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Abstract: Image aesthetic quality assessment (IAQA) has aroused considerable interest in recent
years and is widely used in various applications, such as image retrieval, album management, chat
robot and social media. However, existing methods need an excessive amount of labeled data to train
the model. Collecting the enormous quantity of human scored training data is not always feasible due
to a number of factors, such as the expensiveness of the labeling process and the difficulty in correctly
classifying data. Previous studies have evaluated the aesthetic of a photo based only on image
features, but have ignored the criterion bias associated with the themes. In this work, we present a
new theme-aware semi-supervised image quality assessment method to address these difficulties.
Specifically, the proposed method consists of two steps: a representation learning step and a label
propagation step. In the representation learning step, we propose a robust theme-aware attention
network (TAAN) to cope with the theme criterion bias problem. In the label propagation step, we use
preliminary trained TAAN by step one to extract features and utilize the label propagation with a
cumulative confidence (LPCC) algorithm to assign pseudo-labels to the unlabeled data. This enables
use of both labeled and unlabeled data to train the TAAN model. To the best of our knowledge,
this is the first time that a semi-supervised learning method to address image aesthetic assessment
problems has been studied. We evaluate our approach on three benchmark datasets and show that it
can achieve almost the same performance as a fully supervised learning method for a small number
of samples. Furthermore, we show that our semi-supervised approach is robust to using varying
quantities of labeled data.

Keywords: image aesthetic assessment; semi-supervised learning; label propagation; deep learning;
computer vision

MSC: 68T07

1. Introduction

With the vigorous development of mobile Internet, images have become an indis-
pensable part of our life. In the face of vast amounts of data, relying solely on human
beings for the aesthetic analysis of images is not able to meet our needs, so the design
of automatic aesthetic assessment algorithms has aroused considerable interest in the
research community.

With respect to the various methods available for generating features, existing image
aesthetic quality assessment methods can be broadly divided into two categories. The first
category includes shallow modeling methods which use hand-crafted features to infer
image aesthetic quality [1–3]. These methods use global, local and general features to
represent aesthetic attributes. Among them, the Fisher vector (FC) [3] is used to construct
aesthetic attributes and predict aesthetic quality. However, The representation ability
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of hand-crafted features is limited. The second category includes deep-learning-based
methods. Because of the outstanding capabilities in efficient feature learning, convolutional
neural networks (CNNs) have been used to infer composition information and learn new
aesthetic representations (see, for example, [4–6]). Since the high-level features constructed
by convolutional neural networks can better express the aesthetic quality, the performance
of convolutional neural networks is better than that of traditional hand-crafted feature
methods. Earlier attempts to develop CNNs [4–11] were able to help computers learn how
to automatically evaluate an image. However, there are two major flaws in existing deep
learning-based methods: Firstly, existing deep-learning-based methods require a large
number of labeled datasets to train the network. However, collecting the enormity of
human scored training data is not always feasible since manual annotation of aesthetic
quality is a time-consuming, expensive and error-prone task. Thus, it is crucial to develop
a method that only uses a small quantity of training data to reduce the reliance on manual
annotation. Second, most previous research has only focused on the aesthetic features of
the images but has ignored the criterion bias associated with their themes. Photographers
shoot different scenes with different shooting methods. The scenes shot by each shooting
method can be regarded as having a specific theme, but different shooting methods have
different standards for the assessment of aesthetic quality. Thus, different themes use
different evaluation criteria. For example, a highly blurred image may obtain a significant
high score under the theme “Motion Blur” because blurring is regarded as a good feature’;
however, it will obtain a low aesthetic score under the theme “Landscape”, since blurring
is considered to be a drawback for landscape images. Thus, it is appropriate to take the
themes into account when aesthetic decisions are made.

Therefore, we propose a theme-aware semi-supervised image aesthetic quality assess-
ment to solve the above-mentioned problems. To deal with the first problem, we employ
a deep-learning-based label propagation method which is based on the assumption of
making predictions on the entire dataset and using these to generate pseudo-labels for
the unlabeled data. To handle the noise label problem in the process of label propagation,
we also propose a cumulative confidence algorithm which can apply different weights
to different unlabeled data. For data similar to previous prediction results, we apply a
higher confidence weight; for dissimilar data, we apply a lower confidence weight. For the
second problem, we propose a theme-aware attention network that considers the theme of
an image when an aesthetic decision is made. This network consists of three components:
an image feature extractor (backbone), a self-attention-based theme encoder and a residual
connection module. The proposed network not only aims to extract visual features more
effectively, but also leverages the theme power of tag and challenges to make aesthetic
predictions more accurate.

The contributions of this paper are as follows:

• We are the first to tackle the image aesthetic quality assessment task via a semi-
supervised learning method. We propose a label propagation with cumulative confi-
dence algorithm (LPCC) to infer the pseudo-labels for unlabeled data. The proposed
method greatly reduces reliance on human annotation.

• We design a theme-aware attention network to combine theme information with visual
features to predict aesthetic quality. The proposed network can alleviate the criterion
bias of the human aesthetic quality assessment process.

• We conduct extensive experiments to demonstrate the superiority of our proposed
theme-aware semi-supervised method. Experimental results obtained show that our
method can achieve almost the same performance as fully supervised learning.

The remainder of this paper is organized as follows: Section 2 summarizes related
work. Section 3 introduces the methodology of the proposed theme aware semi-supervised
approach. Section 4 quantitatively analyses the effectiveness of the proposed method and
compares it with state-of-the-art results. Finally, Section 5 contains a summary and plans
for future work.
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2. Related Work
2.1. Image Aesthetics Quality Assessment

Image aesthetic quality assessment is a branch of image quality assessment (IQA) [12–14].
A broad collection of methods has been proposed in the last few years. Earlier image
aesthetic assessment methods rely on handcrafted features to extract the aesthetic attributes
of images [1,2]. These hand-crafted features include global features, such as saturation,
brightness and hue, local features, such as contrast, and general features, such as SIFT and
the Fisher vector [3]. With the advent of deep convolutional neural networks, deep CNNs
have been deployed in image aesthetic quality assessment and have proved to be effective.
For instance, Lu et al. [4] proposed a double-column DNN architecture, the RAPID-Net,
which extracts global features from the whole image and local features from a randomly
cropped patch. To capture more high-resolution fine-grained details, Lu et al. [5] proposed
a deep multi-patch aggregation network, the DMA-Net. The DMA-Net extracts aesthetic
features from a bag of randomly cropped patches, and uses statistics and sorting network
layers to aggregate these multiple patches. Later, researchers found that processing images
in the data augmentation stage entails loss of the original information of the image, which
will affect the performance of the network. Thus, Mai et al. [6] added an adaptive spatial
pooling layer onto the regular convolution to handle images with original sizes. In a similar
vein, Ma et al. [15] proposed the non-random selection of multiple patches to extract image
features according to the significance of the image without any transformation. Jia et al. [10]
combined padding with ROI pooling to handle the arbitrary sizes of batch inputs.

Since previous work has focused only on the aesthetic features of images and ignored
image content, some researchers have resorted to the use of semantic information to enhance
the accuracy of aesthetic prediction. For example, Kao et al. [9] proposed the use of semantic
labels to guide aesthetic assessment. Kong et al. [16] regularized the complicated photo
aesthetics rating problem by applying joint learning of meaningful photographic attributes
and image content information. However, these methods still cannot cope with the theme
criterion bias problem. Using the method of [16], photographic attributes cannot solve
the problem of theme criterion bias well. Firstly, the same image can belong to multiple
aesthetic attributes, so we cannot uniquely determine the theme of the image through
photographic attributes. Secondly, photographic attributes focus on different perspectives
to evaluate an image, such as light, color, DOF, etc., rather than the theme. In the method
of Kao et al. [9], although semantic labels can guide the aesthetic assessment, the semantic
information is used simply as ground truth labels, which cannot fully interact with images.
In this paper, we take the tag and challenge themes into account. To fully utilize them,
we encode the theme information and combine it with the extracted visual features via
an attention mechanism. Experiments undertaken demonstrated the effectiveness of the
proposed module.

2.2. Semi-Supervised Learning

Supervised learning methods need to use labeled data to build models. However, label-
ing training data in the real world may be expensive or time-consuming. A semi-supervised
learning (SSL) model can allow the model to integrate part or all of the unlabeled data in its
supervised learning to solve this inherent bottleneck. The goal is to maximize the learning
performance of the model through information revealed by both limited labeled images and
sufficient unlabeled images. The study of semi-supervised learning (SSL) has a long history
with various models being proposed. For example, Zhang et al. [17] proposed a simple
learning principle, MixUp, to reduce memory and sensitivity to antagonistic examples
of large deep neural networks. Berthelot et al. [18] unified the mainstream methods of
semi-supervised learning and proposed MixMatch that guesses low-entropy labels for
unlabeled examples and uses MixUp to mix labeled and unlabeled data. Laine et al. [19]
introduced self-ensembling, in which the output of the network in different periods of
training is used to form a consistent prediction of unknown tags. However, since the
target changes only once in each epoch, temporal ensembling becomes very clumsy when
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learning huge datasets. To overcome this problem, Tarvainen et al. [20] proposed Mean
Teacher, a method that defines the weight of the teacher model parameters obtained in each
round as an exponential moving average. Iscen et al. [21] proposed a label propagation
method based on transductive learning, which can assign pseudo-labels to unlabeled data
using a k-nearest neighbor graph. Although based on this method, our proposed method
represents an improvement in terms of cumulative confidence. The experimental results
demonstrate that our improved method can solve the problems caused by label noise.

Although SSL has been evaluated for various tasks, few investigations have considered
its application to an image aesthetic prediction task. Image aesthetic prediction is highly
subjective and complex. Annotating aesthetic labels is a time-consuming and error-prone
task. To reduce reliance on manual annotation, it is crucial to develop the SSL method
to leverage dependencies on labeled data. Therefore, in this paper, we propose a theme-
aware semi-supervised method which exhibits equivalent performance to that of a fully
supervised method.

3. Methodology

In this section, we first describe preliminary details and the overall architecture of our
method. Then, we introduce each module in detail.

3.1. Preliminaries

In semi-supervised image aesthetic assessment prediction, a dataset can be expressed
as X := (x1, . . . , xl , xl+1, . . . , xn) . The dataset contains l labeled examples and u = n− l
unlabeled examples. The labeled examples xi for i ∈ L := (1, . . . , l), denoted by XL, are
labeled according to YL := (y1, . . . , yl) with yi ∈ C, where C := (1, . . . , c) is a discrete label
set for c classes. The remaining unlabeled examples are denoted as XU = xl+1, . . . , xn.
The goal in semi-supervised learning (SSL) is to use all examples X and labels YL to train a
classifier that maps previously unseen samples to class labels.

In supervised learning, the network is trained by minimizing the following supervised
loss term:

Ls(XL, YL; θ) :=
l

∑
i=1

loss( fθ(xi), yi), (1)

where θ is the parameters of the network and fθ is the forward function of the network.
The supervised loss applies only to labeled data in XL. The loss function in classifica-

tion is cross-entropy (CE) loss under standard conditions, which is given by

loss(p, y) :=
l

∑
i=1

(−yi log pi), (2)

where y is the label and p is the predict logits.
In semi-supervised learning, pseudo-labeling is the process of using the labeled data

trained model to assign labels for unlabeled data. The additional pseudo-label loss term is
defined as follows:

Lp(XU , YU ; θ) :=
n

∑
i=l+1

loss( fθ(xi), yi), (3)

where YU := (yl+1, . . . , yn) denote the collection of pseudo-labels for XU , and the loss can
be any supervised loss function, such as cross-entropy.

3.2. Overall Architecture

An overview of our proposed framework is illustrated in Figure 1. Our training
is divided into two steps: a representation learning step and a label propagation step.
These two steps are iteratively trained. In the representation learning step, we train the
theme-aware attention network in a fully supervised fashion on the l labeled examples.
The theme-aware attention network generates two outputs: an embedding output f̂v and



Mathematics 2022, 10, 2609 5 of 18

a category prediction output. In the label propagation stage, we construct a k-nearest
neighbor graph through the embedding output f̂v and perform label propagation on the
training set. The known labels YL are propagated from XL to XU , creating pseudo-labels
YU . Then, we estimate confidence scores reflecting the uncertainty of each unlabeled
example. The confidence scores are then used as loss weights during the representation
learning stage. Finally, we inject the obtained labels into the representation learning step.
By iteratively applying the label propagation and representation learning steps, our model
builds a good underlying representation and trains an accurate classifier for the image
aesthetic prediction task.

Figure 1. Overall architecture of our theme-aware semi-supervised image aesthetic quality assess-
ment. First, in step one, we train our theme-aware attention network (TAAN) using a small amount of
labeled data in a supervised fashion. In step 2, we use a label propagation with cumulative confidence
algorithm (LPCC) to transduct the pseudo-labels for unlabeled data. We extract the features of the
entire training set and compute a k-nearest neighbor graph. Then we propagate labels by transductive
learning and train the theme-aware attention network (TAAN) on the entire training set. These two
steps are iteratively trained. When testing, we send the input image directly into the trained TAAN
model to obtain the predicted aesthetic quality. More detailed illustrations of label propagation with
cumulative confidence algorithm (LPCC) can be found in Algorithm 1.

3.3. Theme-Aware Attention Network

In recent years, the attention mechanism has been shown to be effective in capturing
important information from raw features in either linguistic or visual representations [22].
In contrast to the above approaches, we propose theme-aware attention to jointly exploit
attention mechanisms to encode the theme features. Inspired by the success of self-attention,
the proposed theme-aware attention module can capture the complex interactions between
the theme features and different spatial locations in the input image.

The pipeline of our proposed theme-aware attention network (TAAN) is shown in
Figure 2, which consists of the following three parts: an image feature extractor (backbone),
a self-attention-based theme encoder and a residual connection module. Given the image,
the image feature extractor firstly extracts high level features. Then these features are sent
into the self-attention-based theme encoder. Finally, the visual features and the theme-based
features are combined via a residual connection module.
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Algorithm 1 Label propagation with cumulative confidence.

1: procedure LPCC(X, YL)
2: θ ← initialize randomly
3: for epoch ∈ [1, . . . , T1] do . step 1
4: J ← CrossEntropy( fθ(XL), YL)
5: θ ← θ − η5 J/5 θ
6: end for
7: for epoch ∈ [1, . . . , T1] do . step 2
8: F ← fθ(X) . extract features
9: D, I ← search(F, k) . knn search for the graph

10: A← compress(D, I) . create the adjacency matrix of the graph
11: A← A + AT . symmetric affinity
12: A∗ ← D−1/2 AD−1/2 . normalize the graph
13: Z ← Z(I − αA∗) = YL . solve the equation
14: YU ← argmax(normalize(Z)) . get pseudo-label
15: ω ← 1− (Entropy(Z)/log(c)) . get entropy weight
16: con f ← similarity(YU , pre) . cumulative confidence weight
17: pre← epoch ∗ pre + YU)/(epoch + 1) . update cumulative info
18: J ← CrossEntropy( fθ(XL), YL)×ω× con f
19: θ ← θ − η5 J/5 θ
20: end for
21: end procedure

Figure 2. Details of our theme-aware attention network (TAAN). The TAAN consists of an image
feature extractor (backbone), a self-attention-based theme encoder and a residual connection module.

The image feature extractor is a residual network with 18 layers, as described in [23],
pretrained on ImageNet [24]. Images in the AVA dataset not only have semantic tag
information (such as Macro, Animals and Portraiture), but also have challenge information
(such as Fairy Tales, Flowers, Black and White, Street Photography). The tag information
and challenge information both encode the theme information. Thus, we turn the tag
information and challenge information into one-hot codes, and then process the one-hot
codes with a fully connected layer to extract the theme features. Given the extracted visual
feature fv and theme features ftheme, the self-attention-based theme encoder first produces
a set of query, key and value pairs by linear transformations as q1 = Wq ftag, k = Wk fv,
q2 = Wq2 fchallenge, v = Wv fv, where Wq, Wq2, Wk, Wv are part of the model parameters to be
learned. Then the tag-theme-based attention and the challenge-theme-based attention are
computed as follows:

αtag = So f tmax(qT
1 k)

αchallenge = So f tmax(qT
2 k),

(4)



Mathematics 2022, 10, 2609 7 of 18

where αtag and αchallenge denote the tag-theme-based attention and the challenge-theme-
based attention, respectively. Then the final theme-attentive features v̂ are computed
as follows:

v̂ = αtag × v + αchallenge × v (5)

We then combine the theme-attentive features with visual features via a residual
connection. This allows the insertion of the proposed module into any backbone network
without disrupting its initial behavior. The operations can be defined as follows:

f̂v = v̂ + fv (6)

where v̂ is the theme-attentive features, fv is the extracted visual feature, and f̂v denotes
theme-attentive features with residual features.

3.4. Label Propagation with Cumulative Confidence Algorithm

The label propagation algorithm is an iterative process for semi-supervised learning.
More specifically, we first construct a nearest neighbor graph and perform label propagation
on the whole training set. Then, we calculate an entropy weight reflecting the uncertainty of
label propagation for each unlabeled example. Inspired by [25], we believe that the results
obtained from early propagation should also be considered as a constraint, so we propose
a cumulative confidence weight to improve the traditional label propagation [21]. Finally,
we inject the obtained pseudo-labels into the network training process. This method
is described in detail below; the process of the proposed approach is demonstrated in
Algorithm 1.

K-nearest neighbor search for the graph. Given an image feature matrix f̂v with di-
mensions (n, dim), we first calculate the similarity between every two points (the Euclidean
distance or cosine similarity can be used).

Create the adjacency matrix of the graph. For the first k nearest neighbors of each
point, the similarity is the weight of the edge, and the weight of the edge after more than k
is set to 0. A sparse affinity matrix A ∈ Rn×n is constructed as follows:

aij =

{
[ f T

vi
fvj ]

γ, i f i 6= j ∧ fvi ∈ KNN( fvj);

0, otherwise.
(7)

where KNN denotes the set of the first k nearest neighbors in X, and γ is a parameter
following work on a manifold-based search [26]. So far, we obtain the adjacency matrix A.

Normalize the graph. Since the full affinity matrix is not tractable, it may lead to
the following problems: node a is the k-nearest neighbor of node b, but node b is not the
k-nearest neighbor of node a, so we symmetrize it and turn it into a real undirected graph.
The operation is defined in Equation (8). Then we use regularization of the Laplace matrix
for the adjacency matrix A to build its symmetrically normalized counterpart A*, which is
defined in Equation (9);

A = A + AT , (8)

A∗ = D−1/2 AD−1/2, (9)

where A is the adjacency matrix, D is the degree matrix of A, which is defined as D :=
diag(A1n), where 1n is the all-ones n-vector , and A∗ is the normalized adjacency matrix.

Diffusion for transductive learning [27]. The label matrix Y(nc) is defined with elements:

Yij =

{
1, i f i ∈ L ∧ yi = j;
0, otherwise.

(10)
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where L represents the index of labeled data. This means that the rows of the label matrix Y
corresponding to the labeled examples are one-hot encoded labels. The remaining elements
are zero. The diffusion process is equivalent to the solution of linear equations:

(I − αA∗)Z = Y (11)

where α is the adjustable parameter and I is the identity matrix. Because matrix (I − αA∗)
is positive-definite, we can use the conjugate gradient (CG) method to solve the linear
system. This solution is known to be faster than the iterative solution. Finally, we infer
the pseudo-labels:

Z∗ = normalize((I − αA∗)−1Y) (12)

YU = argmax(Z∗) (13)

where Z∗ is the row-wise normalized counterpart of Z and YU are the predicted pseudo-labels.
Entropy weight. We need to evaluate the reliability of the predicted pseudo-labels.

Firstly, we consider the credibility of a single round. The prediction matrix Z we obtained
has a probability prediction value for the category to which each sample point belongs.
For points with small entropy, we think it is more credible, while for points with large
entropy, we think it is less credible, so our weight is calculated by the following:

ω = 1− H(Z∗)
log c

(14)

where Z∗ is the row-wise normalized counterpart of Z and c is the number of classes, so
log(c) is the maximum possible entropy.

Cumulative confidence weight. To improve the fault tolerance and reliability of label
propagation, we propose a second weight, the cumulative confidence weight Fcon f . We
maintain an array Fpre to record the average value of the previous prediction. Fpre reflects
the reliability of the prediction (higher Fpre means higher reliability). Fcon f denotes the
similarity between Fpre and the pseudo-labels in each epoch; it can be directly multiplied
with the previous entropy weight. We have also designed three similarity functions and can
manually select the appropriate one to deploy to the final architecture. Fcon f is calculated
by the following equation:

Fcon f = similarity(YU , Fpre) (15)

Fpre =
epoch× Fpre + YU

epoch + 1
(16)

where YU denote the pseudo-labels of unlabeled data. So, the final loss with weight is
calculated by the following formula:

Lp(XU , YU ; θ) :=
n

∑
i=l+1

loss( fθ(xi), yi)×ωi × Fi
con f . (17)

where XU denote the image features of unlabeled data, YU denote the pseudo-labels of
unlabeled data, ωi denote the entropy weights in index i and Fi

con f denote the cumulative
confidence weights in i.

4. Experiments
4.1. Datasets

AVA. Aesthetic Visual Analysis (AVA) [28] is a large-scale database for image aesthetics
quality assessment. The images of this dataset are crawled from www.DPChanllenge.com
(accessed on 5 May 2022). It contains more than 255,000 images. The aesthetic assessment
is scored by 78 to 549 individuals, and the scores given by the voters are from 1 to 10.
The AVA dataset provides 66 kinds of semantic tags and 1409 kinds of style tags. Each
image in the AVA dataset has 0 to 2 semantic tags and belongs to one specific challenge

www.DPChanllenge.com
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theme. We follow the official dataset partition as in [28], randomly selecting 235,508 images
as the training set, and 20,000 images as the testing set.

Photo.net. The Photo.net dataset [1] contains about 20,278 images. Unlike the AVA
dataset, it contains only aesthetic labels. The aesthetic assessment is scored by at least 10
individuals, and the scores given by the voters are from 1 to 7. For some images, only
the mean score and standard deviation are given and voting information is lost. Since
the website has been updated several times, there are only 17, 253 images that can be
downloaded. The Photo.net dataset contains no theme information. Thus, similar to
previous work [10], we only use Photo.net as a test set.

CUHK. CUHK [2] is a small-scale dataset that can clearly distinguish high-quality
and low-quality images. We only use photos that have a clear consensus on their quality.
The images of this dataset are also crawled from www.DPChanllenge.com (accessed on
5 May 2022). About 3000 images (half of the photos) were used for testing. For the same
reason as the Photo.net dataset, we only use the test dataset of CUHK to evaluate our model.

4.2. Implementation Details

We implemented our method using the PyTorch framework. We used the Adam
optimizer with β1 = 0.9 and β2 = 0.999, and the learning rate was 1× 10−5. Our GPU uses
GeForce RTX 3080Ti.

Networks. We used many backbone networks in our experiment. For VGG, ResNet
and DenseNet, we used the implementation provided in the Torchvision project [29].
For Swin-T, we used the implementation provided in https://github.com/WZMIAOMIAO/
deep-learning-for-image-processing (accessed on 5 May 2022). In our experiment, the input
image size was [3, 224, 224]. When we used ResNet18, ResNet34 or VGG16, the output
feature dim was 512; when we used ResNet50, ResNet101 or ResNet152, the output feature
dim was 2048; when we used Swin-T, the output feature dim was 768. Then we used the
flattened feature as our image feature vector.

Hyper-parameters. We trained 10 epochs for step one (i.e., the representation learning
step) and 20 epochs for step two (i.e., the label propagation step). Step two uses the
embedding output f̂v of step one to infer the pseudo-labels. For step one, the mini-batch
size is a certain number which is determined by the depth of the network backbone (usually
32 or 64). For step two, the mini-batch size needs to use two steam samplers: the labeled
data sampler and the unlabeled sampler. The unlabeled data sampler guarantees that all
unlabeled data will be traversed, while the labeled data sampler constantly iterates over the
labeled data. The total mini-batch size B = Bl + Bu. Bl is the labeled mini-batch size and
Bu is the unlabeled mini-batch size. The value of Bl is usually half that of B. In our TAAN
network, we set the scale factor α = 1. In our LPCC algorithm, the diffusion parameters
were set as follows: the value of γ was set to 3, k was set to 50 and the CG iteration was set
to 20.

4.3. Ablation Studies

Effectiveness of the theme-aware attention network. The proposed method employs
themes as privileged information to improve the performance. To evaluate the performance
of our proposed theme-aware attention network, we compared the proposed module with
the following models:

• ResNet18: ResNet18 means baseline ResNet18 network. In this model, we did not add
theme information.

• ResNet18 + Theme: In this baseline, the theme information is directly added to the
ResNet18 network.

• ResNet18 + TAAN: ResNet18 + TAAN denotes the proposed theme aware
attention network.

The comparison results are shown in Table 1. To prove the effectiveness of the pro-
posed module, we tested it both in a full supervised condition and in a semi-supervised
condition. From the Table, we make the following observations. First, the proposed

www.DPChanllenge.com
https://github.com/WZMIAOMIAO/deep-learning-for-image-processing
https://github.com/WZMIAOMIAO/deep-learning-for-image-processing


Mathematics 2022, 10, 2609 10 of 18

ResNet18 + TAAN had the best performance. For example, ResNet18 + TAAN achieved
76.6% in full supervised method, while the other two models achieved 76.28% and 76.32%,
respectively. Similar results were also found for the semi-supervised learning method.
Second, compared to ResNet18, ResNet18 + Theme achieved better performance, using
both the fully supervised method and the semi-supervised method, which demonstrates
the effectiveness of the theme information. Third, ResNet18 + TAAN performed better
than ResNet18 + Theme, which demonstrates the superiority of the attention mechanism.
This is because the attention mechanism makes the visual features and theme features fully
interact with each other.

Table 1. Accuracy (%) of different modules. For the semi-supervised method, the value is the accuracy
of step 2 (δ = 1).

Modules Fully Supervised Semi-Supervised
(Labeled Rate: 0.05)

ResNet18 76.28 76.02
ResNet18 + Theme 76.32 76.10
ResNet18 + TAAN 76.60 76.23

Effectiveness of cumulative confidence weight. We propose a cumulative confidence
weight to estimate the fault tolerance and reliability of the samples. We tested three different
similarity estimation methods for the cumulative confidence weight, i.e., the linear function,
the square function and the sigmoid function. We first define distance

d = Yu − Fpre (18)

where YU are the pseudo-labels of all the data items, Fpre is the average value of the previous
prediction, and d means the distance between the current predicted pseudo-label YU and
the average previous prediction value Fpre. The linear function is defined as follows:

similaritylinear = 1− d (19)

The square function is defined as follows:

similaritysquare = 1− d2 (20)

The sigmoid function is defined as follows:

similaritysigmoid = 1− 1
e(0.5−d)×λ

(21)

where λ controls the slope of the sigmoid function. To separate the predicted values into
two categories, we use λ = 10 as our final method. Table 2 illustrates the comparison results.
The base-line model in Table 2 did not include a cumulative confidence weight. From the
table, we can draw the following conclusions. First, adding a cumulative confidence weight
can result in better performance. For example, the performance of the base-line model was
75.01%; by adding a cumulative confidence weight (using the linear similarity function for
the cumulative confidence weight) the model was able to achieve at least 75.96%. Second, it
can be seen that using the square similarity function resulted in slightly better performance
than for the other two similarity functions. Thus, in this paper, we use the square function
as the similarity function for the cumulative confidence weight.



Mathematics 2022, 10, 2609 11 of 18

Table 2. Accuracy (%) of different similarity strategies in the cumulative confidence algorithm (δ = 1).

LP Strategies Semi-Supervised (Labeled Rate: 0.05)

base-line model 75.01
linear similarity function 75.96
square similarity function 76.09

sigmoid similarity function 76.03

4.4. Experiments on Different Label Rates

To evaluate how good the proposed model is at using unlabeled images, we trained
our model under different labeling rates. As can be seen from Table 3, with the 90% label
missing (i.e., the labeling rate was 10%), step one achieved 73.86% accuracy. However, with
the help of unlabeled images, in step two, our model improved the accuracy to 76.12%. This
demonstrates that the proposed method consistently benefits from additional unlabelled
images. Similar results were also found for other labeling rates, such as 5% and 2%. Figure 3
shows the t-SNE visualization of the embedded output f̂v under different labeling rates.
Purple dots represent unlabeled images, yellow dots represent labeled low-quality images
and green dots represent labeled high-quality images. From the figure, we can easily make
the following two observations: First, our method can cluster unlabeled data (purple)
with labeled data under these three labeling rates. Thus we can easily deploy our LPCC
algorithm. Second, our method has a robust discrimination effect for data under different
labeling rates.

Figure 3. Visualization of the features of labeling rate 0.02 (left), 0.05 (middle) and 0.1 (right) on the
test set by TSNE. Purple dots represent unlabeled images, yellow dots represent labeled low-quality
images and green dots represent labeled high-quality images.

Table 3. Accuracy (%) of experiments on different labeled rates.

labeling Rates Step 1 Step 2 (Best)

1.0 (Fully supervised) 76.31 -
10% 73.86 76.12
5% 72.75 76.09
2% 71.67 74.18

4.5. Extension to Different Backbones

Our model can use a variety of different feature extractors. Therefore, we used
different pre-training models as our backbones. We chose VGG16, ResNet18 [23], ResNet34,
ResNet50, ResNet101, DenseNet121 [30] and Swin Transformer-T [31] to experiment on the
label rate of 0.05 with the AVA dataset. All networks were pretrained on ImageNet [24].
The performance of different CNN feature extractors is given in Table 4.
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Table 4. Accuracy (%) on different backbones. For the semi-supervised method, the value is the
accuracy of step 2.

Architecture Backbones Semi-Supervised

VGG16 75.73
ResNet18 76.09
ResNet34 75.82
ResNet50 76.16
ResNet101 76.63

Densenet121 76.45
Swin-T 76.82

It can be seen that with increase in the complexity of the model, the accuracy increases.
Figure 4 illustrates the embedded features f̂v with different backbones. We can also clearly
see that the discrimination of features extracted with a better backbone framework is
significantly higher.

Figure 4. Visualization of the fc-features of ResNet18 (top left), ResNet34 (top right), ResNet50
(bottom left) and ResNet101 (bottom right) on the test set by TSNE. Purple dots represent low-
quality images and yellow dots represent high-quality images.

4.6. Performance Evaluation

To demonstrate the effectiveness of our method, we performed a comparative eval-
uation with existing approaches on the AVA dataset. It should be noted that the existing
methods are based on the assumption of full supervision, while our method is a semi-
supervised method. We selected some mainstream methods for comparison. During the
comparative study, it was found that the source codes of [4–6,9] were unavailable and the
experimental details were not mentioned. As a result, it might be infeasible to implement
them precisely. Thus the experimental data were taken from their paper. For those methods
that published the code, such as [7,32,33], we used the same dataset (5% labeling rates)
to evaluate their models and to obtain the corresponding experimental data provided in
Table 5.
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Table 5. Comparison with state-of-the-art methods on AVA dataset.

Method Accuracy (%)

RAPID 73.70
DMA-Net 75.42

MNA-CNN 76.10
MTCNN#1 75.90

Enhanced MTCNN 76.04
NIMA 74.87 (5% labeling rates)
MPA 70.52 (5% labeling rates)

MUSIQ 73.46 (5% labeling rates)
Our Semi-supervised (ResNet18) 76.09 (5% labeling rates)
Our Semi-supervised (Swin-T) 76.82 (5% labeling rates)

The methods we compared were as follows:

• RAPID: The authors of [4] proposed a method called RAPID, which consists of two
columns of neural networks, representing global and local inputs, respectively.

• DMA-Net: The deep multi-patch aggregation network (DMA-Net) [5] is an improve-
ment on RAPID. It is a multi-shared column CNN with four convolution layers and
three fully connected layers.

• MNA-CNN: The MNA-CNN [6] is a neural network with multiple subnets sharing
the same input image. Its output is combined with the average operator to obtain the
overall aesthetic prediction of the picture.

• MTCNN#1: The MTCNN was proposed by [9] and predicts both aesthetic quality and
tag labels. Enhanced MTCNN: The Enhanced MTCNN is an improved framework
for MTCNN which adds extra aesthetic details supervised in the first two layers in
MTCNN #1 and provides two convolutional layers and two fully-connected layers
which are learned for two tasks (aesthetic quality and tag labels).

• NIMA: NIMA [7] formulates the aesthetic prediction task as a label distribution
prediction problem, which is different from the above aesthetic prediction task. EMD
loss is used to deal with the aesthetic distribution for the first time, and achieved good
results. The code of NIMA is available at https://github.com/truskovskiyk/nima.
pytorch (accessed on 20 May 2022).

• MPA: MPA [32] uses an attention-based mechanism to dynamically adjust the weight
of each patch. It assigns larger weights to patches on which the current model has
made incorrect predictions during the training process and aggregates the prediction
results of multiple patches during the test. The code of MPA is available at https:
//github.com/Openning07/MPADA (accessed on 20 May 2022).

• MUSIQ: MUSIQ [33] uses a multi-scale image quality transformer to process origi-
nal resolution images with different sizes and aspect ratios. The code of MUSIQ is
available at https://github.com/anse3832/MUSIQ (accessed on 20 May 2022).

The experimental results are illustrated in Table 5. From the table, we can make the
following two observations: First, the semi-supervised accuracy can reach, or even exceed,
that of some fully supervised models. For example, MTCNN [9] achieved 75.9% accuracy,
while our method achieved 76.82% accuracy with only 5% labeling rates. Second, our
semi-supervised accuracy can exceed the current model when using the same labeling rate.
For example, MPA [32] and NIMA [7] achieved 70.52% and 74.87% accuracy, respectively,
while our method achieved 76.82% accuracy with only 5% labeling rates. The reason
for the difference is clear: the lack of data leads to the degradation of the other models’
performance, while our proposed model can improve performance by using a large
quantity of unlabeled data.

4.7. Experimental Results on Photo.net and CUHK Dataset

Tables 6 and 7 show the comparison results for the Photo.net and CUHK datasets,
respectively. As stated earlier, the Photo.net and CUHK datasets are both small datasets and

https://github.com/truskovskiyk/nima.pytorch
https://github.com/truskovskiyk/nima.pytorch
https://github.com/Openning07/MPADA
https://github.com/Openning07/MPADA
https://github.com/anse3832/MUSIQ
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have no theme information. Thus, we used the AVA dataset to train the model, and tested
on the Photo.net and CUHK datasets. We used the published Pytorch code of NIMA [7]
and MUSIQ [33] to implement 5% labeling rates for the Photo.net and CUHK datasets;
these are compared with our method in Tables 6 and 7. From Tables 6 and 7, we can
see that our proposed method outperformed previously used methods by using a large
quantity of unlabeled data. This also demonstrates that our proposed model produces
good generalization performance for different datasets.

Table 6. Comparison with state-of-the-art methods on the Photo.net dataset.

Method Accuracy (%)

MTCNN#1 65.20
NIMA 67.63 (5% labeling rates)
MUSIQ 68.84 (5% labeling rates)

Our Semi-supervised (ResNet18) 73.10 (5% labeling rates)

Table 7. Comparison with state-of-the-art methods on CUHK dataset.

Method Accuracy (%)

NIMA 75.12 (5% labeling rates)
MUSIQ 77.85 (5% labeling rates)

Our Semi-supervised(ResNet18) 78.25 (5% labeling rates)

4.8. Discussion of Experiment on Labeled Data Sensitivity

To explore whether the proposed method is sensitive to the labeled data, we randomly
divided the labeled data under labeling rate 5% into five groups: split 1, 2, 3, 4 and 5.
We used these groups of labeled data to train our model and record the best accuracy.
The experimental results are shown in Table 8. Evidently, no matter which split we used,
the accuracy did not fluctuate significantly. Therefore, we hold that our model is insensitive
to the selection of labeled data.

Table 8. Experiment on sensitivity analysis. Split 1, 2, 3, 4 and 5 are random labeled data splits under
labeling rate 5%. The best accuracy (%) of each split is recorded.

Split 1 Split 2 Split 3 Split 4 Split 5

76.09 75.92 75.96 76.02 75.97

4.9. Computational Complexity
4.9.1. Theoretical Analysis

Our training was divided into two steps. In the first step, we trained our theme-aware
attention network (TAAN) using small quantities of labeled data in a supervised fashion.
In the second step, we used the label propagation with cumulative confidence algorithm
(LPCC) to transduct the pseudo-labels for unlabeled data. These two steps were iteratively
trained. Since label propagation tends to be viewed as entailing considerable complexity,
we mainly analyzed the computational complexity of label propagation theoretically.

The computational complexity of traditional label propagation is mainly composed
of KNN search and creation of the graph. Suppose the data scale is n, if no optimization
measures are taken, the computational complexity of the KNN search is O(n× n). This
is because the KNN search needs to traverse n features to find the k most similar vectors.
The floating-point operation required by a vector point multiplication is proportional to
the vector dimension. Suppose the vector dimension is m, the computational complexity of
the KNN search is

FLOPs = n× n×m (22)
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Considering the computational cost is quite high, we use the inverted file system (IVF)
and product quantification (PQ) in the Faiss library to reduce the computational complexity
of label propagation.

Using the inverted file system(IFS) to optimize the KNN search: we index the entire
dataset and cluster it into several subspaces. When we query a vector, we first calculate the
subspace of query vector, and then search in the corresponding subspace. Suppose that the
average size of our subspace is 1

s of the original space size, the computational complexity
of the KNN search can be reduced to:

FLOPs =
n× n×m

s
(23)

Using product quantification(PQ) to further optimize the KNN search: the details
of the product quantification are illustrated in Figure 5. As can be seen from Figure 5, we
assume that the vector dimension m is 128 (our whole dataset is n× 128). We split each vec-
tor into four sub-vectors with 32 dimensions and group the n sub-vectors (in four columns)
into 256 classes, respectively. The sub-vectors of each data item are represented by four
class centers (such as [12, 45, 240, 48]); thus, each vector can be saved in four bytes (int type).
We need to calculate the distance table in advance. Building the distance table requires
4× 256× 32 floating-point operations, which are independent of n. Once the distance table
is built, our distance query calculation (needing n× 4 times) is a table lookup operation,
which takes much less time than performing floating-point multiplication calculations, so
we also need to divide by a constant c to derive the computational complexity. The final
computational complexity can be reduced to:

FLOPs =
n× 4 + 4× 256× 32

s× c
(24)

Figure 5. Details of Product Quantification.

When n is particularly large (large-scale data), 4× 256× 32 can be ignored. When s is
set to 10, c is set to 5, and m is 512, the IFS + PQ algorithm can be 6400 times faster than
using a violent search method. To verify the reliability of the theoretical analysis, we tested
one epoch running time for our whole AVA dataset. The running times for each step of our
method are reported in Table 9. It can be seen clearly from the table that the time required
for label propagation is negligible compared with the time in training.
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Table 9. The one epoch running time in each step of our method are reported in the table. When
training, we used the whole training set of the AVA dataset. When inferring, we used the whole
testing set of the AVA dataset. Step 1 DNN means deep neural network pass of step 1. Step 2 LP
means label propagation of step 2. The items explain in more detail what is done at each step. FP
means forward pass and BP means back propagation.

Training & Inferring Steps Items Running Time (s)

Training
Step 1 DNN FP + BP 580.86 s
Step 1 DNN Extract f̂v (FP) 345.02 s

Step 2 LP Label propagation 2.2063 s

Inferring Step 1 DNN FP 74.56 s

4.9.2. Inference Computational Cost Comparison

We analyzed the time consumption to compare the computational complexity of dif-
ferent methods. Thus, we only compared the computational complexity with methods that
published the code, such as NIMA, MPA and MUSIQ. Table 10 shows the computational
complexity results. The timings of an image forward pass are reported in the table. Our
inference Pytorch implementation and TensorFlow implementation were tested on an Intel
i7-11700H @ 2.5 GHz with 32 GB memory and 8 cores, and NVIDIA 3080Ti GPU. From the
table, we can see that our method has similar running time to NIMA and MPA when using
the same ResNet18 backbone.

Table 10. Comparison of image forward pass running time for different methods (ResNet18 backbone).

Method Running Time (s)

NIMA 0.345 s
MPA 0.362 s

MUSIQ 0.410 s
Our Semi-supervised (ResNet18) 0.351 s

5. Conclusions and Discussion

In this paper, we propose a theme-aware semi-supervised architecture for image
aesthetic quality assessment with the aim of reducing the dependence on image label
annotation and making full use of a large number of unlabeled images on the network.
For the noise label problem encountered in the process of label propagation, we propose a
cumulative confidence algorithm by improving the traditional label propagation algorithm.
We applied it to our image aesthetic quality assessment task, and achieved satisfactory
results. We also found that our theme-aware architecture can solve the problem of theme
sensitivity in image aesthetic quality assessment. The experimental results show that our
method is robust to different label rates, different labeled data selection and different
datasets.

Although our method achieves promising results, several issues need to be considered
in our future research. First, we will continue to focus on how to use EMD loss for the label
propagation algorithm to improve the accuracy of semi-supervised learning. Second, to
make good use of the collaborative attention between images and other information, such
as user comments, we will start from a multi-modality position to seek better solutions. We
will also explore new semi-supervised algorithms, such as curriculum learning, to improve
the existing label propagation algorithms.
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