Joint Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Classification

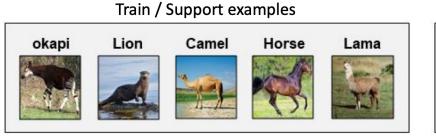
Jiangtao Xie^{1,*}, Fei Long^{1,*}, Jiaming Lv¹, Qilong Wang², Peihua Li^{1,†}

¹Dalian University of Technology, China ²Tianjin University, China

CVPR2022 Oral

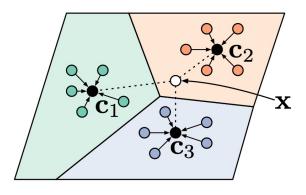
Few-Shot Classification

- Using small amounts of data to learn classifications with unseen labels
- N-way K-shot method:
 - N = number of classes
 - K = training examples per class, as small as 1 or 5



Example: 5-way **1-**shot classification task

- meta-learning / learning to learn :
 - model based methods
 - metric based methods √
 - optimization based methods



Method	Probability model	Dis-similarity/similarity measure	Joint distribution	Latency	Accura 1-shot	
ProtoNet [33]	Mean vector	$\ \mu_X - \mu_Y\ ^2$ or $\frac{\mu_X^T \mu_Y}{\ \mu_X\ \ \mu_Y\ }$	No	Low	49.42	68.20
CovNet [44]	Covariance matrix	$\ \mathbf{\Sigma}_X - \mathbf{\Sigma}_Y\ ^2$	No	Low	49.64	69.45
ADM [20]	Gaussian distribution	$D_{\mathrm{KL}}(\mathcal{N}_{\mathbf{\mu}_{X},\mathbf{\Sigma}_{X}} \mathcal{N}_{\mathbf{\mu}_{Y},\mathbf{\Sigma}_{Y}})$	No	Low	53.10	69.73
DeepEMD [47]	Discrete distribution	$egin{aligned} \min_{f_{\mathbf{x}_j}, \mathbf{y}_l \geq 0} \sum_{j} \sum_{l} f_{\mathbf{x}_j}, \mathbf{y}_l c_{\mathbf{x}_j}, \mathbf{y}_l \\ \mathrm{s.t.} \ \sum_{l} f_{\mathbf{x}_j}, \mathbf{y}_l = f_{\mathbf{x}_j}, \sum_{j} f_{\mathbf{x}_j}, \mathbf{y}_l = f_{\mathbf{y}_l} \ \mathrm{for} \ orall j, l \end{aligned}$	Yes	High	65.91	82.41
DeepBDC (ours)	Characteristic function	$\int_{\mathbb{R}^p}\!\!\int_{\mathbb{R}^q}\!\!\frac{ \phi_{XY}(\mathbf{t},\mathbf{s})\!-\!\phi_X(\mathbf{t})\phi_Y(\mathbf{s}) ^2}{c_pc_q\ \mathbf{t}\ ^{1+p}\ \mathbf{s}\ ^{1+q}}d\mathbf{t}d\mathbf{s}$	Yes	Low	67.34	84.46

- DeepBDC: a fundamental but largely overlooked dependency modeling method
- formulate DeepBDC as a highly modular and efficient layer

Brownian Distance Covariance

- random vectors $X \in \mathbb{R}^p, Y \in \mathbb{R}^q$
- joint characteristic function

$$\phi_{XY}(\mathbf{t}, \mathbf{s}) = \int_{\mathbb{R}^p} \int_{\mathbb{R}^q} \exp(i(\mathbf{t}^T \mathbf{x} + \mathbf{s}^T \mathbf{y})) f_{XY}(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y}$$

marginal distribution

$$\phi_X(\mathbf{t}) = \phi_{XY}(\mathbf{t}, \mathbf{0})$$
 $\phi_Y(\mathbf{s}) = \phi_{XY}(\mathbf{0}, \mathbf{s})$

BDC metric

$$\rho(X,Y) = \int_{\mathbb{R}^p} \int_{\mathbb{R}^q} \frac{|\phi_{XY}(\mathbf{t},\mathbf{s}) - \phi_X(\mathbf{t})\phi_Y(\mathbf{s})|^2}{c_p c_q ||\mathbf{t}||^{1+p} ||\mathbf{s}||^{1+q}} d\mathbf{t} d\mathbf{s}$$

empirical characteristic functions

$$\phi_{XY}(\mathbf{t},\mathbf{s}) = rac{1}{m} \sum_{k=1}^m \exp(i(\mathbf{t}^T \mathbf{x}_k + \mathbf{s}^T \mathbf{y}_k))$$

Discrete BDC

- For the set of m observations $\{(\mathbf{x}_1,\mathbf{y}_1),\ldots,(\mathbf{x}_m,\mathbf{y}_m)\}$
- Using Euclidean distance

$$\widehat{\mathbf{A}} = (\widehat{a}_{kl}) \in \mathbb{R}^{m \times m} \text{ where } \widehat{a}_{kl} = \|\mathbf{x}_k - \mathbf{x}_l\|$$
 $\widehat{\mathbf{B}} = (\widehat{b}_{kl}) \in \mathbb{R}^{m \times m} \text{ where } \widehat{b}_{kl} = \|\mathbf{y}_k - \mathbf{y}_l\|$

BDC metrix

$$\mathbf{A} = (a_{kl}) \quad a_{kl} = \hat{a}_{kl} - \frac{1}{m} \sum_{k=1}^{m} \hat{a}_{kl} - \frac{1}{m} \sum_{l=1}^{m} \hat{a}_{kl} - \frac{1}{m^2} \sum_{k=1}^{m} \sum_{l=1}^{m} \hat{a}_{kl}$$

BDC metric

$$ho(X, Y) = \operatorname{tr}(\mathbf{A}^T \mathbf{B})$$
 $ho(X, Y) = \langle \mathbf{a}, \mathbf{b} \rangle = \mathbf{a}^T \mathbf{b}$

-> BDC metric has a closed form expression for discrete observations

Deep BDC

- take for example χ_k as a random observation (the k-th column of X)
- squared Euclidean distance matrix $\widetilde{\mathbf{A}} = (\widetilde{a}_{kl})$
- Euclidean distance matrix $\widehat{\mathbf{A}} = (\sqrt{\widetilde{a}_{kl}})$
- BDC matrix **A**

$$egin{aligned} \widetilde{\mathbf{A}} &= 2 ig(\mathbf{1} (\mathbf{X}^T \mathbf{X} \circ \mathbf{I}) ig)_{ ext{sym}} - 2 \mathbf{X}^T \mathbf{X} \ \widehat{\mathbf{A}} &= ig(\sqrt{\widetilde{a}_{kl}} ig) \ \mathbf{A} &= \widehat{\mathbf{A}} - rac{2}{d} ig(\mathbf{1} \widehat{\mathbf{A}} ig)_{ ext{sym}} + rac{1}{d^2} \mathbf{1} \widehat{\mathbf{A}} \mathbf{1} \end{aligned}$$

- involving standard matrix operations
- -> appropriate for parallel computation on GPU
- χ_k : the k-th channel of the feature of an image
- -> use BDC matrix as a self-similarity/encoder

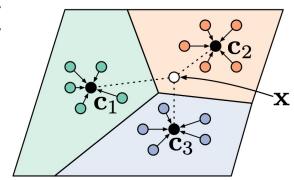
Application on few-shot learning: ProtoNet

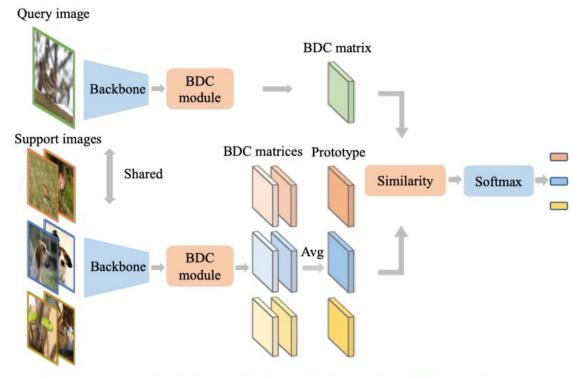
Based on ProtoNet:

- BDC matrix of an image \mathbf{z}_j : $\mathbf{A}_{\boldsymbol{\theta}}(\mathbf{z}_j)$
- prototype of the support class k:

$$\mathbf{P}_k = rac{1}{K} \sum_{(\mathbf{z}_j, y_j) \in \mathcal{S}_k} \mathbf{A}_{\mathbf{ heta}}(\mathbf{z}_j)$$

loss function:





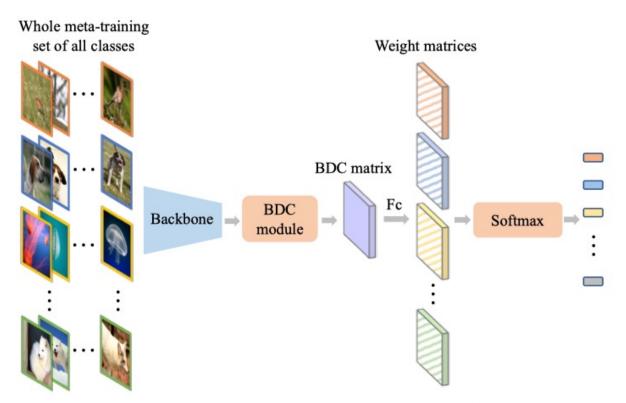
(a) Meta DeepBDC-Instantiation with ProtoNet [33] as a blueprint.

Application on few-shot learning: STL

Based on simple transfer learning (STL):

- Use the idea of clustering
- k-th weight matrix: $\mathbf{W}_k \in \mathbb{R}^{d \times d}$
- loss function :

$$\arg\min_{\boldsymbol{\theta}, \mathbf{W}_k} \ \frac{-\sum_{(\mathbf{z}_j, y_j) \in \mathcal{C}^{\text{train}}} \log \frac{\exp(\tau \text{tr}(\mathbf{A}_{\boldsymbol{\theta}}(\mathbf{z}_j)^T \mathbf{W}_{y_j}))}{\sum_k \exp(\tau \text{tr}(\mathbf{A}_{\boldsymbol{\theta}}(\mathbf{z}_j)^T \mathbf{W}_k))}$$



(b) STL DeepBDC–Instantiation based on Good-Embed [37] relying on non-episodic training.

Experiment

- Dataset: miniImageNet(100 classes), tieredImageNet(608 classes), CUB(200 bird classes)
- Backbone: ResNet-12, ResNet-18

Method	Backbone	<i>mini</i> In	nageNet	<i>tiered</i> ImageNet		
Method	Backboile	1-shot	5-shot	1-shot	5-shot	
CTM [19]	ResNet-18	64.12 ± 0.82	80.51 ± 0.13	68.41 ± 0.39	84.28 ± 1.73	
S2M2 [25]	ResNet-18	64.06 ± 0.18	80.58 ± 0.12	_	-	
TADAM [26]	ResNet-12	58.50 ± 0.30	76.70 ± 0.38	_	_	
MetaOptNet [18]	ResNet-12	62.64 ± 0.44	78.63 ± 0.46	65.99 ± 0.72	81.56 ± 0.63	
DN4 [21] †	ResNet-12	64.73 ± 0.44	79.85 ± 0.31	_	-	
Baseline++ [4] †	ResNet-12	60.56 ± 0.45	77.40 ± 0.34	_	-	
Good-Embed [37]	ResNet-12	64.82 ± 0.60	82.14 ± 0.43	71.52 ± 0.69	86.03 ± 0.58	
FEAT [46]	ResNet-12	66.78 ± 0.20	82.05 ± 0.14	70.80 ± 0.23	84.79 ± 0.16	
Meta-Baseline [5]	ResNet-12	63.17 ± 0.23	79.26 ± 0.17	68.62 ± 0.27	83.29 ± 0.18	
MELR [11]	ResNet-12	67.40 ± 0.43	83.40 ± 0.28	72.14 ± 0.51	87.01 ± 0.35	
FRN [45]	ResNet-12	66.45 ± 0.19	82.83 ± 0.13	71.16 ± 0.22	86.01 ± 0.15	
IEPT [50]	ResNet-12	67.05 ± 0.44	82.90 ± 0.30	72.24 ± 0.50	86.73 ± 0.34	
BML [51]	ResNet-12	67.04 ± 0.63	83.63 ± 0.29	68.99 ± 0.50	85.49 ± 0.34	
ProtoNet [33] †	ResNet-12	62.11 ± 0.44	80.77 ± 0.30	68.31 ± 0.51	83.85 ± 0.36	
ADM [20] †	ResNet-12	65.87 ± 0.43	82.05 ± 0.29	70.78 ± 0.52	85.70 ± 0.43	
CovNet [44] †	ResNet-12	64.59 ± 0.45	82.02 ± 0.29	69.75 ± 0.52	84.21 ± 0.26	
DeepEMD [47]	ResNet-12	65.91 ± 0.82	82.41 ± 0.56	71.16 ± 0.87	86.03 ± 0.58	
Meta DeepBDC	ResNet-12	67.34 ± 0.43	84.46 ± 0.28	72.34 ± 0.49	87.31 ± 0.32	
STL DeepBDC	ResNet-12	$67.83 {\pm} 0.43$	85.45 ± 0.29	73.82 ± 0.47	89.00 ± 0.30	
STL DeepBDC	ResNet-12	67.83±0.43	85.45±0.29	73.82 ± 0.47	89.00±0.3	

Method	Backbone	CUB		
Method	Баскоопе	1-shot	5-shot	
ProtoNet [33]	Conv4	64.42 ± 0.48	81.82±0.35	
FEAT [46]	Conv4	68.87 ± 0.22	82.90 ± 0.15	
MELR [11]	Conv4	70.26 ± 0.50	85.01 ± 0.32	
MVT [27]	ResNet-10	_	85.35 ± 0.55	
MatchNet [39]	ResNet-12	71.87 ± 0.85	85.08 ± 0.57	
Wang et al. LR [43]	ResNet-12	76.16	90.32	
MAML [12]	ResNet-18	68.42 ± 1.07	83.47 ± 0.62	
Δ -encoder [32]	ResNet-18	69.80	82.60	
Baseline++ [4]	ResNet-18	67.02 ± 0.90	83.58 ± 0.54	
AA [1]	ResNet-18	74.22 ± 1.09	88.65 ± 0.55	
Neg-Cosine [23]	ResNet-18	72.66 ± 0.85	89.40 ± 0.43	
LaplacianShot [52]	ResNet-18	80.96	88.68	
FRN [45] †	ResNet-18	82.55 ± 0.19	92.98 ± 0.10	
Good-Embed [37] †	ResNet-18	77.92 ± 0.46	89.94 ± 0.26	
ProtoNet [33] †	ResNet-18	80.90 ± 0.43	89.81 ± 0.23	
ADM [20] †	ResNet-18	79.31 ± 0.43	90.69 ± 0.21	
CovNet [44] †	ResNet-18	80.76 ± 0.42	92.05 ± 0.20	
Meta DeepBDC	ResNet-18	83.55 ± 0.40	93.82 ± 0.17	
STL DeepBDC	ResNet-18	84.01 ± 0.42	94.02±0.24	

⁽a) Results on general object recognition datasets.

⁽b) Results on fine-grained categorization dataset.

Method	Meta-training		Meta-testing		Accuracy	
Wiemod	1-shot	5-shot	1-shot	5-shot	1-shot	5-shot
ProtoNet [S-20] †	304	365	115	143	62.11	80.77
ADM [S-12] †	908	967	199	221	65.87	82.05
CovNet [S-24] †	310	374	120	144	64.59	82.02
DeepEMD [S-27]	>80K	$>10^{6}$	457	12,617	65.91	82.41
Meta DeepBDC	505	623	161	198	67.34	84.46
STL DeepBDC	_		184	245	67.83	85.45

Table S-5. Comparison of latency (ms) for 5-way classification on *mini*ImageNet. † Reproduced with our setting.

A S A S A S A S A S A S A S A S A S A S			
Method	Backbone	5-shot	
Baseline [4]	ResNet-18	65.57 ± 0.70	
Baseline++ [4]	ResNet-18	62.04 ± 0.76	
GNN+FT [38]	ResNet-12	66.98 ± 0.68	
BML [51]	ResNet-12	72.42 ± 0.54	
FRN [45]	ResNet-12	77.09 ± 0.15	
ProtoNet [33] †	ResNet-12	67.19 ± 0.38	
Good-Embed [37] †	ResNet-12	67.43 ± 0.44	
ADM [20] †	ResNet-12	70.55 ± 0.43	
CovNet [44] †	ResNet-12	76.77 ± 0.34	
Meta DeepBDC	ResNet-12	77.87 ± 0.33	
STL DeepBDC	ResNet-12	80.16±0.38	

Method	Backbone	5-shot
ProtoNet [33] †	ResNet-12	55.96 ± 0.38
ADM [20] †	ResNet-12	65.40 ± 0.36
CovNet [44] †	ResNet-12	63.56 ± 0.37
Baseline [4] †	ResNet-12	59.04 ± 0.36
Baseline++ [4] †	ResNet-12	56.50 ± 0.38
Good-Embed [37] †	ResNet-12	58.95 ± 0.38
Meta DeepBDC	ResNet-12	68.67±0.39
STL DeepBDC	ResNet-12	69.07 ± 0.39
Carried Total	6167 £508	125

(b) $miniImageNet \rightarrow Aircraft$.

(c) miniImageNet \rightarrow Cars.

Backbone

ResNet-12

ResNet-12 53.94±0.35

ResNet-12 52.90±0.37

ResNet-12 50.29±0.37

ResNet-12 46.44±0.37

ResNet-12 50.18±0.37

ResNet-12 54.61±0.37

ResNet-12 58.09±0.36

5-shot 46.30±0.36

Method

ProtoNet [33] †

ADM [20] †

CovNet [44] †

Baseline [4] †

Baseline++ [4] †

Good-Embed [37] †

Meta DeepBDC

STL DeepBDC

(a) miniImageNet \rightarrow CUB.

Table 5. Comparison with state-of-the-art methods for 5-way 5-shot classification in cross-domain scenarios. The best results are in **bold black** and second-best ones are in **red**. † Reproduced with our setting.

• size of channels: d -> size of BDC matrix: d²

d	Parameters	1-sho	ot	5-shot		
a	(M)	Acc	Latency	Acc	Latency	
1280	13.25	66.36 ± 0.43	488	83.23±0.30	614	
960	13.04	66.81 ± 0.44	280	83.68±0.28	351	
640	12.84	67.34 ± 0.43	161	84.46±0.28	198	
512	12.75	67.10 ± 0.45	134	84.23 ± 0.28	164	
256	12.59	66.90 ± 0.43	121	84.15±0.28	148	
Pro	toNet [33]	62.11±0.44	115	80.77±0.30	143	
Similarity function		1-shot		5-shot		
		Acc	Latency	Acc	Latency	
Inner product		67.34 ± 0.43	161	82.38 ± 0.32	193	
Cosine similarity		61.74 ± 0.42	172	82.49 ± 0.31	207	
Euclidean distance		56.70 ± 0.45	163	84.46±0.28	198	

⁽a) Meta DeepBDC based on ProtoNet [33] as a blueprint.

	Parameters	1-sho	ot	5-shot		
d	(M)	Acc	Latency	Acc	Latency	
512	13.41	64.92 ± 0.43	1110	84.61±0.29	2016	
256	12.75	66.15 ± 0.43	371	85.44±0.29	587	
196	12.65	66.57 ± 0.43	285	85.36±0.29	424	
128	12.55	67.83 ± 0.43	184	85.45±0.30	245	
64	12.48	66.97 ± 0.44	137	83.18 ± 0.30	172	
Good-Embed [37]		64.82 ± 0.44	121	82.14±0.43	155	
Classifier		1-shot		5-shot		
		Acc	Latency	Acc	Latency	
Logistic regression		67.83±0.43	184	85.45±0.30	245	
SVM		66.29 ± 0.44	113	84.73 ± 0.29	144	
Softmax		66.30 ± 0.44	1250	85.20±0.29	4374	

⁽b) STL DeepBDC based on [37] relying on non-episodic training.

Summary

- Application of Brownian distance to self-similarity
- Brownian distance is a good representation of the image
- the joint distribution is a good choice in the representation of the image
- + an easy way to implement
- + good performance on the few-shot task
- lack of the reason for the effectiveness