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Abstract

A hard challenge in developing practical face recogni-
tion (FR) attacks is due to the black-box nature of the target
FR model, i.e., inaccessible gradient and parameter infor-
mation to attackers. While recent research took an impor-
tant step towards attacking black-box FR models through
leveraging transferability, their performance is still limited,
especially against online commercial FR systems that can
be pessimistic (e.g., a less than 50% ASR–attack success
rate on average). Motivated by this, we present Sibling-
Attack, a new FR attack technique for the first time explores
a novel multi-task perspective (i.e., leveraging extra infor-
mation from multi-correlated tasks to boost attacking trans-
ferability). Intuitively, Sibling-Attack selects a set of tasks
correlated with FR and picks the Attribute Recognition (AR)
task as the task used in Sibling-Attack based on theoret-
ical and quantitative analysis. Sibling-Attack then devel-
ops an optimization framework that fuses adversarial gra-
dient information through (1) constraining the cross-task
features to be under the same space, (2) a joint-task meta
optimization framework that enhances the gradient com-
patibility among tasks, and (3) a cross-task gradient stabi-
lization method which mitigates the oscillation effect during
attacking. Extensive experiments demonstrate that Sibling-
Attack outperforms state-of-the-art FR attack techniques by
a non-trivial margin, boosting ASR by 12.61% and 55.77%
on average on state-of-the-art pre-trained FR models and
two well-known, widely used commercial FR systems.

1. Introduction
Deep Neural Networks (DNNs) have demonstrated sig-

nificant success in various applications, especially for face

*indicates equal contributions.
†indicates corresponding author.
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Figure 1. Under the single task, previous attacks (a) boost trans-
ferability by attacking multiple models or using various sampling
or augmentation strategies. Nevertheless, in the proposed Sibling-
Attack (b), we adopt the Attribute Recognition (AR) as the auxil-
iary task to improve the transferability. And we utilize the hard-
parameter sharing architecture from [3] as the attacking backbone.

recognition [14, 53]. Despite these achievements, recent re-
search has revealed that DNN-based face recognition (FR)
models may be susceptible to adversarial attacks [2,23,59].
In practical attacking scenarios, the victim FR model’s pa-
rameters are inaccessible to the attackers [4, 19, 43, 52, 61],
i.e., the attacker has to perform attacks under black-box
settings. One feasible black-box attacking strategy is to
craft transferable adversarial examples by attacking a white-
box surrogate model. On the face recognition task, re-
cent research (e.g., optimization-based methods [17,41,62],
model-ensemble training [17, 43] and input data transfor-
mations [18, 65, 67]) has shown efficacy on boosting the at-
tacking transferability. Essentially, those methods prevent
the adversarial examples from over-fitting to a single mod-
el/image by fusing auxiliary gradient information from en-
semble models or various sampling/augmenting strategies.
However, their performance against online commercial FR
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systems can be rather pessimistic (e.g., a less than 50% at-
tack success rate on average as shown in our evaluation).

Motivated by this, we obtain an important insight by un-
derstanding such pessimism is that existing methods col-
lect adversarial gradients only from the single task and
thus overlook the potential possibilities to further improve
transferability, as illustrated in Fig. 1(a). Recent multi-
task learning (MTL) methods [3, 42, 58, 74] have indicated
that the multi-task or joint-task training among the corre-
lated tasks can learn more robust and general features and
thus improve the overall generalizability. Inspired by this,
we seek to improve the FR task’s attacking transferability
within the cross-task scope. To explore the FR attacking
transferability under a multi-task setting, there are two chal-
lenges: 1) identifying an appropriate auxiliary task as a suit-
able candidate for FR task when performing multi-task at-
tacks, and 2) how to fully utilize the adversarial information
from two tasks thus boosting transferability.

We assume that a face-related task, which can provide
relevant but diverse adversarial gradients information to
complement the inherently absent adversarial knowledge
for the target FR task, could be deemed as a good auxiliary
task candidate, named sibling task. The empirical observa-
tions of previous works [15, 60] have proved that the AR
model can learn robust identity features, which can be used
to enhance the FR’s recognition robustness. Also, in turn,
FR features implicitly encode latent facial attribute features.
In addition, we conduct quantitative results to show the ef-
fectiveness of the AR task. To this end, we leverage a cor-
related AR task as the sibling task to improve the attacking
transferability, i.e., Sibling-Attack.

Since big variance exists in the feature and gradient
spaces of different tasks [16, 46, 55], direct optimization
over FR and AR models will lead to a limited attacking
transferability without considering the better gradients fu-
sion and stabilized training strategies. To address the issues,
in Sibling-Attack, we first adopt the hard-parameter shar-
ing architecture derived from [3] as our backbone attack-
ing framework to constrain them within the same feature
space, as shown in Fig. 1(b). Next, we design an alternat-
ing joint-task meta optimization (JTMO) algorithm based
on the high-level spirit of meta-learning [20, 51, 56] to fur-
ther improve the gradient compatibility between two tasks.
Finally, to mitigate the training oscillation effect, we pro-
pose a cross-task gradient stabilization (CTGS) strategy for
stabilizing the adversarial example optimization.

Extensive experiments demonstrate that Sibling-Attack
outperforms state-of-the-art FR attack techniques by a non-
trivial margin, boosting the attack success rate by 12.61%
and 55.77% on average on state-of-the-art pre-trained FR
models and two well-known, widely used commercial FR
systems, Face++ face recognition [48] and Microsoft face
API [50]. Notably, Sibling-Attack yields 86.50% and

96.10% ASR on attacking the widely used Face++ com-
mercial face API on two common datasets, while the state-
of-the-art only reaches 58.10% and 64.30%, respectively.

We summarize our contributions as: 1) We propose to
generate highly transferable adversarial examples against
face recognition by utilizing the adversarial information
from the related AR task. 2) We propose a novel Sibling-
Attack method which jointly learns the adversarial infor-
mation from multiple tasks in a more effective manner. 3)
Evidenced by extensive experiments, the ASR of Sibling-
Attack significantly outperforms current SOTA single-task
attacks on the widely-adopted and large-scale FR bench-
marks, particularly, several online commercial FR systems,
which is aligned with our assumptions and analyses.

2. Related Work

2.1. Adversarial Attacks

Adversarial attacks raise significant concern in machine
learning due to their potential impact on security and safety-
critical applications. [6–8, 10, 17, 24–26, 38, 39, 45, 67, 73]
Recently, several approaches have been proposed to en-
hance the transferability of adversarial attacks by designing
underlying optimization algorithms based on the BIM [39]
or PGD [45]. For instance, MI-FGSM [17] incorporates
momentum to BIM and uses ensemble models to craft ad-
versarial samples. VMI-FGSM [62] alleviates the gradient
variance to boost the performance. TAP [75] shows that
attacking intermediate feature maps could help to gener-
ate more transferable adversarial examples. DI-FGSM [67]
proposes a method to increase the diversity of the inputs by
randomly altering the input data. Wu. et al. [65] makes ad-
versarial examples insensitive to distortions by leveraging a
transformation network. Xiong et al. [68] focus on reducing
stochastic variance to boost ensemble transferable attacking
performance. NAA [71] improves the performance of trans-
ferable attacks on the feature level by more accurate neuron
importance estimations. TAIG [34] boosts transferability
by optimizing standard objective functions, exploiting at-
tention maps, and smoothing decision surfaces.

Regarding the transferable digital adversarial attacks
against the FR task, Adv-Face [13] employs a GAN-
based framework to address the over-fitting problem.
DFANet [72] applies dropout layers to boost attacking
transferability. On the other hand, a set of work stud-
ies transferable physical attacks against FR systems using
patch-based methods. Adv-Glasses [57] and Adv-Hat [37]
perform physical adversarial attacks by injecting patched
hats or eyeglasses. The most recent work [35, 69], gener-
ates imperceptible perturbations of specific makeup and fa-
cial attributes. Unlike previous work boosting transferabil-
ity by performing a single task white-box attack, we pro-
pose a new framework to craft transferable attacks against
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Figure 2. The optimizing process of Sibling-Attack. The first row illustrates Joint-Task Meta Optimization (JTMO) and the second row
exhibits Cross-Task Gradient Stabilization (CTGS). JTMO alternatively selects models from different tasks for each iteration (Sec. 3.3).
CTGS stabilizes the cross-task gradient via historical information (Sec. 3.4).

the FR model by leveraging the AR task’s information.

2.2. Multi-task Learning

Multi-task Learning (MTL) [3, 27, 29, 60, 64] is to learn
multiple tasks simultaneously to improve the accuracy of
each task compared with single-task learning (STL) [5, 7,
11, 12, 49]. Several existing works have proved the strong
correlations between FR and AR tasks. Diniz et al. [15]
illustrates that the FR model implicitly encodes latent at-
tribute features in the representations, and the hidden layer
of the FR model can be used to perform attribute predic-
tion. Hu et al. [32] claims that models for the AR task can
learn more robust features and thus can be used to improve
FR robustness. Taherkhani et al. [60] leverage AR models
as a soft modality to enhance the performance of FR mod-
els. Wang et al. [64] utilize a multi-task framework to boost
training performance on both FR and AR tasks. Ghamizi
et al. [22] and Mao et al. [46] have claimed that multi-task
training can learn more adversarial robust features.

Recent concurrent work has studied adversarial attacks
against multi-task models. MTA [27] perform white-box
attacks adversarial attacks against hard parameter sharing
architecture multi-task learning models. UniNet [29] in-
troduces adversarial attacks to better explore the relation-
ship between multi-tasks in an autonomous driving sce-
nario. Nevertheless, there exist significant differences from
Sibling-Attack: 1) Sibling-Attack focuses on improving
black-box attacking transferability rather than maintaining
the efficacy of white-box attacks; 2) Sibling-Attack pro-
poses JTMO and CTGS optimization strategies to further
boost transferability (in Sec. 3). 3) Sibling-Attack eval-
uates transferable attacks against online commercial plat-
forms and significantly improves the performance.

3. Methodology
3.1. Overview

The targeted adversarial attack against FR, i.e., imper-
sonation attack [13], spoofs the target FR model to misiden-

tify the attacker as the same identity as the target, which is
more challenging and malicious than dodging attack [13]
in the real world. Therefore, this paper mainly focuses on
the impersonation attack as in [69,72]. The objective of the
impersonation attack can be formulated as follows:

min
εa
L(xa + εa, xv), s.t. ‖εa‖p ≤ ξ (1)

where xa ∈ RH·W ·C is the attacking face and xv ∈
RH·W ·C is the target victim face. The perturbation εa ∈
[0, 1]H·W ·C to the attacker is constrained by the `p-norm
(p ∈ {0, 2,∞}). In this work, we use `∞-norm as the met-
ric following [17, 45, 62, 75]. ξ is a small constant to bound
εa. L(·) denotes the adversarial loss function.

3.2. Sibling-Attack Framework

As shown in Fig. 1(b), we adopt a prevelant hard param-
eter sharing architecture [1, 3] as the backbone in Sibling-
Attack to avoid large feature variance [46]. Our white-
box surrogate model shown in Fig. 1(b) is denoted as
S(P;F ;A), with a sharing-parameter encoder P as its first
component. Then the surrogate model branches off into
two sub-networks: an FR branch F , and an AR branch A.
Given an attacking image xa and a target image xv , our
goal is to generate adversarial examples xadv through S to
fool the black-box target FR model T . Specifically, for each
xa and xv , each branch of S compute their corresponding
output high-level feature vectors {fFa , fFv } through F and
{fAa , fAv } through A, respectively. These features are then
used to compute the corresponding adversarial loss for tar-
geted attacks against FR as follows:

L∗adv = 1− cos(f∗a , f∗v ) (2)

where ∗ ∈ {F ,A} and we use the cosine value [13, 69,
72] between two feature vectors as the evaluation metric to
measure their similarity. Based on that, the main objective
of the joint impersonation attack is designed as follows:

min
εa

λ1 · LFadv + λ2 · LAadv, s.t. ‖εa‖p ≤ ξ (3)
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where λ1 and λ2 are the trade-off hyper-parameters.

3.3. Joint-Task Meta Optimization

Revisiting the existing meta-learning frameworks, sev-
eral researchers [21, 51, 56] have proven that alternatively
adopting gradients can improve the cross-dataset compati-
bility of conducting feature learning, thus enhancing gener-
alizability. This fact motivates us to craft transferable ad-
versarial examples by obtaining better gradient compatibil-
ity between two tasks. Therefore, we propose a new op-
timization strategy targeting adversarial scenarios, namely
Joint-Task Meta Optimization (JTMO). As shown in Fig. 2,
in JTMO, we imitate the parameter updating strategy of
meta-learning instead of directly calculating weighted av-
erage adversarial losses for two tasks.

To generate the adversarial examples, we have to iter-
atively modify the pixels in xa by adding a perturbation
εa. For each iteration, we alternately choose one branch
from S, and then perform forward- and back-propagation to
calculate the gradients from the corresponding adversarial
losses, LFadv or LAadv . The order of branch selection won’t
affect the final performance. For each branch in each itera-
tion, the updated perturbation ε

′

a can be computed by:

ε
′

a ← Π {εa − α · sign(γ1 · 5εaL∗adv(xa + εa, xv))} (4)

where Π {·} denotes the projection function ensured by `∞
constrain. α is learning rate, γ1 is the updating hyper-
parameter, and also ∗ ∈ {F ,A}. Then, we utilize the up-
dated perturbation ε

′

a to compute the adversarial losses for
the remaining un-chosen branch in the S. Thus, we com-
pute L∗′adv based on ε

′

a. Finally, we aggregate all the gradi-
ent information to update the perturbation as follows:

ε
′′

a ← Π
{
ε
′

a − α · sign(γ2 · 5ε′aL
∗′
adv(x

′

a + ε
′

a, xv))
}
(5)

where x
′

a = xa+εa, γ2 is the updating hyper-parameter and
ε
′′

a is the output of adversarial perturbations for each itera-
tion. Inspired by meta-learning, our optimization strategy
first collect gradients alternatively from two branches w.r.t
the perturbation parameters, then adopt the gradients to op-
timize ε

′′

a alternately between two tasks for every iteration
to obtain optimization compatibility.

3.4. Cross-Task Gradient Stabilization

Updating adversarial perturbations across two tasks may
inevitably cause a side-effect of oscillation and lead to a
sub-optimal solution. This side-effect can be attributed to
the fact that the two different tasks have different gradient
updating directions [55]. Recent methods of single-task ad-
versarial attacks [17, 62] have claimed that historical gra-
dients and appropriate gradients aggregation could stabilize

Algorithm 1: The proposed attacking method

1 Require: Attacking images xa ∈ RH·W ·C ; vcitim
images xv ∈ RH·W ·C ; adversarial perturbations
εa ∈ [0, 1]H·W ·C ; pre-trained multi-task model
S(P;F ;A); iterations T ; updating step size N .

2 Initialization: Adversarial example parameters
εa;hyperparameters γ1, γ2, γ3; learning rate α.

3 Ensure: Perturbation parameters εopta .
4 xadv = xa;
5 for each t ∈ T do
6 Alternatively select one task branch, such as F ;
7 Update E ′F = {∅};
8 for each i ∈ N do
9 Calculate LFadv on (xadv , xv) with Eq. 2;

10 Obtain ε
′F
ai by LFadv with Eq. 4;

11 Append ε
′F
ai to E ′F ;

12 Update xadv = xadv + ε
′F
ai ;

13 Obtain G′A =
{
5A
ε
′F
a1

, ...,5A
ε
′F
aN

}
from another

branch A based on E ′F ;
14 Update ε

′′A
a with Eq. 6;

15 Update xadv = xadv + ε
′′A
a ;

16 εopta = ε
′′A
a ;

17 return εopta

the optimizing process, thus boosting attacking transferabil-
ity. Inspired by them, we design a new updating strategy,
namely Cross-Task Gradient Stabilizing(CTGS), to further
improve the attacking transferability of Sibling-Attack.

As shown in Fig. 2, at each iteration of the optimizing
process, we define an updating step size N for the selected
task branch, e.g., F . Then N adversarial perturbations,
E ′F =

{
ε
′F
a1 , ..., ε

′F
aN

}
, can be crafted iteratively by con-

secutive steps updating with Eq. 4 based on F . Next, we
add the perturbations to the attacking image xa to generate
the adversarial examples and send them into another task
branch A and compute their corresponding gradient maps,
G′A =

{
5A
ε
′F
a1

, ...,5A
ε
′F
aN

}
. Hence, when updating the ε

′′

a on
the A, we can derive Eq. 5 as:

ε
′′A
a ← Π

{
ε
′F
aN − α ∗ sign[γ2 ∗ (5A

ε
′F
aN

+ γ3

N−1∑
i=1

5A
ε
′F
ai

)]

}
(6)

Following this updating procedure, the calculated gradi-
ents onA for the historical adversarial gradients from F are
aggregated for stabilizing the current optimization. γ3 is a
hyper-parameter to balance the training weights. We choose
γ3 as a small number since the historical adversarial gra-
dients merely provide the auxiliary gradients information
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Dataset CelebA-HQ LFW
Target Model IR50 ResNet101 IR50 ResNet101

FR+FR 73.40 76.00 75.80 78.20
FR+FLD 75.20 78.10 52.00 78.60
FR+FP 66.50 85.10 71.80 83.40

FR+AR(Ours) 93.00 93.40 97.60 96.80

Table 1. ASR results for black-box impersonation attacks against
different task combinations. Best attack performance results are
shown in bold. The 2nd place performance is shown in blue.

rather than dominate the main updating direction. Our strat-
egy enhances the optimizing stability and promotes trans-
ferability by utilizing the cross-task gradients of the histor-
ical N − 1 adversarial examples from another task branch.
The overall procedure of Sibling-Attack is shown in Alg. 1.

4. Experiments

4.1. Experimental Setup

Datasets. To evaluate the attacking transferability of
the proposed Sibling-Attack, we choose two popular face
datasets: 1) CelebA-HQ [36]: The CelebA-HQ dataset is a
high-quality update for the CelebA dataset [44], which con-
sists of 30,000 best-looking facial images. 2) LFW [33]:
Labeled Faces in the Wild (LFW) is a dataset for face recog-
nition that contains 13,233 images collected on the web
of 5,749 different subjects. We randomly sample 1,000
pairs of different-identity faces for each dataset to evaluate
Sibling-Attack’s attacking performance.
Evaluation Metrics. Following prior works [13,40,69,72],
we adopt Attack Success Rate (ASR) for impersonation at-
tack to evaluate Sibling-Attack, which is computed through:

ASR =
No. of Comparisons ≥ τ
Total No. of Comparisons

(7)

Whether an adversarial attack is successful is defined by the
numerator of Eq. 7, which accepts the similarity scores be-
tween the adversarial examples and benign examples from
the black box model over the corresponding threshold τ .
Baselines. We compare Sibling-Attack with ten start-of-
the-art adversarial attacks, namely, face-based and transfer-
based attacks: 1) face-based attacks: Adv-Hat [37],
Adv-Glasses [57], Adv-Face [13], Adv-Makeup [69] and
GenAP [66]. 2) transfer-based attacks: PGD [45],
TAP [75], MI-FGSM [17], VMI-FGSM [62].
Target Model. Similar to the evaluation in prior works [69],
we choose a mix of the various offline and online commer-
cial FR models to evaluate the transferability of the adver-
sarial examples generated by Sibling-Attack. Specifically,
we choose: 1) Offline models: five famous face recognition
models: IR152 [14], IRSE50 [14], FaceNet [53], IR50 [14],

ResNet101 [31]. 2) Online models: two widely used on-
line commercial face recognition systems: Face++ [48] and
Microsoft [50]. For the offline FR models, we use IR152,
IRSE50, and FaceNet as white-box models to generate ad-
versarial examples and evaluate attacking transferability on
the other models. All the thresholds of offline models are
obtained from the images in the LFW dataset [13]. We
set τ to (0.277, 0.200) following [45, 69, 70] for (IR50,
ResNet101). For the online FR models, as per the sugges-
tions of platforms, we set τ as the cosine similarity score
at 0.001 FPR (False Positive Rate) level for Face++. For
Microsoft, We use the reported query results as the number
of successful attacks since Microsoft does not offer the co-
sine similarity score for different FPR levels and only gives
a cosine similarity score and decision result for each query.
AR Model. For AR models, we use IR152 [14] and Mobile-
face [9] as the backbone networks and train them on MS-
Celeb-1M [28], and CelebA-HQ [36], to guarantee their
performance on the AR task. We include the detailed train-
ing scheme in the supplementary files due to the page limits.
Implementation Details. In Sibling-Attack, the structure of
the white-box surrogate model is IR152 for both the FR task
and the AR task. Following the experimental configuration
of previous work [66], we set ξ to 40/255 as the `∞ bound
as [17,30,45,62,75] for ours and baselines. Meanwhile, the
step size α is set to 2/255 while the iteration number T is set
to 200 to ensure attack efficacy, and updating step size N is
4. Moreover, we initialize (γ1, γ2, γ3) as (0.1, 0.9, 0.01).
All competitors strictly adopt their original setting. Since
our method performs attacks across two different models,
FR and AR, and existing works [17, 43] have evidenced the
merits of ensemble attacking, we attack two FR models for
other competitors to ensure comparison fairness.

4.2. Why Select the AR Task?

Theoretically, we have presented the high correlations
between FR and AR in the earlier sections. Furthermore,
we empirically explore the effectiveness of the AR task by
quantitative analysis. Firstly, we compare the transferable
ASRs results against various face-related task combinations
in Tab. 1, where FR denotes the Face Recognition task, FLD
indicates the Face Landmark Detection task, FP means the
Face Parsing task, and AR denotes the Attribute Recogni-
tion task. And then, all the combinations follow the basic
Hard Parameter Sharing architecture to construct the joint-
task attacking framework. Their attacking losses are in the
same form as L∗adv in Eq. 2. The ASR results demonstrate
that the FR+AR outperforms all the competitors, which
quantitatively proves that leveraging the AR task as a sib-
ling task can craft more effective adversarial attacks. And
the under-performance of FR+FLD and FR+FP combina-
tions also indicate that not all face-related tasks can con-
tribute to FR attacking transferability. In turn, it confirms



Methods

Dataset CelebA-HQ
Source Model IR152+FaceNet IR152+IRSE50

Target Model
Offline Model Online Model Offline Model Online Model

IR50 ResNet101 Face++ Microsoft IR50 ResNet101 Face++ Microsoft

Face-based

Adv-Hat [37] 1.50 6.50 1.00 0.00 3.80 8.70 0.90 0.00
Adv-Glasses [57] 0.60 8.50 3.40 0.00 5.90 9.70 4.20 0.10

Adv-Face [13] 58.80 64.60 54.90 8.70 68.00 71.40 48.00 8.70
Adv-Makeup [69] 8.30 21.20 5.30 0.00 13.00 26.00 4.90 0.10

GenAP [66] 52.80 49.10 54.40 6.40 47.10 48.40 47.20 5.80

Transfer-based

PGD [45] 73.40 76.00 37.20 13.00 92.00 90.80 58.10 28.70
TAP [75] 72.80 76.20 42.90 20.40 88.30 87.60 52.90 28.90

MI-FGSM [17] 66.60 73.30 36.10 14.80 86.20 90.10 57.80 28.90
VMI-FGSM [62] 78.20 83.20 35.70 7.20 80.80 82.90 38.70 9.70

Ours Sibling-Attack 94.10 93.70 86.50 34.50 94.10 93.70 86.50 34.50
15.90 ↑ 10.50 ↑ 31.60 ↑ 14.10 ↑ 2.10 ↑ 2.90 ↑ 28.40 ↑ 5.60 ↑

Table 2. ASR results of black-box impersonation attack over CelebA-HQ dataset. Two offline models and two online commercial FR
systems (Face++ and Microsoft) are used to evaluate attacking transferability. Our method uses IR152 FR and IR152 AR for white-box
training, while other methods for comparisons are trained using two different FR models. The best-attacking performance results are shown
in bold. The 2nd place performance is shown in blue. The last row shows the promotion between best results vs. 2nd results.

Methods

Dataset LFW
Source Model IR152+FaceNet IR152+IRSE50

Target Model
Offline Model Online Model Offline Model Online Model

IR50 ResNet101 Face++ Microsoft IR50 ResNet101 Face++ Microsoft

Face-based

Adv-Hat [37] 1.80 9.30 1.80 0.10 5.00 13.40 2.20 0.10
Adv-Glasses [57] 0.80 5.00 3.70 0.00 1.90 4.90 4.70 0.00

Adv-Face [13] 13.80 29.70 30.70 0.40 13.80 24.80 19.00 0.40
Adv-Makeup [69] 2.40 9.20 5.30 0.20 4.70 12.60 5.50 0.30

GenAP [66] 4.20 13.60 15.20 0.30 4.30 14.50 13.90 0.50

Transfer-based

PGD [45] 75.80 78.20 46.70 19.10 89.30 89.70 60.40 36.50
TAP [75] 76.90 81.00 54.10 28.60 89.60 89.60 64.30 45.60

MI-FGSM [17] 68.40 71.00 41.90 21.10 92.20 86.30 60.10 38.80
VMI-FGSM [62] 76.80 80.80 41.50 10.90 76.40 79.30 40.80 11.90

Ours Sibling-Attack 98.70 98.60 96.10 59.30 98.70 98.60 96.10 59.30
21.80 ↑ 17.60 ↑ 42.00 ↑ 30.70 ↑ 6.50 ↑ 8.90 ↑ 31.80 ↑ 13.70 ↑

Table 3. ASR results of black-box impersonation attack over LFW dataset. The settings are following Tab. 2.

the necessity of selecting appropriate face-related tasks as
the attacking candidates for the FR task.

4.3. Experimental Results

Comparison with face-based methods. From Tab. 2 and 3,
we observe that the patch-based methods have weak trans-
ferability on most target models as they are designed and
tuned for physical attacks with small attacking areas. The
results show that the adversarial examples attacking the
entire face, i.e., Adv-Face, have the best transferability
compared to all the other face-based methods. However,
Sibling-Attack can still significantly outperform Adv-Face.
Comparison with transfer-based methods. We then com-
pare Sibling-Attack with four transfer-based attack meth-

ods (designed to generate strongly transferable adversar-
ial examples). As observed from the results of CelebA-
HQ in Tab. 2, Sibling-Attack dominates all the transfer-
based methods across various settings and evaluated mod-
els. Specifically, under the setting that uses IR152+FaceNet
as white-box models, Sibling-Attack outperforms the best
results of transfer-based methods under offline models by
15.90% on IR50 and 10.50% on ResNet101. Meanwhile,
Sibling-Attack outperforms the best results of other com-
petitors under online models by 31.60% on Face++ and
14.10% on Microsoft. Similarly, Tab. 2 and 3 also show
our superior performance. On average, Sibling-Attack im-
proves the state-of-the-art ASRs by 12.61% and 55.77% for
offline pre-trained and online commercial models.



Methods
Dataset LFW

Source Model Offline Model Online Model
IR152 FaceNet IRSE50 IR50 ResNet101 Face++ Microsoft

Single Model
X - - 76.50 79.30 43.40 13.10
- X - 1.30 5.10 4.90 0.20
- - X 63.40 76.80 56.50 14.20

Ensemble
X X - 75.80 78.20 46.70 19.10
X - X 89.30 89.70 60.40 36.50
- X X 65.80 77.90 59.20 16.80

Ours

Basic framework 80.90 92.20 69.80 37.20
+ Hard P.S. 97.60 96.80 77.40 45.40

+ JTMO 98.30 98.40 95.50 51.20
+ CTGS 98.70 98.60 96.10 59.30

Table 4. Comparisons of ASR results of impersonation attack over
LFW dataset. The ensemble represents the ensemble-training-
based method. The 2nd place results are shown in blue.

4.4. Ablation Study

We study the impact of the different components of
Sibling-Attack. Specifically, Sibling-Attack consists of the
following components: (a) Hard Parameter Sharing (de-
noted as “Hard P.S.”), (b) Joint-Task Meta Optimization
(JTMO), and (c) Cross-Task Gradient Stabilizing (CTGS).
As shown in Tab. 4, we investigate the performance of
Sibling-Attack with different incorporated components. The
line, “Basic framework”, is to directly average the adver-
sarial losses for FR and AR models without optimization
strategies. Its ASRs are competitive under single/ensem-
ble model (single-task) settings. Empirically, this experi-
mental result strongly supports the effectiveness of our idea
that using the information from AR tasks can help boost at-
tacking transferability against the FR task. Besides, we can
observe that the ASRs gradually increase with adding each
proposed component and significantly outperform other sin-
gle/ensemble training-based competitors. Specifically, for
two online models, Hard P.S. architecture boosts ASRs by
7.60% and 8.20%, JTMO improves 18.10% and 5.80%
compared with the Hard P.S. architecture. CTGS further
achieves improvements of 0.60% and 8.10% compared with
the Hard P.S. with JTMO. The results demonstrate the effec-
tiveness of each proposed component in Sibling-Attack.

4.5. Visualization and Analysis

Visualization of adversarial perturbations. In Fig. 3,
we visualize the generated adversarial examples/perturba-
tions from FR-S (against a single FR model, IR152), FR-
M (against two ensemble FR models, IR152 and FaceNet),
and Sibling-Attack for two pairs of target and attacker im-
ages from CelebA-HQ. For fair comparisons, we select a
cross-gender and a same-gender pair. The first column
presents the legitimate examples with query results, and the
following columns present the adversarial examples/per-
turbations under two different L∞ bounds (ξ=0.10,0.15)
with the query results from Face++ and Microsoft, respec-
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Figure 3. Visualization of our adversarial perturbations compar-
ing with attacks only against FR models. Each column shows the
adversarial example and its post-processed perturbations. Query
results from Face++ and Microsoft are shown in blue and red.

tively. Specifically, we post-process the perturbations to
make them more perceptible. In detail, we multiply all the
perturbation values by 5 then truncate the values less than
ξ/3, then project each perturbation value into [0, 255] for
better visualization. We can discern a salient shape of a face
and some facial components in the adversarial perturbations
generated by Sibling-Attack, which are different from the
perturbations generated by FR-S and FR.
Visualization of black-box adversarial gradient re-
sponses. We further explore why adversarial examples gen-
erated by Sibling-Attack exhibit more attacking transfer-
ability by employing Grad-CAM [54], as shown in Fig. 4.
For each row, we visualize the gradient responses. Specifi-
cally, FR-B (Black) denotes the black-box scenario, ensem-
ble attacking IR152 and FaceNet using PGD and visualizing
Grad-CAM on IRSE50. FR-W (White) denotes the white-
box scenario, ensemble attacking IRSE50 via PGD and vi-
sualizing Grad-CAM on IRSE50. Notably, the gradient re-
sponses in FR-W serve as the ground truth for measuring
the attacking transferability of each approach. Specifically,
the more visual similarity in gradient responses between the
evaluated approach and ground truth implies stronger trans-
ferability. We can observe that gradient responses in FR-B
seem either (1) to pay more attention to the background or
(2) overfit to some local facial regions. In contrast, gradient
responses from Sibling-Attack and the target model both fo-
cus more on the similar key facial regions, which interprets
the stronger transferability of Sibling-Attack.
Visually-indistinguishable analysis. In addition to the ef-
ficacy, we also analyze the visual indistinguishability of
our crafted adversarial samples. We use Structural Simi-
larity (SSIM) [63] and the Mean Square Error (MSE) [47]
between basic examples and corresponding adversarial ex-
amples as metrics. As shown in Table. 5, we compare
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Figure 4. Visualization using Grad-CAM [54] produces attention
maps on an offline FR model (IRSE50). We display the similarity
score between the attacker and the target face on the FR model
under each picture. Best viewed in color.
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Figure 5. ASR on Face++ and Microsoft of Sibling-Attack with
AR models trained by different facial attribute groups. The x-axis
represents the similarity score. The y-axis represents the ASR un-
der the corresponding similarity score.

SSIM and MSE with the other invisible attacking meth-
ods on LFW. The results demonstrate that the SSIM and
MSE of Sibling-Attack are competitive with other methods.
Last but not least, Sibling-Attack can achieve a much better-
attacking transferability against black-box FR models.
Transferability analysis of different facial attributes.
Our experimental results for Sibling-Attack have already
shown that exploiting an auxiliary AR model can help gen-
erate strongly transferable adversarial examples against FR
models. This section further explores which facial attributes
can bring more transferability to the FR task. Specifically,
we divide the 18 facial attributes used for training our IR152
AR model into four non-overlapping groups by position
(eye-region, nose-region, mouth-region, other-region). As
Fig. 5 shows, mouth-region facial attributes bring weaker
transferability to the FR task than attributes in other regions,
which is consistent with some existing works [15, 66] on
face recognition and face-based attacks.
Transferability analysis against AR tasks. We also ex-
plore whether attackers can adopt adversarial information
from the FR model to improve the transferability against the
black-box target AR model by Sibling-Attack. As shown in
Tab. 6, we compare the overall attributes prediction differ-
ence across 1000 image pairs for four attribute groups. The

Dataset LFW
Source Model IR152+FaceNet IR152+IRSE50

Metrics SSIM MSE SSIM MSE
PGD [45] 0.619 175.915 0.594 193.801
TAP [75] 0.613 181.279 0.591 196.942

MI-FGSM [17] 0.473 343.227 0.463 350.162
VMI-FGSM [62] 0.588 200.418 0.574 215.346

Sibling-Attack 0.626 187.491 0.626 187.491

Table 5. SSIM and MSE scores of our methods and other com-
petitors. The best results are shown in bold. The 2nd place perfor-
mance is shown in blue.

Group Eye-region Nose-region Mouth-region Other-region
Baseline AR 148.85 223.97 184.77 201.79

Ours 162.41 241.29 195.46 214.02

Table 6. Comparisons of the overall prediction difference be-
tween Sibling-Attack and a baseline white-box AR for four at-
tribute groups after attacking a black-box AR model.

overall attributes prediction changes can be computed as:

Overall Pred. Diff. =

S∑
s

‖AB(xsadv)−AB(xs)‖1 (8)

where AB(·) denotes the target AR model, which outputs
the predicting score for each attribute, and S = 1000, xsadv
is the adversarial example crafted by attacking our model or
the baseline white-box AR model. The results indicate that
Sibling-Attack can conduct more prediction difference than
the competitor, which supports that our method can also
boost the attacking transferability against the AR model.

5. Conclusion.
The proposed Sibling-Attack firstly leverages a highly

FR-related task AR as the sibling task to generate strongly
transferable adversarial attacks against FR tasks under the
black-box setting. It mainly focuses on digital scenarios,
but it is equally essential for face recognition security as to
the physical attacks since it can reveal more threatening ad-
versarial risks. Besides, the proposed method may be used
maliciously to hazard the security of existing FR models
in real life, the adversarial training and de-noise strategies
can mitigate the negative impacts. Extensive experiments
demonstrate the superior transferability of Sibling-Attack on
various offline and online commercial FR models. In the
future, we also intend to extend the proposed idea to other
computer vision and biometrics tasks besides FR.
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