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Abstract

Semi-Supervised Temporal Action Localization (SS-TAL)
aims to improve the generalization ability of action detec-
tors with large-scale unlabeled videos. Albeit the recent
advancement, one of the major challenges still remains:
noisy pseudo labels hinder efficient learning on abundant
unlabeled videos, embodied as location biases and category
errors. In this paper, we dive deep into such an important
but understudied dilemma. To this end, we propose a uni-
fied framework, termed Noisy Pseudo-Label Learning, to
handle both location biases and category errors. Specifi-
cally, our method is featured with (1) Noisy Label Ranking
to rank pseudo labels based on the semantic confidence and
boundary reliability, (2) Noisy Label Filtering to address
the class-imbalance problem of pseudo labels caused by
category errors, (3) Noisy Label Learning to penalize in-
consistent boundary predictions to achieve noise-tolerant
learning for heavy location biases. As a result, our method
could effectively handle the label noise problem and improve
the utilization of a large amount of unlabeled videos. Ex-
tensive experiments on THUMOS14 and ActivityNet v1.3
demonstrate the effectiveness of our method. The code is
available at github.com/kunnxia/NPL.

1. Introduction
Temporal Action Localization (TAL) aims at detecting

action instances of interest in an untrimmed video by locat-
ing their temporal boundaries and recognizing their action
categories. Most existing TAL methods rely on dense tem-
poral annotations for the training videos. However, labeling
human actions is very tedious and time-consuming. As a
remedy, Semi-Supervised TAL (SS-TAL) requires only a few
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Labeled Action Time(sec)
Pseudo-Label@40%

Cricket Bowling

Cricket Bowling67.4 74.8

63.1 75.5

Frisbee Catch71.2 77.0

Pseudo-Label@10%

Golf Swing

Golf Swing63.0 65.6

62.0 66.0

Golf Swing60.2 65.9

Figure 1. Illustration of label noise. Two examples demonstrate
that pseudo labels may contain location biases and category errors.
The fewer labeled videos are available, the heavier the noise of the
pseudo labels will be.

labeled videos in conjunction with a large amount of unla-
beled videos. It has attracted growing attention in academia
and industry.

Existing SS-TAL methods [12, 37, 28] are based on con-
sistency regularization or self-training. Consistency-based
methods [12, 37] aim to generate consistent action pro-
posals for the same video subject to different augmenta-
tions, e.g., time warping [12] and temporal feature shift [37].
In contrast, the self-training-based method [28] achieves
new state-of-the-art performance by alternating between
pseudo-labeling and re-training. It focuses on designing a
proposal-free framework to address proposal error propaga-
tion from [12, 37] but neglects the important role of pseudo
labels. Albeit its advancement, label noise still remains a
core challenge, hindering efficient learning on abundant un-
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labeled videos. From Figure 1, we can observe that label
noise commonly leads to two intractable issues, i.e., location
bias and category error, which become worse as the amount
of labeled videos decreases. As a result, noisy pseudo labels
will significantly degrade the performance of SS-TAL.

In this paper, we propose a Noisy Pseudo-Label Learning
(NPL) framework tailored for SS-TAL to combat detrimen-
tal label noise. It follows the self-training paradigm that
alternates between pseudo-labeling and model training. But
unlike all previous self-training methods, our NPL includes
three novel components, termed Noisy Label Ranking, Noisy
Label Filtering, and Noisy Label Learning, respectively,
which alleviate the negative effects caused by location biases
and category errors in a unified framework.

First, Noisy Label Ranking aims to rank and select high-
quality pseudo labels based on both semantic confidence and
boundary reliability. Classification scores have been widely
used in self-training to measure the quality of pseudo labels,
but they only reflect semantic confidence and fail to account
for localization reliability. To close this gap, we explicitly
model the localization reliability of a detected action in-
stance in an unlabeled video as the variance of the boundary
predictions from dense snippets within the action. We then
introduce a new integrated metric of semantic confidence
and boundary reliability to rank the pseudo labels.

Second, Noisy Label Filtering aims at addressing the
class-imbalance problem in noisy pseudo labels. Owing to
the category error, the class-imbalance problem occurs re-
gardless of whether pseudo labels are sampled based on a
confidence threshold or the number of samples. The model
will be dominated by redundant noisy pseudo labels in train-
ing, especially for the ones of category errors, and further
harm its generalization ability. To address this issue, we in-
troduce an adaptive filtering strategy to regularize the distri-
bution of pseudo labels and adaptively assign class-balanced
pseudo labels to unlabeled videos.

Last, Noisy Label Learning aims to improve the robust-
ness of training to location bias. While noisy label ranking
and filtering can improve the quality of sampled pseudo
labels, location bias will not be removed completely. Train-
ing on biased boundary labels hinders the convergence of
the model and further impedes accurate action localiza-
tion. To this end, we propose a noise-tolerant training algo-
rithm based on an unsupervised temporal consistency loss,
which penalizes inconsistent predictions from adjacent ac-
tion frames.

The main contributions are summarized as follows:

• This paper introduces a Noisy Pseudo-Label Learn-
ing (NPL) framework tailored for SS-TAL, which han-
dles both the location bias and category error in a uni-
fied framework. Extensive experiments conducted on
THUMOS14 [13] and ActivityNet v1.3 [2] demonstrate
the effectiveness of the proposed method.

• We propose a Noisy Label Ranking method to rank
and select high-quality pseudo labels based on a new
integrated metric of semantic confidence and boundary
reliability.

• We propose a Noisy Label Filtering method to tackle
the largely ignored class-imbalance problem in pseudo
labels based on a new adaptive filtering strategy.

• We introduce a Noisy Label Learning method, which
adopts an unsupervised temporal consistency loss to
penalize inconsistent predictions from adjacent frames
for noise-tolerant learning.

2. Related Work
Temporal Action Localization. The recent signifi-

cant advancement of TAL arguably owes to the availabil-
ity of large-scale and well-annotated datasets. We can
roughly categorize existing TAL methods into three groups.
Anchor-based methods [43, 5, 45, 52, 36] employ multi-
scale anchors that may contain an action and refine them
via a boundary regression head. GTAN [25] dynami-
cally optimizes the scale of each anchor via Gaussian ker-
nels. G-TAD [45] improves temporal anchor representa-
tion with semantic and temporal context. Anchor-free meth-
ods [54, 29, 18, 27, 40, 39, 41] directly learn to predict action
proposals by grouping possible start/end locations [20, 19]
or regressing the distance to action boundaries [18, 49].
Transformer-based methods [31, 24, 49, 8] adopt the Trans-
former architecture [33, 3] for action localization and achieve
remarkable performance on TAL benchmarks. In addition,
unsupervised temporal action localization [11, 50] has made
remarkable achievements without requiring any annotations.

Semi-Supervised Learning. Semi-Supervised Learn-
ing (SSL) methods mostly focus on image classification.
They can be classified into two categories. Consistency-
based methods [32, 26, 51, 1] enforce the model to produce
consistent predictions across label-preserving image aug-
mentations. Self-training methods [42, 15, 10] retrain the
model with high-confidence pseudo labels of unlabeled raw
data. Thereby, the final performance is largely limited by the
quality of pseudo labels generated by an inaccurate model
trained using a few labeled data. Much effort tries to remedy
noisy pseudo labels [16, 23, 44, 55, 17, 46]. Li et al. [16]
train a noise-tolerant model, which is encouraged to produce
consistent predictions under a variety of noisy synthetic la-
bels. DSL [7] directly ignores the gradient computation
and propagation for ambiguous pseudo labels. Wang et
al. [38] propose an iterative training method to identify and
down-weigh noisy samples. Chen et al. [6] address severe
confirmation bias during self-training and generate unbiased
pseudo labels to drive student learning. In this paper, we
focus on the challenging SS-TAL problem.
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Figure 2. An overview of our proposed Noisy Pseudo-Label Learning framework. The training data contain both labeled and unlabeled
videos. We first obtain a pre-trained model using a small amount of labeled videos and generate pseudo labels on unlabeled videos. To deal
with noise in pseudo labels, Noisy Label Ranking first assesses the quality of pseudo labels through both semantic confidence and boundary
reliability. Noisy Label Filtering then adaptively filters pseudo labels so that the model learning will not be dominated by pseudo labels with
category errors. To make the training robust to label noise, we introduce dense temporal consistency training with Lcons

u . The model can be
optimized by the final loss, which is the sum of Ls, Lcls

u , and Lcons
u .

Semi-Supervised Temporal Action Localization. SS-
TAL is a worthwhile but under-explored field. Existing
works [12, 37, 9, 28] are intrinsically driven by SSL. Some
works [12, 37, 9] aim to improve the consistent predictions
of the teacher-student network when video features are aug-
mented by different temporal perturbations, e.g., time warp-
ing/masking [12], temporal feature shift/flip [37] or spatio-
temporal feature crossover [9]. The other one [28] focuses
on addressing proposal error propagation, which alternates
between predicting and applying pseudo labels. However, all
these approaches fail to dive deep into the major challenge of
SS-TAL, i.e., noisy pseudo labels hindering efficient learning
on unlabeled videos. We attribute the label noise problem
of pseudo labels from unlabeled videos to the semantic un-
certainty and boundary ambiguity of labeled actions. This
paper tackles both the location bias and category error of
pseudo labels into a unified framework for efficient learning
from unlabeled videos.

3. Method

3.1. Preliminary

Problem Setting. Semi-supervised temporal action local-
ization (SS-TAL) aims to perform TAL from a small amount
of labeled videos {Xi|Nl

i=1} and a large amount of unlabeled
videos {Ui|Nu

i=1}, where Nl and Nu are the numbers of la-
beled and unlabeled videos, respectively. In a labeled video,
its annotation is a set of action instances, and each action in-
stance could be represented as (ts, te, c), where ts, te, and c

denote the start time, end time, and action class, respectively.
Feature Encoding. Following conventions [45, 47], we

sample a video snippet from every few consecutive frames.
Then, we adopt a fine-tuned two-stream network to extract
RGB and optical flow features at each video snippet.

Overview. Recent anchor-free TAL methods [18, 49, 27]
are more attractive and practical since they are powerful and
portable to be deployed in many real-world applications. We
take the anchor-free detector [49] as our baseline, where each
video snippet is directly supervised by the corresponding
labels, i.e., distances to boundaries and the action category.

Our SS-TAL framework follows the self-training
paradigm [30], which can be decomposed into two steps.
In the first step, we obtain a pre-trained model based on la-
beled videos with a supervised loss and then generate pseudo
labels on unlabeled videos. In the second step, we update the
model parameters with a semi-supervised training objective,
including a supervised loss and an unsupervised loss:

L = Ls + αLu, (1)

where Ls and Lu denote the supervised loss of labeled
videos and the unsupervised loss of unlabeled videos, respec-
tively, and α controls the contribution of the unsupervised
loss. Both of them are normalized by the corresponding
numbers of training samples as follows:

Ls =
1

Nl

Nl∑
i=1

(
Lcls
s (Xi) + Lreg

s (Xi)
)
, (2)
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Lu =
1

Nu

Nu∑
i=1

(
Lcls
u (Ui) + Lreg

u (Ui)
)
, (3)

where Lcls is a classification loss, Lreg is a regression loss,
and Nl and Nu denote the number of training samples for
labeled and unlabeled videos, respectively.

We claim that the major obstacle that hinders self-training
performance lies in label noise, which leads to two issues: lo-
cation biases and category errors. In this paper, we propose a
Noisy Pseudo-Label Learning framework (NPL) to alleviate
the negative effects caused by location biases and category
errors for SS-TAL. The pipeline of our method is illustrated
in Figure 2. It includes three novel components: Noisy Label
Ranking, Noisy Label Filtering, and Noisy Label Learning,
described in the following sections.

3.2. Noisy Label Ranking

In SS-TAL, the quality of pseudo labels can be measured
from two perspectives, i.e., semantic confidence and bound-
ary reliability. It is desirable to have high-quality pseudo
labels for semi-supervised learning.

The majority of TAL frameworks [20, 53, 52, 36] rely
on the foreground score of an anchor or a proposal to mea-
sure its quality. However, the foreground score only reflects
semantic confidence and cannot account for boundary reli-
ability. From Figure 3 (a), we can observe that foreground
scores may not strongly correlate with the localization qual-
ity (i.e., IoU w.r.t. ground truth). Thus, it is necessary to
measure the quality of pseudo labels from both aspects of
action classification and boundary localization.

For labeled videos, anchors or proposals corresponding to
the same action instance are supervised by the same ground
truth during training. Thus, they are gradually regressed to
the similar temporal boundary locations. This motivates us
to use the consistency of the boundary predictions to measure
their location reliability. Specifically, taking our anchor-free
framework as an example, we can obtain dense predictions
of action instances before the post-processing phase. Given
a prediction pj = (t̂s,j , t̂e,j , cj) where t̂s,j and t̂e,j are the
predicted start and end boundaries of the j-th video snippet
respectively and cj is its foreground score, we can obtain
a set of predictions {pn}Na

n=1 from its Na adjacent snippets.
Then, we formulate the boundary ambiguity of pj as follows:

σ̄j = σ̂s,j + σ̂e,j ,

σ̂s,j =
σs,j

d (pj)
,

σ̂e,j =
σe,j

d (pj)
,

(4)

where σs,j and σe,j are the variances of the start and end
boundaries of {pn}Na

n=1, respectively. σ̂s,j and σ̂e,j are nor-
malized by their duration d (pj). A smaller boundary vari-
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Figure 3. Each star represents a prediction result (i.e., a pseudo
label) on 60% unlabeled videos based on the model trained with
40% labeled videos on THUMOS14. (a) depicts the correlation
between the foreground score and the IoU with ground truth. (b)
depicts the correlation between the boundary variance and the IoU
with ground truth. It can be observed that the boundary variance
highly correlates with the localization quality.

ance σ̄j indicates lower boundary ambiguity of the predic-
tion pj , thus leading to higher localization reliability. In
Figure 3 (b), we experimentally illustrate the correlation be-
tween the boundary variance and IoU w.r.t ground truth. We
can observe that boundary variances could better measure
the localization quality of pseudo labels than the classifi-
cation scores. Particularly, this motivates us to define the
confidence score of pj as:

sj =
cj
σ̄j

. (5)

Eq. (5) provides a comprehensive metric to measure the
quality of pseudo labels by their semantic confidence (fore-
ground score c) and boundary ambiguity (boundary variance
σ̄). As a result, our Noisy Label Ranking could improve the
quality of pseudo labels only from intrinsic video snippets
without requiring additional learnable networks or hyper-
parameters.

3.3. Noisy Label Filtering

Training on a few labeled videos inevitably produces
noisy pseudo labels with category errors on unlabeled videos.
As a result, the frequencies of some action categories in the
selected pseudo labels will be much larger or smaller than
their natural frequencies in the videos, regardless of whether
pseudo labels are sampled based on a confidence threshold or
the number of samples. We call this phenomenon the class-
imbalance problem of pseudo labels in SS-TAL, illustrated
in Figure 4. For example, the frequency of “Golf Swing” in
pseudo labels is much higher than that in ground truth labels,
while the frequency of “Throw Discus” is much lower in the
pseudo labels.

Under this class-imbalance problem, overwhelming
pseudo labels with category errors will dominate the model
learning and further aggravate the semantic uncertainty of
actions of category errors, resulting in limited gains.
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Figure 4. Illustration of the class-imbalance problem of pseudo
labels obtained on 60% unlabeled THUMOS14. The horizontal
axis of the histogram represents the class name, and the vertical
axis represents the ratio between the number of pseudo labels and
the number of ground truth labels. It can be observed that our
Noisy Label Filtering could alleviate the class-imbalance problem
of pseudo labels.

To address this class-imbalance problem, we introduce
an adaptive filtering strategy to regularize the distribution
of pseudo labels for each category. Concretely, we arrange
dense labels according to the category of actions and the
number of pseudo labels in an unlabeled video, as follows:

Kadp =
| {pcn}

Nv

n=1 |
Nv

·Npos, (6)

where Nv is the total number of pseudo labels within a video,
and Npos is a hyper-parameter to control the number of pos-
itive predictions. Eq. (6) is used to adaptively select the
number Kadp of class-specific pseudo labels for the category
c in each unlabeled video. From Figure 4, we experimen-
tally demonstrate that our adaptive filtering strategy could
address the class-imbalance distribution of pseudo labels.
As a result, our Noisy Label Filtering could not only assign
accurate pseudo labels to improve the model learning but
also prevent the pseudo labels from being dominated by over-
whelming pseudo labels with category errors, while it also
avoids tediously adjusting heuristic thresholds.

3.4. Noisy Label Learning

The boundary ambiguity of labeled actions gives rise
to noisy pseudo labels with location biases. Subsequently,
training on the biased boundaries results in the boundary
ambiguity of unlabeled actions and impedes accurate action
localization.

To remedy it, we propose a noise-tolerant training algo-
rithm for unlabeled videos with heavy location biases. It
aims to penalize inconsistency boundary predictions from
adjacent feature locations within a video feature sequence.

Our unsupervised temporal consistency loss is defined as
follows:

Lcons
u =

1

Mu(Mp − 1)

Mu∑
j=1

Mp−1∑
i=1

|bji+1 − bji |, (7)

where Mu denotes the number of pseudo labels within an
unlabeled video. Mp represents the number of the train-
ing snippets within an action. bi represents the predicted
start/end boundary locations from the i-th snippet. In this
way, the model could learn to produce more reliable pre-
dictions. Consequently, our complete unsupervised loss is
denoted below:

Lu =
1

Nu

Nu∑
i=1

(
Lcls
u (Ui) + Lcons

u (Ui)
)
. (8)

The Noisy Label Learning makes the training robust to
location biases in the pseudo labels. Finally, the model can
be optimized by the sum of Ls and Lu on all videos.

4. Experiments
4.1. Datasets and Metrics

Evaluation Datasets. We evaluate our proposed method
on two benchmark TAL datasets, i.e., THUMOS14 [13]
and ActivityNet v1.3 [2]. THUMOS14 [13] is a standard
benchmark for TAL. It contains 200 validation videos and
213 testing videos, including 20 action categories. It is
very challenging since each video has more than 15 action
instances. Following the common setting [48], we use the
validation set for training and evaluate on the testing set.

ActivityNet v1.3 [2] is a large-scale benchmark for video-
based action localization. It contains 10k training videos and
5k validation videos corresponding to 200 different actions.
Following the standard practice [22], we train our method
on the training set and test it on the validation set.

Evaluation Metrics. We use the mean Average Preci-
sion (mAP) as the evaluation metric. The tIoU thresholds
are [0.3 : 0.1 : 0.7] for THUMOS14 and [0.5 : 0.05 : 0.95]
for ActivityNet v1.3. We report the average mAP of the IoU
thresholds between 0.5 and 0.95 with the step of 0.05 on
ActivityNet v1.3. Also, we present the average mAP of the
tIoU thresholds from 0.3 to 0.7 on THUMOS14.

The goal of SS-TAL is to use a large amount of unlabeled
data to improve a well-trained detector on a small amount of
labeled data. We randomly sample 10%, 20%, 40%, and 60%
of the training data as labeled data and treat the remainder
as unlabeled data.

4.2. Implementation Details

We implement our semi-supervised action localization
framework based on the recent prevalent anchor-free detector
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Label Method Backbone THUMOS14 (%) ActivityNet v1.3 (%)

0.3 0.4 0.5 0.6 0.7 Avg. 0.5 0.75 0.95 Avg.

10%

ActF⋆ [49] I3D 28.5 22.9 14.1 8.2 4.1 15.6 47.8 24.2 1.7 25.6
ActF [49] + MixUp [51] I3D 29.7 24.2 14.5 9.6 5.4 16.7 49.4 27.9 3.1 28.8

NPL (ActF) I3D 32.8 29.6 20.1 11.7 7.2 20.3 51.9 33.4 3.6 32.5

SSP [12] TSN 44.2 34.1 24.6 16.9 9.3 25.8 38.9 28.7 8.4 27.6
SSTAP [37] TSN 45.6 35.2 26.3 17.5 10.7 27.0 40.7 29.6 9.0 28.2
SPOT [28] TSN 49.4 40.4 31.5 22.9 12.4 31.3 49.9 31.1 8.3 32.1

NPL (BMN) TSN 50.0 41.7 33.5 23.6 13.4 32.4 50.9 32.0 7.9 32.6

20%

ActF⋆ [49] I3D 49.1 41.6 32.6 21.5 12.1 31.4 51.2 34.3 3.8 32.9
ActF [49] + MixUp [51] I3D 51.2 43.2 34.0 23.9 14.1 33.3 52.9 34.7 3.9 33.3

NPL (ActF) I3D 54.5 47.1 39.3 29.7 18.5 37.8 53.1 35.8 3.9 33.8

SPOT [28] TSN 52.6 43.9 34.1 25.2 16.2 34.4 51.7 32.0 6.9 32.3
NPL (BMN) TSN 53.9 45.6 36.2 26.9 16.5 35.8 52.1 32.9 7.9 32.9

40%

ActF⋆ [49] I3D 69.0 60.4 49.3 31.5 19.3 45.9 53.2 35.7 3.8 34.2
ActF [49] + MixUp [51] I3D 69.7 61.9 52.4 34.4 20.1 47.7 53.1 36.0 4.3 34.5

NPL (ActF) I3D 71.9 65.4 55.7 40.9 23.4 51.5 53.6 36.5 4.6 35.3

SPOT [28] TSN 54.4 45.8 37.2 29.7 19.4 37.3 53.3 33.0 6.6 33.2
NPL (BMN) TSN 56.2 46.7 38.8 30.3 19.5 38.3 53.4 33.9 8.1 33.8

60%

ActF⋆ [49] I3D 71.5 65.6 59.9 47.3 32.7 55.4 53.9 36.1 5.7 35.0
ActF [49] + MixUp [51] I3D 72.2 67.5 61.2 48.7 34.0 56.7 54.1 36.4 5.7 35.2

NPL (ActF) I3D 74.5 69.9 62.8 51.1 36.6 59.0 54.3 36.7 6.5 35.8

SSP [12] TSN 53.2 46.8 39.3 29.7 19.8 37.8 49.8 34.5 7.0 33.5
SSTAP [37] TSN 56.4 49.5 41.0 30.9 21.6 39.9 50.1 34.9 7.4 34.0
SPOT [28] TSN 58.9 50.1 42.3 33.5 22.9 41.5 52.8 35.0 8.1 35.2

NPL (BMN) TSN 59.0 51.4 42.9 34.3 23.3 42.2 53.9 35.8 8.5 35.7
Table 1. Performance comparison with state-of-the-art SS-TAL methods on THUMOS14 testing set and ActivityNet v1.3 validation
set. Notably, SSP and SSTAP employ UntrimmedNet [34] trained with 100% class labels for proposal classification. ActF refers to
ActionFormer [49]. ⋆ means using only labeled training videos.

ActionFormer [49], which is composed of a self-attention
backbone [33], an FPN [21] neck and two parallel heads.
Also, we combine the proposed semi-supervised method
with BMN [19], which is a two-stage proposal-based de-
tector. For video feature encoding, we used two popular
backbones, i.e., two-stream network [35] and I3D [4] pre-
trained on Kinetics [14] to extract the video features, fol-
lowing [18, 49]. For THUMOS14, the initial learning rate
is 1e-4, and a cosine learning rate decay is used. The mini-
batch size is 2, and a weight decay of 1e-4 is used. For
ActivityNet v1.3, the learning rate is 1e-3, the mini-batch
size is 32, and the weight decay is 1e-4.

For semi-supervised configurations, an initial model is
trained on available labeled videos, where labeling ratios are
set to 10%, 20%, 40%, and 60%. Further using this well-
trained model generates pseudo labels. For the re-training
phase, we pre-train the model on the labeled data and then
compute the supervised loss and unsupervised loss for 40
epochs (THUMOS14) and 15 epochs (ActivityNet v1.3).
We set α = 1 and Npos = 15. We apply background data
augmentation to 10% of unlabeled videos for performance
improvements. Additional implementation details and more

attempts for SS-TAL refer to the supplementary material.

4.3. Comparison with State-of-the-art Methods

THUMOS14. We compare the proposed method NPL
with existing SS-TAL methods in Table 1, where we combine
two different frameworks, ActionFormer [49] and BMN [19]
with our NPL. We report mAP at different tIoU thresholds as
well as average mAP between 0.3 and 0.7 with the step of 0.1.
Also, we reproduce the SPOT [28] results of 20% and 40%
labeling ratios from the source code for comparison. When
labeled data is scarce (i.e., 10% and 20% labeling ratios),
our method achieves the competitive performance compared
to existing methods. Especially, our method outperforms
the baseline, semi-supervised ActF [49], by a large margin
with 10% labeled THUMOS14. When more labeled data is
accessible (i.e., 40% and 60% labeling ratios), our method
outperforms all the competing methods, demonstrating the
effectiveness and superiority of our method.

ActivityNet v1.3. We also conduct experiments on the
more challenging benchmark ActivityNet v1.3. As depicted
in Table 1, the proposed method also achieves significant
performance gains over all the compared methods. When
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Label Method mAP (%)

0.3 0.5 0.7 Avg.

10%

baseline 29.5 15.8 5.0 16.8
+NR 30.7 16.9 6.3 18.0
+NF 32.0 18.5 6.9 19.1
+NL 32.8 20.1 7.2 20.3

40%

baseline 70.1 49.5 20.2 47.1
+NR 70.7 52.1 20.7 48.5
+NF 71.6 54.4 21.3 50.3
+NL 71.9 55.7 23.4 51.5

Table 2. Ablation study on effectiveness of each component of the
proposed method on THUMOS14, using 10% and 40% labeled
videos. + means training by the proposed method.

Label Method Class (%) Avg. tIoU (%)

10% baseline 21.0 27.4
NPL 25.9 36.2

40% baseline 73.0 54.2
NPL 74.4 59.0

Table 3. Ablation study on the quality of pseudo labels in terms of
action classification accuracy (Class) and average tIoU (Avg. tIoU),
using 10% and 40% labeled videos.

there are more unlabeled data introduced, our method also
can improve the average mAP, which mainly comes from
the high-quality pseudo labels for effective training.

4.4. Ablation Study

To better understand how the proposed method works,
we conduct a series of ablation studies, where we use Ac-
tionFormer [49] as the localization framework with I3D [4].

Effectiveness of individual component. To validate our
key designs, we ablate the effects of the proposed Noisy La-
bel Ranking (NR), Noisy Label Filtering (NF), and Noisy La-
bel Learning (NL). The results are shown in Table 2. Under
the 40% labeling ratio, one can see that our model equipped
with NR improves performance by 1.4%. Further applying
our adaptive filtering strategy and the temporal consistency
learning, the performance reaches an average mAP of 51.5%.
In summary, our designs significantly improve the utilization
of unlabeled data for effectively semi-supervised learning.

Quality improvements of pseudo labels. The quality
of pseudo labels is the important indicator for the SS-TAL
performance improvement. We further study the quality of
psudo labels from their average temporal IoU (tIoU) w.r.t
ground truth and classification accuracy (Acc.). We report
the comparison results in Table 3. It can be observed that
the significant improvements attribute to our Noisy Label
Ranking to rank and select high-quality pseudo labels based
on the comprehensive metric, i.e., semantic confidence and
localization reliability, as well as our Noisy Label Filtering to

Figure 5. Curves of averaged IoU vs. foreground score or boundary
variance, where each averaged IoU is calculated by the foreground
scores or boundary variances of the samples in different intervals.

Method mAP (%)

0.3 0.4 0.5 0.6 0.7 Avg.

θs = 0.3 70.1 63.5 52.9 37.4 22.2 49.2
top-10 71.0 63.3 53.4 38.1 22.8 49.7

NF 71.9 65.4 55.7 40.9 23.4 51.5
Table 4. Comparison of pseudo-label filtering strategies on THU-
MOS14 with 40% labeled videos and 60% unlabeled videos.

adaptively assign class-balanced pseudo labels for training.
Visualization of noisy label ranking. To further support

our motivation of the noisy label ranking, we add a curve
of averaged IoU (between pseudo labels and ground truth)
versus foreground score or boundary variance, where each
averaged IoU corresponds to the foreground scores or bound-
ary variances of the samples in different intervals, as shown
in Figure 5. Particularly, the Pearson correlation coefficient
between IoU and boundary variance is 0.496, while that
between IoU and foreground score is 0.449.

Superiority of adaptive filtering strategy. Our Noisy
Label Filtering (NF) could alleviate the class-imbalance
problem of pseudo labels caused by the category error. In
addition, it also could avoid tediously adjusting hard-crafted
thresholds or numbers for pseudo-label filtering. To demon-
strate this superiority, we experiment with two common
approaches as a reference, i.e., single thresholding and fixed
number strategies. More specifically, we empirically set the
foreground score threshold θs to 0.3, where instances are
regarded as foreground if their scores are above the threshold
and background otherwise. Besides, we also empirically se-
lect top-10 confidence predictions for each unlabeled video.
As shown in Table 4, these approaches cannot achieve sat-
isfactory performance. In contrast, our adaptive filtering
strategy could adaptively sample class-specific pseudo la-
bels, showing its effectiveness and importance.

Analysis of temporal consistency. Our Noisy Label
Learning introduces a temporal consistency loss to tackle the
location bias problem by penalizing inconsistent boundary
predictions from each intrinsic video snippet. We conduct
an ablation study on this key design, where we train the
pre-trained model with and without the temporal consistency
only on 60% unlabeled videos, as shown in Figure 6. Based
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Figure 6. Comparison of model performance and convergence
speed with and without the temporal consistency loss on THU-
MOS14.

Npos
mAP (%)

0.3 0.5 0.7 Avg.

5 71.5 55.2 22.8 51.0
15 71.9 55.7 23.4 51.5
30 71.0 55.3 22.5 50.7

Table 5. Comparison of mAP with various values of Npos using
40% labeled THUMOS14.

Label 100% 60% 40% 20% 10%

mAP@0.5 (%) 71.0 62.8 55.7 39.3 20.1
mAP@Avg (%) 66.8 59.0 51.5 37.8 20.3

Table 6. Comparison of mAP with various labeling ratios on THU-
MOS14, where the remainder is treated as unlabeled data.

on the temporal consistency, it obtains a 1.2% improvement
on the average mAP. Apart from the performance gain, our
contribution can also significantly boost the convergence
speed. Both of these advances validate the effectiveness of
the proposed Noisy Label Learning.

Choice of hyper-parameters. Npos is a pre-defined
value to handle the number of positive samples for unlabeled
videos. We conduct an ablation study on the hyper-parameter
Npos under 40% labeling ratio. From Table 5, it can be ob-
served that the performance peaks around Npos = 15. A
large value such as Npos = 30 will introduce more low-
quality pseudo labels and confuse the model in training,
while a small value such as Npos = 5 only provides a small
number of samples for training so as to obtain limited gains.

Bottleneck of our NPL. The performance limitation of
SS-TAL following self-training lies in the noise level of
pseudo labels. To explore the performance bottleneck, we
train a fully-supervised model with 100% labeled videos
on THUMOS14. The experimental results in Table 6 show
that our method still has great room for improvement. Also,
it demonstrates that the negative impacts of the label noise
problem cannot be ignored in semi-supervised learning.

Time (sec)
Ground Truth 74.2 82.7Throw Discus
SPOT@10% 77.4 84.0Throw Discus
SPOT@40% 75.1 83.0Throw Discus

Ours@10% 74.8 83.6Throw Discus
Ours@40% 74.6 83.1Throw Discus

(b) THUMOS14

(a) ActivityNet v1.3

SPOT@10% 26.0 40.0Swimming
SPOT@40% 24.9 41.0Swimming
Ours@10% 25.5 41.5Swimming
Ours@40% 25.0 41.5Swimming

Time (sec)
Ground Truth 24.7 41.7Swimming

Figure 7. Qualitative SS-TAL result comparison of our proposed
method with SPOT [28] on two untrimmed videos from (a) Activi-
tyNet v1.3 and (b) THUMOS14, respectively.

4.5. Visualization Analysis

To further validate the effectiveness of the proposed
method, we provide some qualitative results by prior art
SPOT [28] and our model with 10% and 40% labeled data
on both ActivityNet v1.3 and THUMOS14. From the il-
lustration in Figure 7, we can observe that our method can
localize the target actions more accurately, demonstrating
the effectiveness and superiority of our method.

5. Conclusion
In this paper, we propose a novel Noisy Pseudo-Label

Learning framework tailored for SS-TAL to tackle the label
noise problem. Specifically, we first present a new integrated
metric of semantic confidence and boundary reliability for
ranking high-quality pseudo labels. Then, an adaptive fil-
tering strategy alleviates the class-imbalance distribution of
pseudo labels caused by the category error. Finally, we in-
troduce an unsupervised temporal consistency loss to tackle
biased boundary labels for noise-tolerant learning. Exper-
iments show that the effectiveness of our method on both
THUMOS14 and ActivityNet v1.3.
Limitation. The number of positive snippets inside an action
instance affects our method for quality ranking and noise-
tolerant training, which indicates that tackling short action
instances remains a challenging problem.
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