Joint Distribution Matters: Deep Brownian Distance Covariance for
Few-Shot Classification

Jiangtao Xie'*, Fei Long!*, Jiaming Lv!, Qilong Wang?, Peihua Li%
IDalian University of Technology, China *Tianjin University, China

CVPR2022 Oral

Few-Shot Classification

* Using small amounts of data to learn classifications with unseen labels

* N-way K-shot method:
* N = number of classes
* K = training examples per class, as small as 1 or 5

Train / Support examples Test / Query examples

Lion Camel Horse Lama

Example: 5-way 1-shot classification task

* meta-learning / learning to learn :
* model based methods
* metric based methods V
* optimization based methods

Probability

Joint

Accuracy (%)

Method -y Dis-similarity /similarity measure distribution Latency T-shot | 5-shot
2 Mean . 2 ni py
CovNet [44] |Covarance 51 5 |2 No Low | 49.64 | 69.45
matrix
: Gaussian
ADM [20] disteibution Dkt MNux,=x Wy, =y) No Low 53.10 | 69.73
DeepEMD [47] | Discrete MmNy 20 22500 fxg31 0%, . Yes High | 65.91 | 82.41
distribution s.t. 37, fx; .y, =fx;, 2, fx;,y,=fy, for Vj,1
Characteristic f [pxy (t,8)—dx (t)dy ()
DeepBDC dtd Y L 67.34 | 84.46
eepBDC (0urs) | ¢ nction RRRT ¢ c,||t]1FP]|s|| 19 ° = o

* DeepBDC: a fundamental but largely overlooked dependency modeling method

* formulate DeepBDC as a highly modular and efficient layer

Brownian Distance Covariance

* random vectors X € RP,Y € R¢

* joint characteristic function

bxv(t;5)=| [explilt"x+sTy)) fxy (x,y)dxdy
RrJ R4
* marginal distribution

dx(t)=pxy(t,0) ¢y (s)=dxv(0,s)

|dxvy (t,8) — dx (t)dy (s)|?
p(X,Y) /Rp/Rq dtds

Cpcq||t||1+p||S||1+q

* BDC metric

* empirical characteristic functions

dxy(t,s) = % Zexp(z’(thk +syr))
k=1

Discrete BDC

* For the set of m observations {(x1,¥1),.--, (Xm,¥m)}

* Using Euclidean distance
A = (ar;) € R™*™ where @i = || x5 — x|

AN

B = (b)) € R™*™ where by = ||k —yi|
* BDC metrix

A = (ak) Okl = G - % D ket Okl — % D i1 Gkl — # D ket D Gkl
* BDC metric

p(X,Y) =tr(A"B)
p(X,Y) = (a,b) = a’b

-> BDC metric has a closed form expression for discrete observations

Székely G J, Rizzo M L. Brownian distance covariance[J]. The annals of applied statistics, 2009, 3(4): 1236-1265.

Deep BDC

take for example Xk as a random observation (the k-th column of X)

squared Euclidean distance matrix A = (d;)

Euclidean distance matrix A = (v/ax)
BDC matrix A |

~

A=2(1(X"XoI)) —2X'X
A= (Vaw)
PO 1 =
A=A- E(IA)Sym + 51A1
* Involving standard matrix operations
-> appropriate for parallel computation on GPU
* Xk: the k-th channel of the feature of an image

-> use BDC matrix as a self-similarity/encoder

Application on few-shot learning: ProtoNet

; X
Based on ProtoNet: O§-<8
. . C
* BDC matrix of an image Z; : Ay(z;) °
* prototype of the support class k:
1 Query image
Pri= K Z Ao (z)) BDC matrix
(2;,y5) €Sk s EiC |
* |oss function: o |
T SUEDUL g BDC matrices Prototype =
T 1 eXP(Ttr(AO(zJ’) Pyj)) Shared N B Sl Softmax =
L 8 > . exp(rtr(Ae(z;)TPk)) =
(2;,y;) €DIve .] NN N
Backbone Lhe m - \\
module \’\‘ \—
NN N
NN N

(a) Meta DeepBDC-Instantiation with ProtoNet [33] as a blueprint.

Application on few-shot learning: STL

Based on simple transfer learning (STL):

Whole meta-training

* Use the idea of clustering

set of all classes Weight matrices
* k-th weight matrix;. W, € Rdxd BN
* loss function <
arg min - — Z log exp(rtr(Ao(z;)" Wy,)) BDC matrix 2\ —
JE P, - - S exp(rtr(Ag(z;)TWy)) A < =
3193 Hn E Backbone n?o](:;fle @ . N Softmax —
. . \\ . :]

(b) STL DeepBDC-Instantiation based on Good-Embed [37] relying on non
episodic training.

Experiment

* Dataset: minilmageNet(100 classes), tieredlmageNet(608 classes), CUB(200 bird classes)
* Backbone: ResNet-12, ResNet-18

minilmageNet tieredIlmageNet
Method Backbone: g b ¢ 5-shot -shot 5-shot
CTM [19] ResNet-18 64.12+0.82 80.511+0.13 68.414+0.39 84.28+1.73
S2M2 [25] ResNet-18 64.06+0.18 80.58+0.12 = *
TADAM [26] ResNet-12 58.50+0.30 76.7040.38 - -
MetaOptNet [18] ResNet-12 62.6440.44 78.63+0.46 65.9940.72 81.5640.63
DN4 [21]1 ResNet-12 64.73+0.44 79.85+0.31 = -
Baseline++ [4] T ResNet-12 60.56+0.45 77.4040.34 = *
Good-Embed [37] ResNet-12 64.8240.60 82.14+0.43 71.5240.69 86.0340.58
FEAT [46] ResNet-12 66.784+0.20 82.054+0.14 70.804+0.23 84.79+0.16
Meta-Baseline [5] ResNet-12 63.1740.23 79.26+ 0.17 68.624+0.27 83.2940.18
MELR [11] ResNet-12 67.404+0.43 83.404+0.28 72.1440.51 87.0140.35
FRN [45] ResNet-12 66.45+0.19 82.834+0.13 71.164+0.22 86.0140.15
IEPT [50] ResNet-12 67.05+0.44 82.904+0.30 72.2440.50 86.73+0.34
BML [51] ResNet-12 67.0440.63 83.634+0.29 68.994+0.50 85.49+0.34
ProtoNet [33] T ResNet-12 62.114+0.44 80.7740.30 68.31+0.51 83.85+40.36
ADM [20] 1 ResNet-12 65.8740.43 82.054+0.29 70.784+0.52 85.70+0.43
CovNet [44] T ResNet-12 64.59+0.45 82.0240.29 69.754+0.52 84.214+0.26
DeepEMD [47] ResNet-12 65.914+0.82 82.414+0.56 71.16+0.87 86.03+0.58
Meta DeepBDC ResNet-12 67.341+0.43 84.46+0.28 72.34+0.49 87.31+0.32
STL DeepBDC ResNet-12 67.8310.43 85.45+0.29 73.8240.47 89.00+0.30

(a) Results on general object recognition datasets.

CUB

Method Backbone -shot 5-shot

ProtoNet [17] Convd 64424048 81.82+0.35
FEAT [46] Conv4 68.874+0.22 82.9040.15
MELR [11] Convd 70.264+0.50 85.01+0.32
MVT [27] ResNet-10 - 85.354+0.55
MatchNet [19] ResNet-12 71.87+0.85 85.0840.57
Wang et al. LR [47] ResNet-12 76.16 90.32

MAML [17] ResNet-18 68.424+1.07 83.4740.62
A-encoder [17] ResNet-18 69.80 82.60

Baseline++ [4] ResNet-18 67.02+0.90 83.58+0.54
AA (1] ResNet-18 74.22+1.09 88.65+0.55
Neg-Cosine [27] ResNet-18 72.66+0.85 89.40+40.43
LaplacianShot [52] ResNet-18 80.96 88.68

FRN [45] T ResNet-18 82.55+0.19 92.98+40.10
Good-Embed [27] T ResNet-18 77.924+0.46 89.944-0.26
ProtoNet [33] ResNet-18 80.904+0.43 89.81+0.23
ADM [20] ResNet-18 79.3140.43 90.6940.21
CovNet [44] ResNet-18 80.764+0.42 92.0540.20
Meta DeepBDC ResNet-18 83.55+40.40 93.82+40.17
STL DeepBDC ResNet-18 84.01+0.42 94.02+0.24

(b) Results on fine-grained categorization dataset.

e Meta-training | Meta-testing Accuracy
1-shot | 5-shot | 1-shot | 5-shot | 1-shot | 5-shot
ProtoNet [5-20]1 T | 304 | 365 | 115 143 | 62.11 | 80.77
ADM [5-1211 | 908 | 967 | 199 | 221 | 6587 | 82.05
CovNet [S-24]11 | 310 | 374 | 120 | 144 | 64.59 | 82.02
DeepEMD [5-27] | >80K | >106 | 457 |12,617 | 65.91 | 82.41
Meta DeepBDC | 505 623 161 198 | 67.34 | 84.46
~ STL DeepBDC 184 | 245 | 67.83 | 85.45

Table S-5. Comparison of latency (ms) for S-way classification

on minilmageNet. ' Reproduced with our setting.

Method Backbone 5-shot Method Backbone 5-shot
ProtoNet [33] ResNet-12 55.96+40.38 ProtoNet [33] T ResNet-12 46.30+0.36
ADM [20] T ResNet-12 65.404-0.36 ADM [20] T ResNet-12 53.9440.35
CovNet [44] T ResNet-12 63.56+0.37 CovNet [44] T ResNet-12 52.9040.37
Baseline [4] T ResNet-12 59.044-0.36 Baseline [4] T ResNet-12 50.2940.37
Baseline++ [4] T ResNet-12 56.50+0.38 Baseline++ [4] T ResNet-12 46.44+0.37
Good-Embed [37] T ResNet-12 58.95+0.38 Good-Embed [37] T ResNet-12 50.18+0.37
Meta DeepBDC ResNet-12 68.67+0.39 Meta DeepBDC ResNet-12 54.6140.37
STL DeepBDC ResNet-12 69.07+0.39 STL DeepBDC ResNet-12 58.09+0.36

Method Backbone 5-shot
Baseline [4] ResNet-18 65.57+0.70
Baseline++ [4] ResNet-18 62.04+0.76
GNN+FT [34] ResNet-12 66.98+40.68

BML [51] ResNet-12 72.4240.54

FRN [45] ResNet-12 77.09+0.15
ProtoNet [33] T ResNet-12 67.1940.38

Good-Embed [37] T ResNet-12 67.4340.44
ADM [20] T ResNet-12 70.55+0.43
CovNet [44] T ResNet-12 76.7740.34
Meta DeepBDC ResNet-12 77.8740.33
STL DeepBDC ResNet-12 80.16+0.38

(a) minilmageNet — CUB.

(b) minilmageNet — Aircraft.

(c) minilmageNet — Cars.

Table 5. Comparison with state-of-the-art methods for S-way 5-shot classification in cross-domain scenarios. The best results are in bold
black and second-best ones are in red. T Reproduced with our setting.

* size of channels: d -> size of BDC matrix: d?

d Parameters 1-shot 5-shot
M) Acc Latency Acc Latency
1280 1325 66.36::0.43 | 488 |83.23+0.30| 614
960 13.04 66.81+0.44 | 280 |[83.68+0.28 | 351
640 12.84 6734043 | 161 |84.46+0.28| 198
512 12.75 67.10£0.45 | 134 |84.23+0.28| 164
256 12.59 6690043 | 121 |84.15+£0.28| 148
ProtoNet [33] 62.11+044 | 115 |[80.77+0.30| 143
— . 1-shot 5-shot
SimlERiymeton. Acc Latency Acc Latency
Inner product | 67.34+0.43 | 161 |82.38+0.32| 193
Cosine similarity | 61.74+:042| 172 |[82.49+£031 | 207
Euclidean distance | 56.70+0.45 | 163 |84.46+0.28 | 198

(a) Meta DeepBDC based on ProtoNet [3] as a blueprint.

d Parameters 1-shot 5-shot
M) Acc Latency Acc Latency
512 13.41 64.92+043 | 1110 |84.61+0.29| 2016
256 12719 66.15£043 | 371 |85.44+0.29| 587
196 12.65 66.57+£0.43 | 285 |85.361x0.29| 424
128 12.55 67.83+0.43 | 184 |85.451+0.30| 245
64 12.48 66.97+£0.44 | 137 |83.184+0.30| 172
Good-Embed [37] | 64.82:£0.44 | 121 |82.14+£0.43| 155
: 1-shot S-shot
SLagRIE Acc Latency Acc Latency
Logistic regression | 67.83+0.43 | 184 |85.454+0.30| 245
SVM 66.29+044 | 113 |84.73+0.29| 144
Softmax 66.30+£0.44 | 1250 |85.204+0.29| 4374

(b) STL DeepBDC based on [37] relying on non-episodic training.

summary

* Application of Brownian distance to self-similarity
* Brownian distance is a good representation of the image

* the joint distribution is a good choice in the representation of the image

+ an easy way to implement

+ good performance on the few-shot task

- lack of the reason for the effectiveness

