Shift-tolerant Perceptual Similarity Metric

Abhijay Ghildyal and Feng Liu

Portland State University, OR 97201, USA {abhijay,fliu}@pdx.edu

ECCV 2022

Motivation

"how similarity metrics work on a pair of images that are not perfectly aligned"

- -> develop a **shift-tolerant** perceptual similarity metric
- -> from a perspective of **network framework**

Article Structure

- 3 Human Perception of Small Shifts
- 4 Effect of Small Shifts on Similarity Metrics
- 5 Elements of Shift-tolerant Metrics
- 6 Experiments

- -> subjective experiment
- -> conflict with subjective experiment

Subjective Experiment

• Hypothesis: it is difficult for people to detect a small shift in images

• Setting:

50 pairs: 5 pairs for each 0-9 pix-shift presentation: two images placed side by side participants: 32

Pixel	Number	of user res	Avg. of std. in	
shift	Said Yes (Same)	Said No (Shifted)	Yes%	user responses per sample
0	140	10	93.3%	0.09 ± 0.17
1	121	29	80.7%	0.19 ± 0.23
2	84	66	56.0%	0.34 ± 0.21
3	52	98	34.7%	0.24 ± 0.23
4	52	98	34.7%	0.30 ± 0.24
5	40	110	26.7%	0.23 ± 0.24
6	35	115	23.3%	0.21 ± 0.24
7	31	119	20.7%	0.12 ± 0.20
8	27	123	18.0%	0.18 ± 0.23
9	15	135	10.0%	0.13 ± 0.21

^{-&}gt; verifies the hypothesis

Performance of Similarity Metrics

- Experiments on BAPPS dataset
- reference image I_r distorted image I_{d1} , I_{d2}
- predicted score $s_1 = S(I_r, I_{d1}), s_2 = S(I_r, I_{d2})$
- Evaluation index

$$r_{rf} = \frac{1}{N} \sum_{l=1}^{N} (s_1^l < s_2^l) \neq (\hat{s}_1^l < \hat{s}_2^l)$$

	2AFC	r_{rf}				
Network		1pixel	2pixel	3pixel		
L2	62.92	3.59	7.55	10.82		
SSIM 30	61.41	3.16	7.20	13.73		
CW-SSIM 31	61.48	3.91	6.88	9.47		
MS-SSIM 32	62.54	2.22	5.83	10.66		
PIEAPP Sparse 25	64.20	2.83	3.19	3.81		
PIEAPP Dense 25	64.15	2.97	1.37	3.33		
PIM-1 [3]	67.45	0.79	1.70	2.52		
PIM-5 <mark>3</mark>	67.38	1.01	1.88	2.96		
GTI-CNN 21	63.87	3.95	4.91	7.88		
DISTS [6]	68.83	2.85	2.89	4.03		
E-LPIPS 16	68.22	5.84	5.86	5.77		
LPIPS (Alex) 37	68.59	2.81	3.41	3.84		
LPIPS (Alex) §*†	70.54	2.58	3.59	3.53		
LPIPS (Alex) ours*†	70.39	0.66	1.24	1.79		
LPIPS (Alex) §*‡	70.65	2.87	3.92	3.74		
LPIPS (Alex) ours* [‡]	70.48	0.57	1.06	1.50		

^(§) Retrained from scratch. (*) Trained on patches of size 256 using author's (†) / our (‡) setup.

Method

- design a deep neural network resistant to small shifts
- baseline: LPIPS(AlexNet)

Method

Attempts:

- Reducing Stride
 - AlexNet: conv-1: S = 4 MaxPooling: S=2
- Anti-aliasing
 - normal convolution: shift-equivariance
 - BlurPool: a Gaussian filter+ a downsampling operator with stride S

$$conv1(S=4)->conv1(S=2)+BlurPool(S=2)$$

Fig. 4: Alternative positions of *BlurPool*.

Method

- Pooling
 - shift-invariance: MaxPooling>AvePooling
 - MaxBlurPooling (Gaussian filter+MaxBlurPooling)
 - AveBlurPooling (Gaussian filter+AveBlurPooling)
- Strided-skip Connections
- Border Handling
 - F-conv: every element of the filter needs to be applied to every pixel in the input image

Comparisons to Existing Metrics

Table 4: Experiments on the CLIC dataset.

	. (~)	No. of rank flips			
Network	Accuracy(%)	$1\overline{\text{pixel}}$	2pixel	3pixel	
L2	58.16	833	2102	2214	
SSIM 30	60.00	349	931	1109	
PIEAPP 25	75.44	91	134	158	
E-LPIPS 16	74.44	212	251	317	
DISTS 6	75.63	28	36	50	
PIM-1 3	73.79	13	22	33	
LPIPS(Alex) 37	73.68	90	108	121	
$LPIPS(Alex)^{\S*\dagger}$	76.53	59	51	62	
LPIPS(Alex) ours*†	76.97	17	14	21	

^(§) Retrained from scratch. (*) Trained on image patches of size 64 using author's (†) setup.

Effect of BlurPool locations

Table 7: Effect of *BlurPool* locations within an antialiased strided convolution (Figure 4).

Anti-Alias (BlurPool)	Stride in $Conv-1$	BlurPool Location	2AFC		$rac{r_{rf}}{2 ext{pixel}}$	3pixel
√	2	Original	70.67	1.46	1.82	2.25
\checkmark	2	FeatAfterBlur	70.55	1.73	1.84	2.49
\checkmark	2	${\bf Blur Before Act}$	70.50	2.06	2.02	2.74
	1	- $ -$	70.42	0.66	1.13	1.83
\checkmark	1	FeatAfterBlur	70.52	0.69	1.11	1.60
\checkmark	1	${\bf Blur Before Act}$	70.48	0.57	1.06	$\bf 1.50$

Effect on different backbone networks

Table 6: Anti-aliasing via *BlurPool* can significantly improve shift-tolerance and often improve 2AFC scores consistently for different backbone networks.

Network	,	lurPool) tion-Pad	2AFC		r_{rf}	
	1	2		$1\overline{\text{pixel}}$	2pixel	3pixel
VGG-16			70.03	3.01	3.76	3.44
	\checkmark		70.05	0.66	1.08	1.44
		\checkmark	70.07	0.66	1.12	1.82
ResNet-18			69.86	2.67^{-}	$\frac{-}{3.35}^{-}$	$\bar{3}.77^{-}$
	\checkmark		69.95	0.82	1.51	2.19
		\checkmark	70.14	1.07	1.81	2.38
Squeeze			69.61	7.41^{-}	7.58	10.35
_	\checkmark		69.24	2.03	3.06	3.93
		\checkmark	69.44	2.10	2.48	3.42

• Just noticeable differences

Table 8: Consistency of perceptual similarity metrics with the sensitivity of human perception to pixel shifts.

Metric	JND mAP%
SSIM 30 LPIPS (Alex) 37 LPIPS (Alex) §*† LPIPS (Alex) ours*† LPIPS (VGG) 37 LPIPS (VGG) §*†	0.722 0.757 0.740 0.771 0.770 0.769
LPIPS (VGG) ours*† DISTS 6 PIM-1 3	0.775 0.766 0.773

^(§) Retrained from scratch. (*) Trained on image patches of size 64 using author's (†) setup.

Summary

- a shift-tolerant similarity measure from the perspective of network architecture
- some elegant changes in network architecture
- + a clear writing logic and structure
- + a complete research process (question raising, verification, and solution)
- + intuitive experiment about tolerance of tiny shift
- lack of novelty