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ABSTRACT

Quality assessment of in-the-wild videos is a challenging problem

because of the absence of reference videos and shooting distortions.

Knowledge of the human visual system can help establish methods

for objective quality assessment of in-the-wild videos. In this work,

we show two eminent efects of the human visual system, namely,

content-dependency and temporal-memory efects, could be used

for this purpose. We propose an objective no-reference video qual-

ity assessment method by integrating both efects into a deep neu-

ral network. For content-dependency, we extract features from a

pre-trained image classiication neural network for its inherent

content-aware property. For temporal-memory efects, long-term

dependencies, especially the temporal hysteresis, are integrated

into the network with a gated recurrent unit and a subjectively-

inspired temporal pooling layer. To validate the performance of our

method, experiments are conducted on three publicly available in-

the-wild video quality assessment databases: KoNViD-1k, CVD2014,

and LIVE-Qualcomm, respectively. Experimental results demon-

strate that our proposed method outperforms ive state-of-the-art

methods by a large margin, speciically, 12.39%, 15.71%, 15.45%, and

18.09% overall performance improvements over the second-best

method VBLIINDS, in terms of SROCC, KROCC, PLCC and RMSE,

respectively. Moreover, the ablation study veriies the crucial role

of both the content-aware features and the modeling of temporal-

memory efects. The PyTorch implementation of our method is

released at https://github.com/lidq92/VSFA.
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Figure 1: [Best viewed when zoomed in] Human judgments

of visual quality are content-dependent. The irst/second

row shows a pair of in-focus/out-of-focus images. Every two

images in a pair are taken in the same shooting condition,

and they only difer in image content. However, user study

shows that humans consistently prefer the left ones.

1 INTRODUCTION

Nowadays, most videos are captured in the wild by users with

diverse portable mobile devices, which may contain annoying dis-

tortions due to out of focus, object motion, camera shake, or un-

der/over exposure. Thus, it is highly desirable to automatically

identify and cull low-quality videos, prevent their occurrence by

quality monitoring processes during acquisition, or repair/enhance

them with the quality-aware loss. To achieve this goal, quality as-

sessment of in-the-wild videos is a precondition. However, this

is a challenging problem due to the fact that the łperfectž source

videos are not available and the shooting distortions are unknown.

There is an essential diference between in-the-wild videos and

synthetically-distorted videos, i.e., the former contains a mass of

content and may sufer from complex mixed real-world distor-

tions that are temporally heterogeneous. On account of this, cur-

rent state-of-the-art video quality assessment (VQA) methods (e.g.,

VBLIINDS [35] and VIIDEO [28]) validated on traditional synthetic

VQA databases [30, 38] fail in predicting the quality of in-the-wild

videos [10, 23, 31, 42].

This work focuses on the problem łquality assessment of in-

the-wild videosž. Since humans are the end-users, we believe that

knowledge of the human visual system (HVS) can help establish

objective methods for our problem. Speciically, two eminent efects

of HVS are incorporated into our method.

Human judgments of visual image/video quality depend

on content, which is well known inmany subjective experiments [1,

6, 26, 41, 43, 46, 53]. For images, Siahaan et al. show that scene and
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object categories inluence human judgments of visual quality for

JPEG compressed and blurred images [41]. Two compressed im-

ages with the same compression ratio may have diferent subjective

quality if they contain diferent scenes [43], since the scene con-

tent can have diferent impact on the compression operations and

the visibility of artifacts. For videos, similar content dependency

can be found in compressed video quality assessment [26, 46] and

quality-of-experience of streaming videos [1, 6]. Unlike quality

assessment of synthetically-distorted images/videos, quality assess-

ment of in-the-wild images/videos essentially requires to compare

cross-content image/video pairs (i.e., the pair from diferent ref-

erence images/videos) [25], which may be more strongly afected

by content. To verify the correctness of this efect on our problem,

we collect data and conduct a user study. We ask 10 human sub-

jects to do the cross-content pairwise comparison for 201 image

pairs. More than 7 of 10 subjects prefer one image to the other

image in 82 image pairs. For illustration, two pairs of in-the-wild

images are shown in Figure 1. Each image pair is taken in the same

shooting conditions (e.g., focus length, object distance). For the

in-focus image pair in the irst row, 9 of 10 subjects prefer the left

one. For the out-of-focus image pair in the second row, 8 of 10

subjects prefer the left one to the right one. The only diference

within a pair is the image content, so from our user study, we can

infer that image content can afect human perception on quality

assessment of in-the-wild images. We also conduct a user study for

43 video pairs, where every two videos in a pair are taken in similar

settings. Similar results are found that video content could have

impacts on judgments of visual quality for in-the-wild videos. In

the supplemental material, we provide a video pair, for which all 10

subjects prefer the same video. Thus, we consider content-aware

features in our problem to address the content dependency.

Human judgments of video quality are afected by their

temporal memory. Temporal-memory efects indicate that hu-

man judgments of current frame rely on the current frame and

information from previous frames. And this implies that long-term

dependencies exist in the VQA problem. More speciically, humans

remember poor quality frames in the past and lower the perceived

quality scores for following frames, even when the frame qual-

ity has returned to acceptable levels [37]. This is called the tem-

poral hysteresis efect. It indicates that the simple average pool-

ing strategy overestimates the quality of videos with luctuating

frame-wise quality scores. Since the in-the-wild video contains

more temporally-heterogeneous distortions than the synthetically-

distorted video, human judgments of its visual quality relect stronger

hysteresis efects. Therefore, in our problem, modeling of temporal-

memory efects should be taken into account.

In light of the two efects, we propose a simple yet efective

no-reference (NR) VQA method with content-aware features and

modeling of temporal-memory efects. To begin with, our method

extracts content-aware features from deep convolutional neural

networks (CNN) pre-trained on image classiication tasks, for they

are able to discriminate abundant content information. After that,

it includes a gated recurrent unit (GRU) for modeling long-term

dependencies and predicting frame quality. Finally, to take the tem-

poral hysteresis efects into account, we introduce a diferentiable

subjectively-inspired temporal pooling model, and embed it as a

layer into the network to output the overall video quality.

To demonstrate the performance of our method, we conduct

experiments on three publicly available databases, i.e., KoNViD-

1k [12], LIVE-Qualcomm [10] and CVD2014 [31]. Our method is

comparedwith ive state-of-the-art methods, and its superior perfor-

mance is proved by the experimental results. Moreover, the ablation

study veriies the key role of each component in our method. This

suggests that incorporating the knowledge of HVS could make

objective methods more consistent with human perception.

The main contributions of this work are as follows:

• An objective NR-VQA method and the irst deep learning-

based model is proposed for in-the-wild videos.

• To our best knowledge, it is the irst time that a GRU net-

work is applied to model the long-term dependencies for

quality assessment of in-the-wild videos and a diferentiable

temporal pooling model is put forward to account for the

hysteresis efect.

• The proposed method outperforms the state-of-the-art meth-

ods by large margins, which is demonstrated by experiments

on three large-scale in-the-wild VQA databases.

2 RELATED WORK

2.1 Video Quality Assessment

Traditional VQAmethods consider structures [47, 48], gradients [21],

motion [22, 36], energy [18], saliency [52, 54], or natural video sta-

tistics [9, 28, 35, 57]. Besides, quality assessment can be achieved

by fusion of primary features [8, 19]. Recently, four deep learning-

based VQA methods are proposed [15, 20, 55, 56]. Kim et al. [15]

utilize CNN models to learn the spatio-temporal sensitivity maps.

Liu et al. [20] exploit the 3D-CNN model for codec classiication

and quality assessment of compressed videos. Zhang et al. [55, 56]

apply the transfer learning technique with CNN for video quality

assessment. However, all these methods are trained, validated, and

tested on synthetically distorted videos. Streaming video quality-

of-experience is relevant to video quality but beyond the scope

of this paper, and an interested reader can refer to the good sur-

veys [14, 39].

Quality assessment of in-the-wild videos is a quite new topic in

recent years [10, 12, 31, 42]. Four relevant databases have been con-

structed and corresponding subjective studies have been conducted.

Overall, CVD2014 [31], KoNViD-1k [12], and LIVE-Qualcomm [10]

are publicly available, while LIVE-VQC [42] will be available soon.

Due to the fact that we cannot access the pristine reference videos in

this situation, only NR-VQA methods are applicable. Unfortunately,

the evaluation of current state-of-the-art NR-VQA methods [28, 35]

on these video databases shows a poor performance [10, 23, 31, 42].

Existing deep learning-based VQA models are unfeasible in our

problem since they either need the reference information [15, 55, 56]

or only suit for compression artifacts [20]. Thus, this motivates us

to propose the irst deep learning-based model that is capable of

predicting the quality of in-the-wild videos.

2.2 Content-Aware Features

Content-aware features can help addressing content-dependency

on the predicted image/video quality, so as to improve the per-

formance of objective models [13, 17, 41, 49]. Jaramillo et al. [13]
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Figure 2: The overall framework of the proposed method. It mainly consists of two modules. The irst module łcontent-aware

feature extractionž is a pre-trained CNN with efective global pooling (GP) serving as a feature extractor. The second module

łmodeling of temporal-memory efectsž includes two sub-modules: one is a GRU network for modeling long-term dependen-

cies; the other is a subjectively-inspired temporal pooling layer accounting for the temporal hysteresis efects. Note that the

GRU network is the unrolled version of one GRU and the parallel CNNs/FCs share weights.

extract handcrafted content-relevant features to tune existing qual-

ity measures. Siahaan et al. [41] and Wu et al. [49] utilize semantic

information from the top layer of pre-trained image classiication

networks to incorporate with traditional quality features. Li et

al. [17] exploit the deep semantic feature aggregation of multiple

patches for image quality assessment. It is shown that these deep

semantic features alleviate the impact of content on the quality

assessment task. Inspired by their work, we consider using pre-

trained image classiication networks for content-aware feature

extraction as well. Unlike the work in [17], to get the features, we

directly feed the whole frame into the network and apply not only

global average pooling but also global standard deviation pooling to

the output semantic feature maps. Since our work aims at the VQA

task, we further put forward a new module for modeling temporal

characteristics of human behaviors when rating video quality.

2.3 Temporal Modeling

The temporal modeling in the VQA ield can be viewed in two

aspects, i.e., feature aggregation and quality pooling.

In the feature aggregation aspect, most methods aggregate frame-

level features to video-level features by averaging them over the

temporal axis [8, 18, 22ś24, 35]. Li et al. [19] adopt a 1D convolu-

tional neural network to aggregate the primary features for a time

interval. Unlike the previous methods, we consider using GRU net-

work to model the long-term dependencies for feature integration.

In the quality pooling aspect, the simple average pooling strat-

egy is adopted by many methods [20, 28, 36, 45, 57]. Several pool-

ing strategies considering the recency efect or the worst quality

section inluence are discussed in [34, 40]. Kim et al. [15] adopt

a convolutional neural aggregation network (CNAN) for learn-

ing frame weights, then the overall video quality is calculated by

the weighted average of frame quality scores. Seshadrinathan and

Bovik [37] notice the temporal hysteresis efect in the subjective

experiments, and propose a temporal hysteresis pooling strategy

for quality assessment. The efectiveness of this strategy has been

veriied in [3, 37, 50]. We also take account of the temporal hys-

teresis efects. However, the temporal pooling model in [37] is not

diferentiable. So we introduce a new one with subjectively-inspired

weights which can be embedded into the neural network and be

trained with back propagation as well. In the experimental part, we

will show that this new temporal pooling model with subjectively-

inspired weights is better than the CNAN temporal pooling [15]

with learned weights.

3 THE PROPOSED METHOD

In this section, we introduce a novel NR-VQAmethod by integrating

knowledge of the human visual system into a deep neural network.

The framework of the proposed method is shown in Figure 2. It

extracts content-aware features from a modiied pre-trained CNN

with global pooling (GP) for each video frame. Then the extracted

frame-level features are sent to a fully-connected (FC) layer for

dimensional reduction followed by a GRU network for long-term

dependencies modeling. In the meantime, the GRU outputs the

frame-wise quality scores. Lastly, to account for the temporal hys-

teresis efect, the overall video quality is pooled from these frame

quality scores by a subjectively-inspired temporal pooling layer.

We will detail each part in the following.

3.1 Content-Aware Feature Extraction

For in-the-wild videos, the perceived video quality strongly depends

on the video content as described in Section 1. This can be attributed

to the fact that, the complexity of distortions, the human tolerance

thresholds for distortions, and the human preferences could vary

for diferent video content/scenes.



To evaluate the perceived quality of in-the-wild videos, the above

observationmotivates us to extract features that are not only percep-

tual (distortion-sensitive) but also content-aware. The image clas-

siication models pre-trained on ImageNet [4] using CNN possess

the discriminatory power of diferent content information. Thus,

the deep features extracted from these models (e.g. ResNet [11]) are

expected to be content-aware. Meanwhile, the deep features are

distortion-sensitive [5]. So it is reasonable to extract content-aware

perceptual features from pre-trained image classiication models.

Firstly, assuming the video hasT frames, we feed the video frame

It (t = 1, 2, . . . ,T ) into a pre-trained CNN model and output the

deep semantic feature mapsMt from its top convolutional layer:

Mt = CNN(It ). (1)

Mt contains a total of C feature maps. Then, we apply spatial

GP for each feature map ofMt . Applying the spatial global average

pooling operation (GPmean) toMt discards much information ofMt .

We further consider the spatial global standard deviation pooling

operation (GPstd) to preserve the variation information in Mt . The

output feature vectors of GPmean,GPstd are f
mean
t , fstdt respectively.

fmean
t = GPmean(Mt ),

fstdt = GPstd(Mt ).
(2)

After that, fmean
t and fstdt are concatenated to serve as the content-

aware perceptual features ft :

ft = fmean
t ⊕ fstdt , (3)

where ⊕ is the concatenation operator and the length of ft is 2C .

3.2 Modeling of Temporal-Memory Efects

Temporal modeling is another important clue for designing objec-

tive VQA models. We model the temporal-memory efects in two

aspects. In the feature integration aspect, we adopt a GRU network

for modeling the long-term dependencies in our method. In the

quality pooling aspect, we propose a subjectively-inspired temporal

pooling model and embed it into the network.

Long-term dependencies modeling. Existing NR-VQA meth-

ods cannot well model the long-term dependencies in the VQA task.

To handle this issue, we resort to GRU [2]. It is a recurrent neural

network model with gates control which is capable of both integrat-

ing features and learning long-term dependencies. Speciically, in

this paper, we consider using GRU to integrate the content-aware

perceptual features and predict the frame-wise quality scores.

The extracted content-aware features are of high dimension,

which is not easy for training GRU. Therefore, it is better to per-

form dimension reduction before feeding them into GRU. It could

be beneicial by performing dimension reduction with other steps

in the optimization process jointly. In this regard, we perform di-

mension reduction using a single FC layer, that is:

xt =Wf x ft + bf x , (4)

where Wf x and bf x are the parameters in the single FC layer.

Without the bias term, it acts as a linear dimension reduction model.

After dimension reduction, the reduced features xt (t = 1, · · · ,T )

are sent to GRU. We consider the hidden states of GRU as the

integrated features, whose initial values are h0. The current hidden

state ht is calculated from the current input xt and the previous

hidden state ht−1, that is:

ht = GRU(xt , ht−1). (5)

With the integrated features ht , we can predict the frame quality

score qt by adding a single FC layer:

qt =Whqht + bhq , (6)

whereWhq and bhq are the weight and bias parameters.

Subjectively-inspired temporal pooling. In subjective exper-

iments, subjects are intolerant of poor quality video events [32].

More speciically, temporal hysteresis efect is found in the sub-

jective experiments, i.e., subjects react sharply to drops in video

quality and provide poor quality for such time interval, but react

dully to improvements in video quality thereon [37].

A temporal pooling model is adopted in [37] to account for the

hysteresis efect. Speciically, a memory quality element is deined

as the minimum of the quality scores over the previous frames; a

current quality element is deined as a sort-order-based weighted

average of the quality scores over the next frames; the approximate

score is calculated as the weighted average of the memory and

current elements; the video quality is computed as the temporal

average pooling of the approximate scores. However, there are

some limitations on directly applying this model to the NR quality

assessment of in-the-wild videos. First, this model requires the

reliable frame quality scores as input, which cannot be provided

in our task. Second, the model in [37] is not diferentiable due to

the sort-order-based weights in the deinition of the current quality

element. Thus it cannot be embedded into the neural network. In

our problem, since we only have access to the overall subjective

video quality, we need to learn the neural network without frame-

level supervision. Thus, to connect the predicted frame quality

score qt to the video qualityQ , we put forward a new diferentiable

temporal pooling model by replacing the sort-order-based weight

function in [37] with a diferentiable weight function, and embed it

into the network. Details are as follow.

To mimic the human’s intolerance to poor quality events, we de-

ine a memory quality element lt at the t-th frame as the minimum

of quality scores over the previous several frames:

lt = qt , for t = 1,

lt = min
k ∈Vprev

qk , for t > 1, (7)

where Vprev = {max (1, t − τ ), · · · , t − 2, t − 1} is the index set of

the considered frames, and τ is a hyper-parameter relating to the

temporal duration.

Accounting for the fact that subjects react sharply to the drops in

quality but react dully to the improvements in quality, we construct

a current quality elementmt at the t-th frame, using the weighted

quality scores over the next several frames, where larger weights

are assigned for worse quality frames. Speciically, we deine the

weightswk
t by a diferentiable softmin function (a composition of

the negative linear function and the softmax function).

mt =

∑

k ∈Vnext

qkw
k
t ,

wk
t =

e−qk∑
j ∈Vnext e

−qj
,k ∈ Vnext ,

(8)



where Vnext = {t , t + 1, · · · ,min (t + τ ,T )} is the index set of the

related frames.

In the end, we approximate the subjective frame quality scores

by linearly combining the memory quality and current quality

elements. The overall video qualityQ is then calculated by temporal

global average pooling (GAP) of the approximate scores:

q′t = γlt + (1 − γ )mt , (9)

Q =
1

T

T∑

t=1

q′t , (10)

where γ is a hyper-parameter to balance the contributions of mem-

ory and current elements to the approximate score.

Note that we model the temporal-memory efects with both

a global module (i.e., GRU) and a local module (i.e., subjectively-

inspired temporal pooling with a window size of 2τ + 1). The long-

term dependency is always considered by GRU, no matter which

value of τ in the temporal pooling is chosen.

3.3 Implementation Details

We choose ResNet-50 [11] pre-trained on ImageNet [4] for the

content-aware feature extraction, and the feature maps are ex-

tracted from its ‘res5c’ layer. In this instance, the dimension of

ft is 4096. The long-term dependencies part is a single FC layer

that reduces the feature dimension from 4096 to 128, followed by

a single-layer GRU network whose hidden size is set as 32. The

subjectively-inspired temporal pooling layer contains two hyper-

parameters, τ and γ , which are set as 12 and 0.5, respectively. We

ix the parameters in the pre-trained ResNet-50 to ensure that the

content-aware property is not altered, and we train the whole net-

work in an end-to-end manner. The proposed model is implemented

with PyTorch [33]. The L1 loss and Adam [16] optimizer with an

initial learning rate 0.00001 and training batch size 16 are used for

training our model.

4 EXPERIMENTS

We irst describe the experimental settings, including the databases,

compared methods and basic evaluation criteria. Next, we carry

out the performance comparison and result analysis of our method

with ive state-of-the-art methods. After that, an ablation study is

conducted. Then, we show results of diferent choices of feature

extractor and temporal pooling strategy. Finally, the adding value

of motion information and computational eiciency are discussed.

4.1 Experimental Settings

Databases. There are four databases constructed for our prob-

lem: LIVE Video Quality Challenge Database (LIVE-VQC) [42], Kon-

stanz Natural Video Database (KoNViD-1k) [12], LIVE-Qualcomm

Mobile In-Capture Video Quality Database (LIVE-Qualcomm) [10],

and Camera Video Database (CVD2014) [31]. The latter three are

now publicly available, while the irst one is not accessible now.

So we conduct experiments on KoNViD-1k, LIVE-Qualcomm and

CVD2014. Subjective quality scores are provided in the form of

mean opinion score (MOS).

KoNViD-1k [12] aims at natural distortions. To guarantee the

video content diversity, it comprises a total of 1,200 videos of res-

olution 960×540 that are fairly sampled from a large public video

dataset, YFCC100M. The videos are 8s with 24/25/30fps. The MOS

ranges from 1.22 to 4.64.

LIVE-Qualcomm [10] aims at in-capture video distortions during

video acquisition. It includes 208 videos of resolution 1920×1080

captured by 8 diferent smart-phones andmodels 6 in-capture distor-

tions (artifacts, color, exposure, focus, sharpness and stabilization).

The videos are 15s with 30fps. The realignment MOS ranges from

16.5621 to 73.6428.

CVD2014 [31] also aims at complex distortions introduced during

video acquisition. It contains 234 videos of resolution 640×480 or

1280×720 recorded by 78 diferent cameras. The videos are 10-25s

with 11-31fps, which are a wide range of time span and fps. The

realignment MOS ranges from -6.50 to 93.38.

Compared methods. Because only NR methods are applicable

for quality assessment of in-the-wild videos, we choose ive state-

of-the-art NR methods (whose original codes are released by the au-

thors) for comparison: VBLIINDS [35], VIIDEO [28], BRISQUE [27]1,

NIQE [29], and CORNIA [51]. Note that we cannot compare with

the three recent deep learning-based general VQA methods, since

[55] needs scores of full-reference methods and [15, 56] are full-

reference methods, which are unfeasible for our problem.

Basic evaluation criteria. Spearman’s rank-order correlation

coeicient (SROCC), Kendall’s rank-order correlation coeicient

(KROCC), Pearson’s linear correlation coeicient (PLCC) and root

mean square error (RMSE) are the four performance criteria of

VQA methods. SROCC and KROCC indicate the prediction mono-

tonicity, while PLCC and RMSE measure the prediction accuracy.

Better VQAmethods should have larger SROCC/KROCC/PLCC and

smaller RMSE. When the objective scores (i.e., the quality scores

predicted by a VQAmethod) are not the same scale as the subjective

scores, we refer to the suggestion of Video Quality Experts Group

(VQEG) [44] before calculating PLCC and RMSE values, and adopt

a four-parameter logistic function for mapping the objective score

o to the subjective score s:

f (o) =
τ1 − τ2

1 + e
−
o−τ3
τ4

+ τ2, (11)

where τ1 to τ4 are itting parameters initialized with τ1 = max(s),

τ2 = min(s), τ3 = mean(o), τ4 = std(o)/4.

4.2 Performance Comparison

For each database, 60%, 20%, and 20% data are used for training, val-

idation, and testing, respectively. There is no overlap among these

three parts. This procedure is repeated 10 times and the mean and

standard deviation of performance values are reported in Table 1.

For VBLIINDS, BRISQUE and our method, we choose the models

with the highest SROCC values on the validation set during the

training phase. NIQE, CORNIA, and VIIDEO are tested on the same

20% testing data after the parameters in Eqn. (11) are optimized

with the training and validation data.

Table 1 summarizes the performance values on the three databases,

and the overall performance values (indicated by the weighted per-

formance values) as well. Our method achieves the best overall

performance in terms of both the prediction monotonicity (SROCC,

KROCC) and the prediction accuracy (PLCC, RMSE), and have a

1Video-level features of BRISQUE are the average pooling of its frame-level features.



Table 1: Performance comparison on the three VQA databases. Mean and standard deviation (std) of the performance values

in 10 runs are reported, i.e., mean (± std). ‘Overall Performance’ shows the weighted-average performance values over all three

databases, where weights are proportional to database-sizes. In each column, the best and second-best values are marked in

boldface and underlined, respectively.

Method
Overall Performance LIVE-Qualcomm [10]

SROCC↑ KROCC↑ PLCC↑ RMSE↓ SROCC↑ p-value (<0.05) KROCC↑ PLCC↑ RMSE↓

BRISQUE [27] 0.643 (± 0.059) 0.465 (± 0.047) 0.625 (± 0.053) 3.895 (± 0.380) 0.504 (± 0.147) 1.21E-04 0.365 (± 0.111) 0.516 (± 0.127) 10.731 (± 1.335)

NIQE [29] 0.526 (± 0.055) 0.369 (± 0.041) 0.542 (± 0.054) 4.214 (± 0.323) 0.463 (± 0.105) 5.28E-07 0.328 (± 0.088) 0.464 (± 0.136) 10.858 (± 1.013)

CORNIA [51] 0.591 (± 0.052) 0.423 (± 0.043) 0.595 (± 0.051) 4.139 (± 0.300) 0.460 (± 0.130) 4.98E-06 0.324 (± 0.104) 0.494 (± 0.133) 10.759 (± 0.939)

VIIDEO [28] 0.237 (± 0.073) 0.164 (± 0.050) 0.218 (± 0.070) 5.115 (± 0.285) 0.127 (± 0.137) 9.77E-11 0.082 (± 0.099) -0.001 (± 0.106) 12.308 (± 0.881)

VBLIINDS [35] 0.686 (± 0.035) 0.503 (± 0.032) 0.660 (± 0.037) 3.753 (± 0.365) 0.566 (± 0.078) 1.02E-05 0.405 (± 0.074) 0.568 (± 0.089) 10.760 (± 1.231)

Ours 0.771 (± 0.028) 0.582 (± 0.029) 0.762 (± 0.031) 3.074 (± 0.448) 0.737 (± 0.045) - 0.552 (± 0.047) 0.732 (± 0.0360) 8.863 (± 1.042)

Method
KoNViD-1k [12] CVD2014 [31]

SROCC↑ p-value KROCC↑ PLCC↑ RMSE↓ SROCC↑ p-value KROCC↑ PLCC↑ RMSE↓

BRISQUE [27] 0.654 (± 0.042) 6.00E-06 0.473 (± 0.034) 0.626 (± 0.041) 0.507 (± 0.031) 0.709 (± 0.067) 7.03E-07 0.518 (± 0.060) 0.715 (± 0.048) 15.197 (± 1.325)

NIQE [29] 0.544 (± 0.040) 7.31E-11 0.379 (± 0.029) 0.546 (± 0.038) 0.536 (± 0.010) 0.489 (± 0.091) 1.73E-10 0.358 (± 0.064) 0.593 (± 0.065) 17.168 (± 1.318)

CORNIA [51] 0.610 (± 0.034) 6.77E-09 0.436 (± 0.029) 0.608 (± 0.032) 0.509 (± 0.014) 0.614 (± 0.075) 5.69E-09 0.441 (± 0.058) 0.618 (± 0.079) 16.871 (± 1.200)

VIIDEO [28] 0.298 (± 0.052) 4.22E-15 0.207 (± 0.035) 0.303 (± 0.049) 0.610 (± 0.012) 0.023 (± 0.122) 3.02E-14 0.021 (± 0.081) -0.025 (± 0.144) 21.822 (± 1.152)

VBLIINDS [35] 0.695 (± 0.024) 6.75E-05 0.509 (± 0.020) 0.658 (± 0.025) 0.483 (± 0.011) 0.746 (± 0.056) 2.94E-06 0.562 (± 0.0570) 0.753 (± 0.053) 14.292 (± 1.413)

Ours 0.755 (± 0.025) - 0.562 (± 0.022) 0.744 (± 0.029) 0.469 (± 0.054) 0.880 (± 0.030) - 0.705 (± 0.044) 0.885 (± 0.031) 11.287 (± 1.943)

large gain over the second-best method VBLIINDS. VIIDEO fails

because it is based only on temporal scene statistics and cannot

model the complex distortions. For all individual databases, our

method outperforms the other compared methods by a large mar-

gin. For example, compared to the second-best method VBLIINDS,

in terms of SROCC, our method achieves 30.21% improvements on

LIVE-Qualcomm, 8.63% improvements on KoNViD-1k and 17.96%

improvements on CVD2014. Among the three databases, LIVE-

Qualcomm is the most challenging one for the compared methods

and our methodÐnot only mean performance values are small but

also standard deviation values for all methods are large. This veri-

ies the statement in [10] that videos in LIVE-Qualcomm challenge

both human viewers and objective VQA models.

Statistical signiicance. We further carry out the statistical

signiicance test to see whether the results shown in Table 1 are

statistical signiicant or not. On each database, the paired t-test is

conducted at 5% signiicance level using the SROCC values (in 10

runs) of our method and of the compared one. The p-values are

shown in Table 1. All are smaller than 0.05 and prove our method is

signiicantly better than all the other ive state-of-the-art methods.

4.3 Ablation Study

To demonstrate the importance of each module in our framework,

we conduct an ablation study. The overall 10-run-results are shown

in the form of box plots in Figure 3.

Content-aware features. We irst show the performance drop

due to the removal of the content-aware features. When we re-

move the content-aware features extracted from CNN, we use

BRISQUE [27] features instead (red). The removal of the content-

aware features causes signiicant performance drop in all three

databases. p-values are 1.10E-05, 1.76E-08, 2.47E-06, and 14.57%,

30.00%, 26.87% decrease in terms of SROCC are found on KoNViD-

1k, CVD2014 and LIVE-Qualcomm respectively. Content-aware

perceptual features contribute most to our method, which veriies
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Figure 3: Box plots of the ablation study.

that content-aware perceptual features are crucial for assessing the

perceived quality of in-the-wild videos.



Modeling of temporal-memory efects. To verify the efec-

tiveness of modeling of temporal-memory efects, we compare the

full version of our proposed method (blue) with the whole tem-

poral modeling module removed (green). Temporal modeling pro-

vides 7.70%, 4.14%, 12.01% SROCC gains on KoNViD-1k, CVD2014

and LIVE-Qualcomm respectively, where the p-values are 4.00E-04,

1.11E-04, and 8.49E-03. In view of PLCC, it leads to 5.98%, 4.00%,

10.41% performance improvements on KoNViD-1k, CVD2014 and

LIVE-Qualcomm respectively. We further do the ablation study

on KoNViD-1k for the two individual temporal sub-modules sepa-

rately. Removal of long-term dependencies modeling leads to 2.12%

decrease in terms of SROCC, while removal of subjectively-inspired

temporal pooling leads to 2.68% decrease in terms of SROCC. This

indicates the two temporal sub-modules (one is global and the other

is local) are complementary.

4.4 Choice of Feature Extractor

There are many choices for content-aware feature extraction. In the

following, we mainly consider the pre-trained image classiication

models and the global standard deviation (std) pooling.

Pre-trained image classiicationmodels. In our implementa-

tion, we choose ResNet-50 as the content-aware feature extractor. It

is interesting to explore other pre-trained image classiication mod-

els for feature extraction. The results in Table 2 show that VGG16

have similar performance with ResNet-50 (p-values of paired t-

test using SROCC values are greater than 0.05, actually 0.1011).

However, ResNet-50 has less parameters than AlexNet and VGG16.

Table 2: Performance of diferent pre-trained image classii-

cation models on KoNViD-1k.

Pre-trained model SROCC↑ KROCC↑ PLCC↑

ResNet-50 0.755 (±0.025) 0.562 (±0.022) 0.744 (±0.029)

AlexNet 0.732 (±0.040) 0.540 (±0.036) 0.731 (±0.035)

VGG16 0.745 (±0.024) 0.554 (±0.023) 0.747 (±0.022)

Global std pooling. When the global std pooling is removed,

the performance on KoNViD-1k drops as shown in Figure 4. mean

SROCC drops from 0.755 to 0.701, while mean PLCC drops signif-

icantly from 0.744 to 0.672. This veriies that global std pooling

preserves more information and thus results in good performance.
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Figure 4: Efectiveness of global std pooling on KoNViD-1k.

4.5 Choices of Temporal Pooling Strategy

Here, we explore diferent choices of temporal pooling strategy.

Hyper-parameters in subjectively-inspired temporal pool-

ing. The subjectively-inspired temporal pooling contains two hyper-

parameters, τ and γ . Figure 5 shows results of diferent choices of

the two parameters. In the left igure, τ is ixed to 12, and γ varies

from 0.1 to 0.9 with a step size 0.1. SROCC luctuates up and down

around 0.75, and achieves the best with γ = 0.5. This is because

smaller γ overlooks the memory quality while larger γ overlooks

the current quality. In the right igure, γ is ixed to 0.5, and τ varies

from 6 to 30 with a step size 6. The highest SROCC value is obtained

with τ = 12, which suggests temporal hysteresis efect may lasts

about one second for videos with a frame rate of 25fps.

Figure 5: Performance on KoNViD-1k of diferent hyper-

parameters in subjectively-inspired temporal pooling

Pooling in subjective-inspired temporal pooling. To verify

the efectiveness of min pooling, we compare it with average pool-

ing. The results on KoNViD-1k are shown in Table 3. And we can

see that average pooling is statistically worse than min pooling

(p-value is 3.04E-04). This makes sense since min pooling accounts

for łhumans are quick to criticize and slow to forgivež.

Table 3: Efectiveness of min pooling in subjective-inspired

temporal pooling on KoNViD-1k.

pooling SROCC↑ p-value KROCC↑ PLCC↑

min 0.755 (±0.025) - 0.562 (±0.022) 0.744 (±0.029)

average 0.736 (±0.031) 3.04E-4 0.543 (±0.027) 0.740 (±0.027)

Handcrafted weights vs. learned weights. Our subjectively-

inspired temporal pooling can be regarded as a weighted average

pooling strategy, where the weights are designed by hand (see

Eqn. (7), (8) and (9)) to mimic the temporal-memory efects. One

interesting question is whether the performance can be further

improved by making the weights learnable. One possible way is

using a temporal CNN (TCNN) to learn the approximate scores q′

from the frame quality scores q, i.e.,

q′ = TCNN(q, kernel_size = 2τ + 1) = w ⊗ q,

where ⊗ means the convolutional operator, and w is the learnable

weights of TCNN with length 2τ + 1 (the same size as ours).

Another way is by the convolutional neural aggregation network

(CNAN) introduced in [15]. It is formulated as follow:

ω = sotmax(wm ⊗ q), Q = ω
T q,



where wm is a memory kernel, ω is the learned frame weights

normalized by a softmax function andQ is the overall video quality.

In Figure 6, we report the mean and standard deviation of SROCC

values among these three temporal pooling models (including ours)

on the three databases. It can be seen that the two models with

the learned weights (TCNN and CNAN) underperform the model

with handcrafted weights (Ours). This may be explained by the

fact that the handcrafted weights are manually designed to mimic

the temporal hysteresis efects, while the learned weights do not

capture the patterns well.
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Figure 6: SROCC comparison between temporal pooling

models with learned weights or handcrafted weights.

4.6 Motion information

Motion information is important for video processing. In this sub-

section, we would like to see whether the performance can be

further improved with the motion information added. We extract

the optical low using the initialized TVNet [7] without inetun-

ing, and calculate the optical low statistics as described in [22],

then concatenate the statistics to the content-aware features. The

performance comparison of our model with/without motion infor-

mation on KoNViD-1k is shown in Figure 7. Motion information

can further improve the performance a little. However, we should

note that optical low computation is very expensive, which makes

the small improvements seem unnecessary. It is desired to explore

efective and eicient motion-aware features in the VQA task.
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Figure 7: The performance comparison of our model

with/without motion information on KoNViD-1k.

4.7 Computational eiciency

Besides the performance, computational eiciency is also crucial

for NR-VQA methods. To provide a fair comparison for the compu-

tational eiciency of diferent methods, all tests are carried out on

a desktop computer with Intel Core i7-6700K CPU@4.00 GHz, 12G

NVIDIA TITAN Xp GPU and 64 GB RAM. The operating system is

Ubuntu 14.04. The compared methods are implemented with MAT-

LAB R2016b while our method is implemented with Python 3.6. The

default settings of the original codes are used without any modiica-

tion. From the three databases, we select four videos with diferent

lengths and diferent resolutions for test. We repeat the tests ten

times and the average computation time (seconds) for each method

is shown in Table 4. Our method is faster than VBLIINDSÐthe

method with the second-best performance. It is worth mentioning

that our method can be accelerated to 30x faster or more (The

larger resolution is, the faster acceleration is.) by simply switching

the CPU mode to the GPU mode.

Table 4: The average computation time (seconds) for four

videos selected from the original databases. {xxx}frs@{yyy}p

indicates the video frame length and the resolution.

Method 240frs@540p 364frs@480p 467frs@720p 450frs@1080p

BRISQUE [27] 12.6931 12.3405 41.2220 79.8119

NIQE [29] 45.6477 41.9705 155.9052 351.8327

CORNIA [51] 225.2185 325.5718 494.2449 616.4856

VIIDEO [28] 137.0538 128.0868 465.2284 1024.5400

VBLIINDS [35] 382.0657 361.3868 1390.9999 3037.2960

Ours 269.8371 249.2085 936.8452 2081.8400

5 CONCLUSION AND FUTUREWORK

In this work, we propose a novel NR-VQA method for in-the-wild

videos by incorporating two eminent efects of HVS, i.e., content-

dependency and temporal-memory efects. Our proposed method

is compared with ive state-of-the-art methods on three publicly

available in-the-wild VQA databases (KoNViD-1k, CVD2014, and

LIVE-Qualcomm), and achieves 30.21%, 8.63%, and 17.96% SROCC

improvements on LIVE-Qualcomm, KoNViD-1k, and CVD2014,

respectively. Experiments also show that content-aware percep-

tual features and modeling of temporal-memory efects are of im-

portance for in-the-wild video quality assessment. However, the

correlation values of the best method are still less than 0.76 on

KoNViD-1k and LIVE-Qualcomm. This indicates that there is am-

ple room for developing an objective model which correlates well

with human perception. In the further study, we will consider em-

bedding the spatio-temporal attention models into our framework

since they could provide information about when and where the

video is important for the VQA problem.
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