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Abstract
Full-reference (FR) image quality assessment (IQA)

evaluates the visual quality of a distorted image by mea-
suring its perceptual difference with pristine-quality refer-
ence, and has been widely used in low-level vision tasks.
Pairwise labeled data with mean opinion score (MOS) are
required in training FR-IQA model, but is time-consuming
and cumbersome to collect. In contrast, unlabeled data can
be easily collected from an image degradation or restora-
tion process, making it encouraging to exploit unlabeled
training data to boost FR-IQA performance. Moreover, due
to the distribution inconsistency between labeled and unla-
beled data, outliers may occur in unlabeled data, further in-
creasing the training difficulty. In this paper, we suggest to
incorporate semi-supervised and positive-unlabeled (PU)
learning for exploiting unlabeled data while mitigating the
adverse effect of outliers. Particularly, by treating all la-
beled data as positive samples, PU learning is leveraged
to identify negative samples (i.e., outliers) from unlabeled
data. Semi-supervised learning (SSL) is further deployed
to exploit positive unlabeled data by dynamically generat-
ing pseudo-MOS. We adopt a dual-branch network includ-
ing reference and distortion branches. Furthermore, spatial
attention is introduced in the reference branch to concen-
trate more on the informative regions, and sliced Wasser-
stein distance is used for robust difference map computation
to address the misalignment issues caused by images recov-
ered by GAN models. Extensive experiments show that our
method performs favorably against state-of-the-arts on the
benchmark datasets PIPAL, KADID-10k, TID2013, LIVE
and CSIQ. The source code and model are available at
https://github.com/happycaoyue/JSPL.

1. Introduction
The goal of image quality assessment is to provide com-

putational models that can automatically predict the percep-
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Figure 1. Illustration of joint semi-supervised and PU learning
(JSPL) method, which mitigates the adverse effect of outliers in
unlabeled data for boosting the performance of IQA model.

tual image quality consistent with human subjective percep-
tion. Over the past few decades, significant progress has
been made in developing full reference (FR) image quality
assessment (IQA) metrics, including peak signal-to-noise
ratio (PSNR) and structural similarity index (SSIM) [58],
which have been widely used in various image processing
fields. Recently, CNN-based FR-IQA models have attracted
more attention, which usually learn a mapping from dis-
torted and pristine images to mean opinion score.

Most existing CNN-based FR-IQA models are trained
using pairwise labeled data with mean opinion score
(MOS), thus requiring extensive human judgements. To re-
duce the cost of collecting a large amount of labeled data, a
potential alternative is semi-supervised learning for exploit-
ing unlabeled samples which are almost free. Recently, con-
siderable attention has been given to semi-supervised IQA
algorithms [38,39,55,59,63] which show promising perfor-
mance using both labeled and unlabeled data. However, un-
labeled data can be collected in various unconstrained ways
and may have a much different distribution from labeled
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data. Consequently, outliers usually are inevitable and are
harmful to semi-supervised learning [22].

In this paper, we incorporate semi-supervised and
positive-unlabeled (PU) learning for exploiting unlabeled
data while mitigating the adverse effect of outliers. PU
learning aims at learning a binary classifier from a labeled
set of positive samples as well as an unlabeled set of both
positive and negative samples, and has been widely applied
in image classification [8] and anomaly detection [68]. As
for our task, the labeled images with MOS annotations can
be naturally treated as positive samples. As shown in Fig. 1,
PU learning is then exploited to find and exclude outliers,
i.e., negative samples, from the unlabeled set of images
without MOS annotations. Then, semi-supervised learning
(SSL) is deployed to leverage both labeled set and positive
unlabeled images for training deep FR-IQA models. More-
over, the prediction by PU learning can also serve as the
role of confidence estimation to gradually select valuable
positive unlabeled images for SSL. Thus, our joint semi-
supervised and PU learning (JSPL) method provides an ef-
fective and convenient way to incorporate both labeled and
unlabeled sets for boosting FR-IQA performance.

Besides, we also present a new FR-IQA network for em-
phasizing informative regions and suppressing the effect of
misalignment between distorted and pristine images. Like
most existing methods, our FR-IQA network involves a
Siamese (i.e., dual-branch) feature extraction structure re-
spectively for distorted and pristine images. The pristine
and distortion features are then fed into the distance cal-
culation module to generate the difference map, which is
propagated to the score prediction network to obtain the
prediction score. However, for GAN-based image restora-
tion, the distorted image is usually spatially misaligned with
the pristine image, making pixel-wise Euclidean distance
unsuitable for characterizing the perceptual quality of dis-
torted image [18,19]. To mitigate this, Gu [18] introduced a
pixel-wise warping operation, i.e., space warping difference
(SWD). In this work, we extend sliced Wasserstein distance
to its local version (LocalSW) for making the difference
map robust to small misalignment while maintaining its lo-
cality. Moreover, human visual system (HVS) usually pays
more visual attention to the image regions containing more
informative content [33, 44, 51, 60], and significant perfor-
mance improvements have been achieved by considering
the correlation with human visual fixation or visual region-
of-interest detection [14, 32, 34]. Taking the properties of
HVS into account, we leverage spatial attention modules
on pristine feature for emphasizing more on informative re-
gions, which are then used for reweighting distance map to
generate the calibrated difference maps.

Extensive experiments are conducted to evaluate our
JSPL method for FR-IQA. Based on the labeled training set,
we collect unlabeled data by using several representative

image degradation or restoration models. On the Percep-
tual Image Processing ALgorithms (PIPAL) dataset [19],
the results show that both JSPL, LocalSW, and spatial atten-
tion contribute to performance gain of our method, which
performs favorably against state-of-the-arts for assessing
perceptual quality of GAN-based image restoration results.
We further conduct experiments on four traditional IQA
datasets, i.e., LIVE [47], CSIQ [33], TID2013 [45] and
KADID-10k [35], further showing the superiority of our
JSPL method against state-of-the-arts.

To sum up, the main contribution of this work includes:
• A joint semi-supervised and PU learning (JSPL)

method is presented to exploit images with and without
MOS annotations for improving FR-IQA performance.
In comparison to SSL, PU learning plays a crucial role
in our JSPL by excluding outliers and gradually select-
ing positive unlabeled data for SSL.

• In FR-IQA network, spatial attention and local sliced
Wasserstein distance are further deployed in comput-
ing difference map for emphasizing informative re-
gions and suppressing the effect of misalignment be-
tween distorted and pristine image.

• Extensive experiments on five benchmark IQA
datasets show that our JSPL model performs favorably
against the state-of-the-art FR-IQA models.

2. Related Work
In this section, we present a brief review on learning-

based FR-IQA, semi-supervised IQA, as well as IQA for
GAN-based image restoration.

2.1. Learning-based FR-IQA Models
Depending on the accessibility to the pristine-quality

reference, IQA methods can be classified into full refer-
ence (FR), reduced reference (RR) and no reference (NR)
models. FR-IQA methods compare the distorted image
against its pristine-quality reference, which can be further
divided into two categories: traditional evaluation metrics
and CNN-based models. The traditional metrics are based
on a set of prior knowledge related to the properties of HVS.
However, it is difficult to simulate the HVS with limited
hand-crafted features because visual perception is a com-
plicated process. In contrast, learning-based FR-IQA mod-
els use a variety of deep networks to extract features from
training data without expert knowledge.

For deep FR-IQA, Gao et al. [15] first computed the
local similarities of the feature maps from VGGNet lay-
ers between the reference and distorted images. Then, the
local similarities are pooled together to get the final qual-
ity score. DeepQA [2] applied CNN to regress the sensi-
tivity map to subjective score, which was generated from
distorted images and error maps. Bosse et al. [6] pre-
sented a CNN-based FR-IQA method, where the perceptual
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image quality is obtained by weighted pooling on patch-
wise scores. Learned Perceptual Image Patch Similarity
(LPIPS) [73] computed the Euclidean distance between ref-
erence and distorted deep feature representations, and can
be flexibly embedded in various pre-trained CNNs, such as
VGG [52] and AlexNet [30]. Benefiting from SSIM-like
structure and texture similarity measures, Ding et al. [13]
presented a Deep Image Structure and Texture Similar-
ity metric (DISTS) based on an injective mapping func-
tion. Hammou et al. [23] proposed an ensemble of gradi-
ent boosting (EGB) metric based on selected feature simi-
larity and ensemble learning. Ayyoubzadeh et al. [3] used
Siamese-Difference neural network equipped with the spa-
tial and channel-wise attention to predict the quality score.
All the above metrics require a large number of labeled im-
ages to train the model. However, manual labeling is ex-
pensive and time-consuming, making it appealing to better
leverage unlabeled images for boosting IQA performance.

2.2. Semi-Supervised IQA
In recent years, semi-supervised IQA algorithms have

attracted considerable attention, as they use less expen-
sive and easily accessible unlabeled data, and are beneficial
to performance improvement [10]. Albeit semi-supervised
learning (SSL) has been extensively studied and applied in
vision and learning tasks, the research on semi-supervised
IQA is still in its infancy. Tang et al. [55] employed deep
belief network for IQA task, and the method was pre-
trained with unlabeled data and then finetuned with labeled
data. Wang et al. [59] utilized the semi-supervised ensem-
ble learning for NR-IQA by combining labeled and unla-
beled data, where unlabeled data is incorporated for maxi-
mizing ensemble diversity. Lu et al. [40] introduced semi-
supervised local linear embedding (SS-LLE) to map the im-
age features to the quality scores. Zhao et al. [75] proposed
a SSL-based face IQA method, which exploits the unlabeled
data in the target domain to finetune the network by predict-
ing and updating labels. In the field of medical imaging, the
amount of labeled data is limited, and the annotated labels
are highly private. And SSL [38,39,63] provided an encour-
aging solution to address this problem by incorporating the
unlabeled data with the labeled data to achieve better med-
ical IQA performance. Nonetheless, the above studies as-
sume that the labeled and unlabeled data are from the same
distribution. However, the inevitable distribution inconsis-
tency and outliers are harmful to SSL [22], but remain less
investigated in semi-supervised IQA.

2.3. IQA for GAN-based Image Restoration
Generative adversarial networks (GAN) have been

widely adopted in image restoration for improving visual
performance of restoration results. However, these im-
ages usually suffer from texture-like artifacts aka GAN-
based distortions that are seemingly fine-scale yet fake de-

tails. Moreover, GAN is prone to producing restoration re-
sults with spatial distortion and misalignment, which also
poses new challenges to existing IQA methods. Recently,
some intriguing studies have been proposed to improve
the performance on IQA for GAN-based image restora-
tion. SWDN [18] proposed a pixel-wise warping operation
named space warping difference (SWD) to alleviate the spa-
tial misalignment, by comparing the features within a small
range around the corresponding position. Shi et al. [50] de-
ployed the reference-oriented deformable convolution and
a patch-level attention module in both reference and distor-
tion branches for improving the IQA performance on GAN-
based distortion. For modeling the GAN-generated texture-
like noises, IQMA [21] adopted a multi-scale architecture to
measure distortions, and evaluated images at a fine-grained
texture level. IQT [9] combined CNN and transformer for
IQA task, and achieved state-of-the-art performance. Al-
though progress has been made in evaluating GAN-based
distortion, existing methods are based on labeled data via
supervised learning. In comparison, this work suggests a
joint semi-supervised and PU learning method as well a new
IQA network for leveraging unlabeled data and alleviating
the spatial misalignment issue.

3. Proposed Method

3.1. Problem Setting

Denote by x = (IRef , IDis) a two-tuple of pristine-
quality reference image IRef and distorted image IDis, and
y the ground-truth MOS. Learning-based FR-IQA aims to
find a mapping f(x) parameterized by Θf to predict the
quality score ŷ for approximating y. Most existing FR-IQA
methods are based on supervised learning where the collec-
tion of massive MOS annotations is very time-consuming
and cumbersome. In this work, we consider a more en-
couraging and practically feasible SSL setting, i.e., train-
ing FR-IQA model using labeled data as well as unlabeled
data with outliers. While SSL has been suggested to ex-
ploit unlabeled data for boosting IQA performance, we note
that outliers usually are inevitable when unlabeled data are
collected with diverse and unconstrained ways. For exam-
ple, reference image quality of some unlabeled two-tuples
may not meet the requirement. And the unlabeled data may
also contain distortion types unseen in labeled data and non-
necessary for IQA training.

Let P = {xi, yi}
Np

i=1 denote the positive labeled data and
U = {xj}Nu

j=1 denote unlabeled data. We present a joint
semi-supervised and PU learning (JSPL) method for lever-
aging the unlabeled data with potential outliers. Besides the
IQA model f(x), our JSPL also learns a binary classifier
h(xj) parameterized by Θh for determining an unlabeled
two-tuple is a negative (i.e., outlier) or a positive sample.
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Figure 2. Illustration of our FR-IQA network. It adopts a dual-branch structure for feature extraction, i.e., one for reference and another
for distortion. The feature extraction network performs feature extraction on reference and distortion images at three scales. The distance
calculation module generates the difference map between the above two features. The spatial attention module gives greater weight on
more informative regions to obtain the calibrated difference map, which is then fed into score prediction network to predict the final score.

3.2. JSPL Model

A joint semi-supervised and PU learning (JSPL) model
is presented to learn IQA model f(x) and binary classi-
fier h(x) from the labeled data P and the unlabeled data U.
Particularly, PU learning is utilized to learn h(x) for identi-
fying positive unlabeled samples. And SSL is used to learn
f(x) from both labeled and positive unlabeled samples. In
the following, we first describe the loss terms for PU learn-
ing and SSL, and then introduce our overall JSPL model.

PU Learning. In order to learn h(x), we treat all sam-
ples in P as positive samples, and all samples in U as unla-
beled samples. For a positive sample xi, we simply adopt
the cross-entropy (CE) loss,

CE(h(xi)) = − log h(xi). (1)

Each unlabeled sample xj should be either positive or neg-
ative sample, and we thus require the output h(xj) to ap-
proach either 1 or 0. To this end, we introduce the entropy
loss defined as,

H(h(xj))=−h(xj) log h(xj)−(1−h(xj)) log(1−h(xj)). (2)

We note that the entropy loss has been widely used in
SSL [17]. When only using CE loss and entropy loss, h(x)
may simply produce 1 for any sample x. To tackle this is-
sue, for a given mini-batch Bu of unlabeled samples, we in-
troduce a negative-enforcing (NE) loss for constraining that
there is at least one negative sample in each mini-batch,

NE(Bu) = − log
(
1−minxj∈Bu h(xj)

)
. (3)

Combining the above loss terms, we define the PU learning
loss as,
LPU=

∑
i
CE(h(xi))+

∑
j
H (h(xj))+

∑
Bu

NE(Bu). (4)

SSL. FR-IQA is a regression problem. For labeled
sample xi with ground-truth MOS yi, we adopt the mean
squared error (MSE) loss defined as,

ℓ(f(xi), yi) = ∥f(xi)− yi∥2. (5)

As for unlabeled data, only the positive unlabeled samples
(i.e., h(xj) ≥ τ ) are considered in SSL. Here, τ (e.g., =
0.5) is a threshold for selecting positive unlabeled samples.
For positive unlabeled samples, we also adopt the MSE loss,

ℓ(f(xj), y
∗
j ) = ∥f(xj)− y∗j ∥2, (6)

where y∗j denotes the pseudo MOS for xj . In SSL, sharp-
ening is usually used for classification tasks to generate the
pseudo label for unlabeled samples [4, 53], but is not suit-
able for regression tasks. Motivated by [31, 37], we use the
moving average strategy to obtain y∗j during training,

y∗j (t) = α · y∗j (t− 1) + (1− α) · f t (xj) , (7)

where α (= 0.95) is the momentum. y∗j (t) denotes the
pseudo MOS after t iterations of training, and f t(xj)
denotes the network output after t iterations of training.
Therefore, we define the SSL loss as,

LSSL =
∑

i
ℓ (f(xi), yi)+

∑
j
Ih(xj)≥τ ℓ

(
f(xj), y

∗
j

)
. (8)

Ih(xj)≥τ is an indicator function, where it is 1 if h(xj) ≥ τ
and 0 otherwise.

JSPL Model. Taking the losses for both SSL and PU
learning into account, the learning objective for JSPL can
be written as,

min
Θf ,Θh

L = LSSL + LPU . (9)

We note that our JSPL is a joint learning model, where both
the FR-IQA network f(x) and binary classifier h(x) can be
learned by minimizing the above objective function. Par-
ticularly, for a given mini-batch of unlabeled samples, we
first update the binary classifier by minimizing LPU . Then,
pseudo MOS is updated for each unlabeled sample, and pos-
itive unlabeled samples are selected. Furthermore, the posi-
tive unlabeled samples are incorporated with the mini-batch
of labeled samples to update the FR-IQA network by mini-
mizing LSSL.
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Figure 3. The proposed local sliced Wasserstein distance (Lo-
calSW) calculation module which measures the 1-D Wasserstein
distance between cumulative distribution of the projected refer-
ence and distortion feature maps.

3.3. FR-IQA Network Structure

As shown in Fig. 2, our proposed FR-IQA consists of a
feature extraction network and a score prediction network.
The feature extraction network adopts a Siamese (i.e., dual-
branch) structure, which respectively takes the reference
image and the distorted image as the input. It is based on
VGG16 [52] consisting of three different scales, i.e., s = 1,
2 and 3. And we further modify the VGG16 network from
two aspects. First, all max pooling layers in VGG are re-
placed with L2 pooling [25] to avoid aliasing when down-
sampling by a factor of two. Second, to increase the fitting
ability, dual attention blocks (DAB) used in [67] are inte-
grated into different scales of backbone network. The ref-
erence image IRef and distorted image IDis are fed into
the feature extraction network to obtain the reference fea-
ture fs

Ref and distortion feature fs
Dis (s = 1, 2, 3), respec-

tively. Then, local sliced Wasserstein (LocalSW) distance
is presented to produce distance map fs

Dist, and a spatial at-
tention module is deployed for reweighting distance map
to generate calibrated difference map fs

Diff for each scale
s. As shown in Fig. 2, the score prediction network has
three branches, where each branch involves two 1×1 convo-
lutional layers and a spatial-wise global averaging pooling
layer. fs

Diff is fed to the s-th branch to generate the score at
scale s, and the scores at all scales are averaged to produce
the final score.

In the following, we elaborate more on the LocalSW dis-
tance and difference map calibration.

LocalSW Distance. Given the reference feature fs
Ref

and distortion feature fs
Dis, one direct solution is the

element-wise difference, i.e., |fs
Ref − fs

Dis|. Here | · | de-
notes element-wise absolute value. However, GAN-based
restoration is prone to producing results being spatially dis-
torted and misaligned with the reference image, while the
element-wise difference is not robust to spatial misalign-
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Figure 4. Spatial attention for difference map calibration, where
spatial attention based on reference feature is used to reweight dis-
tance map for generating calibrated difference map.

ment. Instead, we suggest local sliced Wasserstein (Lo-
calSW) distance which measures the difference by com-
paring the distributions of feature maps. Previously sliced
Wasserstein loss [12,24] has been proposed to calculate the
global sliced Wasserstein distance. Considering that the
misalignment between fs

Ref and fs
Dis is usually local and

within a small range, we adopt LocalSW distance by divid-
ing fs

Ref and fs
Dis (∈ RH×W×C) into J non-overlapped

patches with resolution p × p, i.e., J = (H/p) × (W/p).
Fig. 3 illustrates the computation of LocalSW distance by
using a patch pair aRef and aDis (∈ Rp×p×C) as an ex-
ample. In particular, we first use the projection operator Φ
on aRef and aDis to obtain the projected features Φ(aRef )
and Φ(aDis) (∈ Rp×p×m), where m = C/2. Then, we
implement the cumulative distributions through sorting op-
eration Sort(·) on each channel (i.e., slice) v of Φ(aRef )
and Φ(aDis). And the LocalSW distance for slice v of this
patch pair can be obtained by,

SW[v] =∥Sort(Φ(aRef )[v])−Sort(Φ(aDis)[v])∥ . (10)

Furthermore, we compute the LocalSW distance for all
slices and all patches to form the LocalSW distance map
fs
Dist ∈ R

H
p ×W

p ×m.

Spatial Attention for Difference Map Calibra-
tion. Obviously, the contribution of image region to visual
quality is spatially varying. Informative regions have more
influences and should be emphasized more when predicting
the final score. In learning-based FR-IQA, ASNA [3] com-
putes spatial and channel attention based on decoder feature
to improve MOS estimation. Actually, the importance of lo-
cal region should be determined by the reference image in-
stead of decoder feature and distance map. Thus, we adopt a
much simple design by computing spatial attention based on
reference feature while applying it on distance map to gen-
erate calibrated difference map. As show in Fig. 4, the spa-
tial attention module takes reference feature fs

Ref at scale
s as input. Then, we use two 3 × 3 convolutional layers
followed by global average pooling and max pooling along
the channel dimension to form a feature map fs

M . Finally,
a 1 × 1 convolutional layer followed by sigmoid activation
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Table 1. Summary of five IQA databases, i.e., LIVE [47],
CSIQ [33], TID2013 [45], KADID-10k [35] and PIPAL [19].
DMOS is inversely proportional to MOS.

Dataset #Ref. #Dis. #Dis. Type #Rating Rating Type Score Range

LIVE [47] 29 779 5 25k DMOS [0, 100]
CSIQ [33] 30 866 6 5k DMOS [0, 1]

TID2013 [45] 25 3,000 24 524k MOS [0, 9]
KADID-10k [35] 81 10,125 25 30.4k MOS [1, 5]

PIPAL [19] 250 25,850 40 1.13m MOS [917, 1836]

and local average pooling is deployed to generate spatial
weighting map fs

W ∈ R
H
p ×W

p , where the size of the local
average pooling region is set to p× p. Calibrated difference
map fs

Diff can then be obtained by using fs
W for reweight-

ing each channel of distance map fs
Dist in an element-wise

manner, while final score can be predicted by feeding fs
Diff

into score prediction network.

3.4. Network Structure of Binary Classifier

The network structure of binary classifier is relatively
simple, and contains two parts. The first part involves the
first 12 convolutional layers in VGG16 (i.e., 3 scales). The
second part has the same structure as the score prediction
network in our FR-IQA model.

4. Experiments
In this section, we first introduce experiment settings and

implementation details of the proposed method. Then, we
conduct ablation studies to analyze the proposed method,
and compare it with state-of-the-art IQA methods on five
benchmark datasets. Finally, we evaluate the generalization
ability of our method.

4.1. Experiment Settings

Labeled Data. Five IQA datasets are employed
in the experiments, including LIVE [47], CSIQ [33],
TID2013 [45], KADID-10k [35] and PIPAL [19], whose
configurations are presented in Table 1. LIVE [47],
CSIQ [33] and TID2013 [45] are three relatively small-
scale IQA datasets, where distorted images only contain tra-
ditional distortion types (e.g., noise, downsampling, JPEG
compression, etc.). KADID-10k [35] further incorporates
the recovered results of a denoising algorithm into the dis-
torted images, resulting in a medium-sized IQA dataset.
Since the explicit splits of training, validation and testing
are not given on these four datasets, we randomly parti-
tion the dataset into training, validation and testing sets by
splitting reference images with ratios 60%, 20%, 20%, re-
spectively. To reduce the bias caused by a random split, we
run the random splits ten times. On these four datasets, the
comparison results are reported as the average of ten times
evaluation experiments.

PIPAL [19] is a large-scale IQA dataset. The training
set consists of 200 reference images and 23, 200 distorted

images with resolution of 288 × 288. The validation set
consists of 25 reference images and 1, 000 distorted im-
ages. Since the testing set of PIPAL is not publicly avail-
able, we in this paper report the evaluation results on vali-
dation set via the online server1. The distorted images in PI-
PAL dataset include traditional distorted images and images
restored by multiple types of image restoration algorithms
(e.g., denoising, super-resolution, deblocking, etc.) as well
as GAN-based restoration models. It is worth noting that
the distortion types in PIPAL validation set are unseen in
the training set.

Unlabeled Data. We take 1, 000 image patches
(288 × 288) randomly from DIV2K [1] validation set and
Flickr2K [56] as reference images in unlabeled data. For
the acquisition of distorted images, we adopt the following
three manners: (i) ESRGAN Synthesis: All the reference
images are downsampled, and then super-resolved using 50
groups of intermediate ESRGAN models. The restored im-
ages are regarded as distorted images in unlabeled data. (ii)
DnCNN Synthesis: We add Gaussian noises to reference
images to obtain degraded images, which are restored using
50 groups of intermediate DnCNN models. (iii) KADID-
10k Synthesis: Following [35], we add 25 degradation types
to reference images by randomly select 2 of 5 distortion lev-
els for obtaining distortion images in unlabeled data. More
details of intermediate models of ESRGAN and DnCNN
can be found in the supplementary material. We note that
ESRGAN and DnCNN are not adopted in validation set of
PIPAL, guaranteeing non-intersection of distortion types in
PIPAL validation set and our collected unlabeled data.

Evaluation Criteria. Two evaluation criteria are re-
ported for each experimental setup, i.e., Spearman Rank
Correlation Coefficient (SRCC) for measuring predic-
tion accuracy, and Pearson Linear Correlation Coefficient
(PLCC) for measuring prediction monotonicity.

4.2. Implementation Details

We use the Adam optimizer [29] for all models presented
in this paper with a batchsize of 32. We randomly crop the
image patches with size 224 × 224, and perform flipping
(horizontal/vertical) and rotating (90◦, 180◦, or 270◦) on
training samples for data augmentation.

Supervised Learning. We train the proposed FR-IQA
model with labeled data for total 20,000 iterations. The
learning rate is initialized to 1e-4, and decreased to 1e-5 af-
ter 10,000 iteration. Moreover, we have found empirically
that even if the training iterations are further increased, the
IQA model will not get any performance improvement.

Joint Semi-supervised and PU Learning. We initialize
the network parameters using the pre-trained IQA model
with the learning rate of 1e-5 for 20,000 iterations. The
pseudo MOS y∗j is initialized with the pre-trained IQA

1https://competitions.codalab.org/competitions/28050
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Table 2. PLCC / SRCC performance with ablation studies about
network structure performed on the PIPAL [19] and KADID-
10k [35].

NO. DAB SA LocalSW
PIPAL KADID-10k

PLCC / SRCC PLCC / SRCC

1 % % % 0.835 / 0.824 0.899 / 0.889
2 ! % % 0.843 / 0.837 0.908 / 0.905
3 % ! % 0.849 / 0.838 0.927 / 0.919
4 ! ! % 0.852 / 0.849 0.941 / 0.940
5 ! % ! 0.861 / 0.857 0.929 /0.925
6 ! ! ! 0.868 / 0.868 0.943 / 0.944

model. Hyper-parameter p, i.e., the region size in local
Sliced Wasserstein distance (LocalSW), is set to 8 and 2
for PIPAL and traditional IQA datasets, respectively. The
momentum parameter α is set to 0.95. Hyperparameter τ
changes with iterations, i.e., τ = max{τ t/T0

0 , τmin} for t-th
iteration, where parameters τ0, T0 and τmin are set as 0.9,
1, 000 and 0.5, respectively.

4.3. Ablation Study

All the ablation experiments are performed on PI-
PAL [19] and KADID-10k [35], considering that the dis-
tortion types of these two datasets are very different.

Network Structure. We first study the effects of our
three architectural components, i.e., Dual Attention Block
(DAB), Spatial Attention (SA), and Local Sliced Wasser-
stein Distance (LocalSW). In Table 2, one can see that on
PIPAL dataset, removing the LocalSW results in the great-
est performance degradation, which is mainly due to the ad-
ditional computational error introduced by the spatial mis-
alignment in the GAN-based distorted images. When the
SA module is eliminated, the IQA model assigns the same
weight to different information content areas, resulting in
low accuracy. Similarly, DAB also contributes to the final
performance.

Training Strategy. We conduct ablation experiments
on three different types of unlabeled data, i.e., ESRGAN
Synthesis, DnCNN Synthesis, KADID-10k Synthesis, and
compare the proposed JSPL with semi-supervised learning
(SSL), i.e., combining labeled and unlabeled data without
PU learning. From Table 3, we have the following observa-
tions: (i) First, compared to the other two syntheses types,
the distribution of unlabeled data using ESRGAN Synthesis
is more consistent with the labeled PIPAL dataset, leading
to the greater performance gains. Similarly, the KADID-
10k dataset has same distortion types with KADID-10k
Synthesis. It indicates that the inconsistent distribution be-
tween labeled and unlabeled data is a key issue for semi-
supervised learning. Therefore, in the subsequent experi-
ments, we choose unlabeled data that are closer to the dis-
tribution of the labeled data. (ii) Second, from the six sets of
comparative experiments on SSL and JSPL, we can see that
JSPL performs better than SSL. This is because our JSPL
can exclude negative outliers, making the distribution of la-

Table 3. PLCC / SRCC results obtained using different data set-
tings with SL, SSL or JSPL manners on PIPAL [19] and KADID-
10k [35].

Methods PIPAL KADID10k
Unlabeled Data PLCC / SRCC Unlabeled Data PLCC / SRCC

SL - 0.868 / 0.868 - 0.943 / 0.944

SSL
ESRGAN Synthesis 0.872 / 0.870 ESRGAN Synthesis 0.930 / 0.932
DnCNN Synthesis 0.870 / 0.868 DnCNN Synthesis 0.945 / 0.944

KADID-10k Synthesis 0.867 / 0.866 KADID-10k Synthesis 0.959 / 0.958

JSPL
ESRGAN Synthesis 0.877 / 0.874 ESRGAN Synthesis 0.945 / 0.948
DnCNN Synthesis 0.875 / 0.872 DnCNN Synthesis 0.959 / 0.957

KADID-10k Synthesis 0.873 / 0.870 KADID-10k Synthesis 0.963 / 0.961

Table 4. Performance comparison of IQA methods on PIPAL [19]
dataset. Some results are provided from the NTIRE 2021 IQA
challenge report [20].
Methods Category PLCC SRCC Methods Category PLCC SRCC
MA [41]

NR
0.203 0.201 PSNR

FR

0.292 0.255
PI [5] 0.166 0.169 SSIM [58] 0.398 0.340
NIQE [43] 0.102 0.064 LPIPS-Alex [73] 0.646 0.628
VIF [48]

FR

0.524 0.433 LPIPS-VGG [73] 0.647 0.591
VSNR [7] 0.375 0.321 PieAPP [46] 0.697 0.706
VSI [70] 0.516 0.450 WaDIQaM-FR [6] 0.654 0.678
MAD [33] 0.626 0.608 DISTS [13] 0.686 0.674
NQM [11] 0.416 0.346 SWD [19] 0.668 0.661
UQI [57] 0.548 0.486 EGB [23] 0.775 0.776
IFC [49] 0.677 0.594 DeepQA [2] 0.795 0.785
GSM [36] 0.469 0.418 ASNA [3] 0.831 0.824
RFSIM [71] 0.304 0.266 RADN [50] 0.867 0.866
SRSIM [69] 0.654 0.566 IQMA [21] 0.876 0.872
FSIM [72] 0.561 0.467 IQT [9] 0.876 0.865
FSIMc [72] 0.559 0.468 Ours(SL) FR 0.868 0.868
MS-SSIM [61] 0.563 0.486 Ours(JSPL) 0.877 0.874

beled data and positive unlabeled data be more consistent,
while SSL is adversely affected by these outliers.

4.4. Comparison with State-of-the-arts

4.4.1 Evaluation on PIPAL Dataset

As shown in Table 4, we compare 18 traditional evaluation
metrics and 12 CNN-based FR-IQA models with the pro-
posed model under two different learning strategies, i.e.,
supervised learning (SL) and JSPL. Compared with tradi-
tional evaluation metrics, CNN-based FR-IQA models are
proven to be more consistent with human subjective quality
scoring. Albeit retraining on the PIPAL dataset, the per-
formance of pioneering CNN-based FR-IQA models, e.g.,
LPIPS [73], WaDIQaM-FR [6] and DISTS [13] are still
limited. Although SWDN [18] designed a pixel-by-pixel
alignment module to address the misalignment problem in
GAN-based distortion, the corresponding feature extraction
network is not sufficiently effective to achieve satisfactory
result. In contrast, considering both the properties of GAN-
based distortion and the design of the feature extraction net-
work, IQT [9], IQMA [21] and RADN [50] achieve top3
performance on PIPAL in published literatures. Because of
the spatial attention and the LocalSW module, the proposed
method using supervised learning obtains superior perfor-
mance than RADN [50] on PIPAL. Although our FR-IQA
model by adopting supervised learning strategy is slightly
inferior to IQT [9] and IQMA [21], the proposed JSPL strat-
egy significantly boosts its performance by exploiting ade-
quate positive unlabled data while mitigating the adverse
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Table 5. Performance evaluation on the LIVE [47], CSIQ [33],
TID2013 [45] and KADID-10k [35] databases.

Methods Category LIVE CSIQ TID2013 KADID-10k

SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC
BRISQUE [42]

NR

0.939 0.935 0.746 0.829 0.604 0.694 - -
FRIQUEE [16] 0.940 0.944 0.835 0.874 0.680 0.753 - -
CORNIA [66] 0.947 0.950 0.678 0.776 0.678 0.768 0.541 0.580
M3 [65] 0.951 0.950 0.795 0.839 0.689 0.771 - -
HOSA [64] 0.946 0.947 0.741 0.823 0.735 0.815 0.609 0.653
Le-CNN [26] 0.956 0.953 - - - - - -
BIECON [27] 0.961 0.962 0.815 0.823 0.717 0.762 - -
DIQaM-NR [6] 0.960 0.972 - - 0.835 0.855 - -
WaDIQaM-NR [6] 0.954 0.963 - - 0.761 0.787 - -
ResNet-ft [28] 0.950 0.954 0.876 0.905 0.712 0.756 - -
IW-CNN [28] 0.963 0.964 0.812 0.791 0.800 0.802 - -
DB-CNN [74] 0.968 0.971 0.946 0.959 0.816 0.865 0.501 0.569
CaHDC [62] 0.965 0.964 0.903 0.914 0.862 0.878 - -
HyperIQA [54] 0.962 0.966 0.923 0.942 0.729 0.775 - -
PSNR

FR

0.873 0.865 0.810 0.819 0.687 0.677 0.676 0.675
SSIM [58] 0.948 0.937 0.865 0.852 0.727 0.777 0.724 0.717
MS-SSIM [61] 0.951 0.940 0.906 0.889 0.786 0.830 0.826 0.820
VSI [70] 0.952 0.948 0.942 0.928 0.897 0.900 0.879 0.877
FSIMc [72] 0.965 0.961 0.931 0.919 0.851 0.877 0.854 0.850
MAD [33] 0.967 0.968 0.947 0.950 0.781 0.827 0.799 0.799
VIF [48] 0.964 0.960 0.911 0.913 0.677 0.771 0.679 0.687
DeepSim [15] 0.974 0.968 - - 0.846 0.872 - -
DIQaM-FR [6] 0.966 0.977 - - 0.859 0.880 - -
WaDIQaM-FR [6] 0.970 0.980 - - 0.940 0.946 - -
DISTS [13] 0.955 0.955 0.946 0.946 0.830 0.855 0.887 0.886
PieAPP [46] 0.918 0.909 0.890 0.873 0.670 0.749 0.836 0.836
LPIPS [73] 0.932 0.934 0.903 0.927 0.670 0.749 0.843 0.839
Ours(SL) FR 0.970 0.978 0.965 0.968 0.924 0.912 0.944 0.943
Ours(JSPL) 0.980 0.983 0.977 0.970 0.940 0.949 0.961 0.963

effects of outliers.

4.4.2 Evaluation on Traditional Datasets

Our methods with two learning manners, i.e., SL and JSPL,
are compared with the competitors on the other four tra-
ditional IQA datasets, including LIVE [47], CSIQ [33],
TID2013 [45] and KADID-10k [35]. From Table 5 we can
observe that the FR-IQA models achieve a higher perfor-
mance compared to the NR-IQA models, since the pristine-
quality reference image provides more accurate reference
information for quality assessment. Although WaDIQaM-
FR [6] achieves almost the same performance with our
method in terms of the SRCC metric on TID2013 dataset,
but is inferior to ours on LIVE and PIPAL datasets, indicat-
ing its limited generalization ability. On all testing sets, the
proposed FR-IQA model with SL strategy still delivers su-
perior performance, which reveals the effectiveness of the
proposed spatial attention and LocalSW module. By adopt-
ing JSPL strategy, our FR-IQA model achieves the best per-
formance on all the four datasets. More comparisons on
individual distortion types and cross-datasets are provided
in supplementary material.

4.5. Evaluating Generalization Ability

Considering that distortion types in KADID-10k and PI-
PAL are not similar, we adopt these two datasets for evaluat-
ing generalization ability of our method as well as IQT [9],

Table 6. PLCC / SRCC assessment about IQA models trained on
different settings, and tested on the PIPAL [19] Val.

Methods
Training Data PIPAL Val.

Labeld Data (& Unlabeled Data) PLCC / SRCC

IQT(SL) PIPAL 0.876 / 0.865
IQT(SL) KADID-10k 0.741 / 0.718

IQT(SSL) KADID-10k & ESRGAN Synthesis 0.700 / 0.662
IQT(JSPL) KADID-10k & ESRGAN Synthesis 0.794 / 0.783

Our(SL) PIPAL 0.868 / 0.868
Ours(SL) KADID-10k 0.756 / 0.770

Ours(SSL) KADID-10k & ESRGAN Synthesis 0.733 / 0.766
Ours(JSPL) KADID-10k & ESRGAN Synthesis 0.804 / 0.801

a state-of-the-art method in Table 4. As shown in Table 6,
both IQT and our method can obtain satisfying performance
when keeping consistent validation and training sets from
PIPAL. However, significant performance degradations can
be observed when applying the models learned based on
KADID-10k to validation set of PIPAL. This is because the
distribution discrepancy between KADID-10k and PIPAL
is severe, which cannot be addressed by SL strategy. By
adopting SSL and JSPL, unlabeled data using ESRGAN
Synthesis is introduced. Although SSL utilizes unlabeled
data, the performance drops can be observed for IQT and
our method due to the effect of outliers, which demonstrates
that the elimination of outliers is essential. In contrast, our
JSPL can exclude negative outliers while exploiting positive
unlabeled data, significantly boosting generalization abil-
ity of IQT and our method. In comparison to IQT with
JSPL, our method with JSPL has better generalization abil-
ity, which can be attributed to the novel modules SA and
LocalSW in our FR-IQA model.

5. Conclusion

In this paper, we proposed a joint semi-supervised and
PU learning (JSPL) to exploit unlabelled data for boosting
performance of FR-IQA, while mitigating the adverse ef-
fects of outliers. We also introduced a novel FR-IQA net-
work, embedding spatial attention and local sliced Wasser-
stein distance (LocalSW) for emphasizing informative re-
gions and suppressing the effect of misalignment between
distorted and pristine images, respectively. Extensive ex-
perimental results show that the proposed JSPL algorithm
can improve the performance of the FR-IQA model as well
as the generalization capability. In the future, the proposed
JSPL algorithm can be extended to more challenging image
quality assessment tasks, e.g., NR-IQA.
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