures both
in the case of ARCNN and ORCNN. For occluded objects,
class-agnostic ORCNN gets the best average precisions in
terms of invisible masks.

Generally, the interpretation of AP values for COCOA

and COCOA cls results is difficult because for both datasets
the annotations are not complete. For example, as shown in
Figure 3, there are some cases where ORCNN makes cor-
rect predictions but the ground truth does not contain the
corresponding annotations.

4.3. D2S amodal

D2S [3] is a recent dataset of supermarket products that
should capture the setting and needs of industrial appli-
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all occluded

dataset & model APAV APA APV APAV APA APV AP 0.5
IV

AP 0.5
IV

diff

COCOA

AmodalMask [19] 3.7 5.7 4.8 1.2 3.2 2.6 - -

MRCNN [7] 17.0 18.6 21.7 8.6 10.6 15.3 - -

ARCNN 24.1 31.3 26.1 11.8 21.6 16.2 - -

mergedAMRCNN 22.5 28.5 27.0 12.5 19.5 18.5 - 0.3

ORCNN 21.2 25.7 26.7 11.5 17.0 18.4 1.3 1.7

ORCNN (independent) 25.0 31.1 28.8 13.7 21.6 19.9 1.0 0.5

COCOA no stuff

MRCNN [7] 22.0 23.9 27.9 12.4 15.0 21.6 - -

ARCNN 27.8 35.6 29.4 14.7 25.4 18.5 - -

mergedAMRCNN 28.1 33.6 33.6 16.8 23.5 24.4 - 0.4

ORCNN 25.1 30.1 30.0 14.3 20.8 21.4 3.0 1.9

ORCNN (independent) 29.0 35.1 32.8 16.6 25.0 23.0 1.0 0.5

COCOA cls

MRCNN [7] 39.0 39.8 44.9 25.4 26.5 34.9 - -

ARCNN (agn) 37.1 40.4 38.6 23.9 28.7 26.8 - -

ARCNN 38.8 41.7 40.5 24.9 29.2 28.0 - -

mergedAMRCNN 40.1 42.5 45.7 27.7 30.0 34.9 - 1.0

ORCNN (agn) 34.3 36.2 39.3 23.1 25.0 29.5 1.8 1.4

ORCNN 35.1 37.6 39.4 23.7 25.8 29.9 2.0 1.4

ORCNN (independent) 38.0 40.7 41.0 26.0 28.9 30.5 0.2 1.0

Table 2. COCOA results. Note that only ORCNN is predicting visible and invisible masks additionally to the amodal masks. For all other

models, the predicted amodal mask was used for the evaluation of AV and V measures. Models marked with (agn) are using class-agnostic

mask prediction heads.

Figure 3. COCOA cls results. top: ground truth annotations for images of the validation set; bottom: exemplary qualitative results of our

ORCNN model trained on the train split. Predicted invisible masks are indicated by a white overlap. Note that ORCNN sometimes

predicts instances or invisible masks correctly that are not part of the ground truth. These count as false positives in the evaluation or at

least lead to reduced APAV and APV values.

cations. In particular, the low complexity of the training
set with respect to its size and image attributes (homoge-
neous background, no clutter) makes it necessary to use data
augmentation. Since only minor occlusions are present in
the training set, the generation of reasonable artificial im-
ages is straight-forward. We annotated all images of D2S

amodally to obtain D2S amodal. The annotations contain
the category, amodal mask, and additional visible and in-
visible masks for occluded objects. For images where the
amodal masks are reaching out of the image boundary, a

zero-padding is used such that all amodal masks are fully
contained in the image.

Splits. As the D2S amodal training split only contains mi-
nor occlusions, it is not suitable to train semantic amodal
models that predict occlusion masks also for moderately to
heavily occluded objects. Hence, we use data augmenta-
tion similar to the data augmentation in [3]. D2S amodal

augmented consists of 1562 augmented images, where only
objects from D2S train that do not reach out of the im-
age boundary have been used for augmentation. The D2S
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Figure 4. D2S amodal ground truth. Exemplary ground truth

annotations for different splits of the D2S amodal dataset. (left)

val, (right) aug.

amodal train set is then the combination of D2S amodal

training rot0 with D2S amodal augmented splits resulting
in a total of 2000 images.

To evaluate if an amodal model can be trained only from
modal annotated data, we augmented another 2000 images
in the same way, but using the modal annotations from D2S

training to obtain D2S amodal modal augmented. For all
splits of D2S amodal, the statistics are given in Table 3. As
is common for D2S, the number of images containing oc-
clusion are a lot higher for the validation set compared to
the train rot0 set. Using the augmented set, one can create
an overall train split that contains many objects and even a
higher frequency and average per-object occlusion rate than
in the validation and test splits. Exemplary ground truth an-
notations are shown in Figure 4.

split name aug train rot0 train val modal aug

num imgs 1562 438 2000 3600 2000

num imgs w/ occl 1507 57 1564 2520 1930

img OR [%] 96 13 78 70 96

num objs 12376 690 13066 15654 15851

num objs occl 8798 66 8864 7473 11302

obj OR [%] 71 9 68 47 71

avg OR / reg (all) [%] 23 0 22 8 23

avg OR / reg (occl) [%] 33 4 33 18 33

Table 3. D2S amodal splits. Image and occlusion statistics for the

splits used with D2S amodal from top to bottom: number of im-

ages, number of images with at least one occluded object, rate of

images that contain any occlusion, total number of objects, num-

ber of occluded objects, rate of objects that are occluded, average

occlusion rate per object region for all objects, average occlusion

rate per object only for occluded objects.

Results. The qualitative results of ORCNN in Figure 5
are very promising. The model predicts occlusions cor-
rectly in many cases, especially for objects lying completely
on top of another one or objects reaching out of the image
boundary. This shows that the model is able to learn the
common shape of object classes.

The quantitative analysis given in Table 4 shows that the
prediction of invisible masks is very difficult. On the one

Figure 5. D2S amodal results. (left) ground truth annotations for

images of the validation set; (right) exemplary qualitative results

of our ORCNN model trained on the amodal train split. Pre-

dicted invisible masks are indicated by a white overlap. In most

cases the results are promising, especially for objects lying on top

of each other or reaching beyond the original image boundary.

More results are in the supplementary material.

hand, if the ground truth invisible masks are small, then
small differences of the invisible mask proposal already
lead to a low IoU value. On the other hand, if the ground
truth invisible mask is large, it is very difficult for the model
to generate the correct shape of the invisible mask predici-
ton, again leading to a low IoU value. In both cases if the
IoU value is below 0.5 this leads to a false positive pre-
diction and possibly a false negative as the corresponding
ground truth is not matched.

On D2S amodal, ORCNN (independent) achieves com-
parable results to mergedAMRCNN and even outperforms
the ensemble with respect to APAV on occluded objects.
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all occluded

dataset & model APAV APA APV APAV APA APV AP 0.5
IV

AP 0.5
IV

diff

ARCNN (agn) 63.4 72.2 64.8 48.0 62.2 50.8 - -

ARCNN 63.8 72.6 65.3 48.7 63.0 51.6 - -

MRCNN (agn) 64.7 65.2 77.7 48.7 49.3 71.3 - -

mergedAMRCNN (agn) 69.2 72.7 75.5 58.2 62.8 68.2 - 13.2

ORCNN (w/o LIV ) 34.0 68.6 34.7 26.8 58.9 28.0 0.1 0.0

ORCNN (w/o LV ) 11.0 66.1 11.1 7.5 56.7 7.6 5.8 0.0

ORCNN (agn) 62.3 65.2 71.0 52.5 55.2 65.3 14.7 13.8

ORCNN 58.9 62.1 66.2 48.1 51.2 58.9 8.7 8.9

ORCNN (independent, agn) 69.2 72.3 74.3 59.1 62.5 67.6 0.8 9.2

ORCNN (modal aug) 56.3 59.9 62.6 47.9 51.0 57.6 7.8 -

Table 4. D2S amodal results. Models marked with (agn) are using class-agnostic mask prediction heads. ORCNN (modal aug) is a

ORCNN only trained on D2s amodal modal augmented. All values are calculated for the D2S amodal validation set.

Figure 6. D2S failure cases. Exemplary qualitative results where

our ORCNN model fails. Predicted invisible masks are indicated

by a white overlap. (top) occlusion is falsely predicted possibly

due to reflections or lighting changes; (bottom-left) the amodal and

invisible mask of this instance is extended into the neighboring

object of the same class (only this instance is visualized); (bottom-

right) the occlusion caused by the plastic bottle is not detected.

For invisible mask prediction, standard ORCNN is the best
choice. Interestingly, ORCNN gets a higher AP 0.5

IV when
the invisible mask is predicted directly instead of using the
difference between amodal and visible mask.

Some failure cases of ORCNN on D2S amodal are
shown in the appendix. False positive occlusion predic-
tions are often caused by reflections or lighting changes.
When objects are lying next to each other and touching, the
amodal and invisible masks are sometimes extended into
the neighboring instance. For other cases, occlusions are
not predicted at all.

In summary, ORCNN (independent) yields the best com-
promise for the prediction of visible and invisible masks
at the same time (highest APAV and APV ). This comes
at the cost of a slightly lower APV value compared to a
model that only predicts visible masks, like MRCNN. Note
that compared to ORCNN, mergedAMRCNN has a much

higher memory consumption (2× 7600 MB vs. 8300 MB),
as well as significantly longer inference runtime (2×170 ms
vs 180 ms, nvidia GTX1080Ti GPU). Furthermore, there
is an additional overhead for the offline merging strategy
(≈ 10 ms), which depends on the number of output results.

In contrast to COCOA, for D2S amodal ORCNN (agn)
outperforms the ORCNN model that predicts a class spe-
cific mask.

Table 5 also shows the result of ORCNN when train-
ing only on artificially augmented data obtained from D2S

train, D2S amodal modal augmented. The model performs
only slightly worse than ORCNN trained on D2S amodal

train. Thus, it is possible to train a competitive model with-
out the need of amodally annotated data.

5. Conclusion

We proposed an end-to-end trainable, instance-aware
model for semantic amodal segmentation. Our model, OR-
CNN, simultaneously predicts amodal, visible and invisible
masks, and the category of each instance in a single forward
pass. By merging annotations of COCO with COCOA, we
obtain a category-specific semantic amodal dataset based on
COCO images COCOA cls. We provide semantic amodal
ground truth for D2S splits resulting in D2S amodal. OR-
CNN (independent) outperforms previous work on CO-

COA and sets strong benchmarks on COCOA cls as well as
D2S amodal. The lightweight, all-in-one model is able to
achieve comparable performance to an ensemble approach.
Furthermore, we show that it is possible to train a compet-
itive amodal model only using modal annotations and data
augmentation. Our experiments and results show that it is
possible to predict the invisible masks of occluded objects
even in areas without any visual cue. Thus, our model can
indeed learn to see the invisible.

The results show that the prediction of amodal and in
particular invisible masks is a difficult task that needs fur-
ther research to reduce the number of false positive predic-
tions of occlusions.
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