Shift-tolerant Perceptual Similarity Metric

Abhijay Ghildyal and Feng Liu
Portland State University, OR 97201, USA
\{abhijay,fliu\}@pdx.edu
ECCV 2022

Motivation

- "how similarity metrics work on a pair of images that are not perfectly aligned"

-> develop a shift-tolerant perceptual similarity metric
-> from a perspective of network framework

Article Structure

- 3 Human Perception of Small Shifts
- 4 Effect of Small Shifts on Similarity Metrics
- 5 Elements of Shift-tolerant Metrics
- 6 Experiments
-> subjective experiment
-> conflict with subjective experiment

Subjective Experiment

- Hypothesis: it is difficult for people to detect a small shift in images
- Setting:

50 pairs: 5 pairs for each 0-9 pix-shift presentation: two images placed side by side participants: 32
-> verifies the hypothesis
\(\left.$$
\begin{array}{ccccc}\hline \begin{array}{c}\text { Pixel } \\
\text { shift }\end{array} & \begin{array}{c}\text { Number of user responses }\end{array} & \begin{array}{c}\text { Said Yes } \\
\text { (Same) }\end{array} & \begin{array}{c}\text { Said No } \\
\text { (Shifted) }\end{array} & \text { Yes\% }\end{array}
$$ \begin{array}{c}Avg. of std. in

user responses

per sample\end{array}\right]\)| | 140 | 10 | 93.3% | 0.09 ± 0.17 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 121 | 29 | 80.7% | 0.19 ± 0.23 |
| 1 | 84 | 66 | 56.0% | 0.34 ± 0.21 |
| 2 | 52 | 98 | 34.7% | 0.24 ± 0.23 |
| 3 | 52 | 98 | 34.7% | 0.30 ± 0.24 |
| 4 | 52 | 110 | 26.7% | 0.23 ± 0.24 |
| 5 | 40 | 115 | 23.3% | 0.21 ± 0.24 |
| 6 | 35 | 119 | 20.7% | 0.12 ± 0.20 |
| 7 | 31 | 123 | 18.0% | 0.18 ± 0.23 |
| 8 | 27 | 135 | 10.0% | 0.13 ± 0.21 |
| 9 | 15 | | | |

Performance of Similarity Metrics

- Experiments on BAPPS dataset
- reference image I_{r} distorted image $I_{d 1}, I_{d 2}$
- predicted score $s_{1}=S\left(I_{r}, I_{d 1}\right), s_{2}=S\left(I_{r}, I_{d 2}\right)$
- Evaluation index

$$
r_{r f}=\frac{1}{N} \sum_{l=1}^{N}\left(s_{1}^{l}<s_{2}^{l}\right) \neq\left(\hat{s}_{1}^{l}<\hat{s}_{2}^{l}\right)
$$

Network	2AFC	$r_{r f}$		
		1pixel	2pixel	3pixel
L2	62.92	3.59	7.55	10.82
SSIM [30]	61.41	3.16	7.20	13.73
CW-SSIM [31]	61.48	3.91	6.88	9.47
MS-SSIM [32]	62.54	2.22	5.83	10.66
PIEAPP Sparse [25]	64.20	2.83	3.19	3.81
PIEAPP Dense [25]	64.15	2.97	1.37	3.33
PIM-1 [3]	67.45	0.79	1.70	2.52
PIM-5 [3]	67.38	1.01	1.88	2.96
GTI-CNN [21]	63.87	3.95	4.91	7.88
DISTS [6]	68.83	2.85	2.89	4.03
E-LPIPS [16]	68.22	5.84	5.86	5.77
LPIPS (Alex) [37]	68.59	2.81	3.41	3.84
LPIPS (Alex) ${ }^{\S * \dagger}$	70.54	2.58	3.59	3.53
LPIPS (Alex) ours* \dagger	70.39	0.66	1.24	1.79
LPIPS (Alex) ${ }^{\text {¢* }}$	70.65	2.87	3.92	3.74
LPIPS (Alex) ours* ${ }^{\text { }}$	70.48	0.57	1.06	1.50

(§) Retrained from scratch. (*) Trained on patches of size 256 using author's (\dagger) / our (\ddagger) setup.

Method

- design a deep neural network resistant to small shifts
- baseline: LPIPS(AlexNet)

Method

Attempts:

- Reducing Stride
- AlexNet: conv-1: $\mathrm{S}=4$ MaxPooling: $\mathrm{S}=2$
- Anti-aliasing
- normal convolution: shift-equivariance
- BlurPool: a Gaussian filter+ a downsampling operator with stride S

$$
\operatorname{conv1}(S=4)->\operatorname{conv1}(S=2)+\text { BlurPool(S=2) }
$$

Fig. 4: Alternative positions of BlurPool.

Method

- Pooling
- shift-invariance: MaxPooling>AvePooling
- MaxBlurPooling (Gaussian filter+MaxBlurPooling)
- AveBlurPooling (Gaussian filter+AveBlurPooling)
- Strided-skip Connections

- Border Handling
- F-conv: every element of the filter needs to be applied to every pixel in the input image

Experiment

- Comparisons to Existing Metrics

Table 4: Experiments on the CLIC dataset.

Network			Accuracy(\%) $)$			No. of rank flips		
			pixel	2pixel 3pixel				

(§) Retrained from scratch. (*) Trained on image patches of size 64 using author's (\dagger) setup.

Experiment

- Effect of BlurPool locations

Table 7: Effect of BlurPool locations within an antialiased strided convolution (Figure 4).

Anti-Alias (BlurPool) in	$\begin{aligned} & \text { Stride } \\ & \text { in Conv-1 } \end{aligned}$	BlurPool Location	2AFC	$r_{r f}$		
				1 pixel	2pixel	3pixel
\checkmark	2	Original	70.67	1.46	1.82	2.25
\checkmark	2	FeatAfterBlur	70.55	1.73	1.84	2.49
\checkmark	2	BlurBeforeAct	70.50	2.06	2.02	2.74
\checkmark	1	Original	70.42	- 0.66	1.13	1.83
\checkmark	1	FeatAfterBlur	70.52	0.69	1.11	1.60
\checkmark	1	BlurBeforeAct	70.48	0.57	1.06	1.50

(a)

(b)

(c)

Experiment

- Effect on different backbone networks

Table 6: Anti-aliasing via BlurPool can significantly improve shift-tolerance and often improve 2AFC scores consistently for different backbone networks.

Network	AA (BlurPool) Reflection-Pad	2AFC	$r_{r f}$		
	2		1pixel	2pixel	3 pixel
VGG-16		70.03	3.01	3.76	3.44
	\checkmark	70.05	0.66	1.08	1.44
	\checkmark	70.07	0.66	1.12	1.82
ResNet-18		69.86	2.67	3.35	3.77
	\checkmark	69.95	0.82	1.51	2.19
	\checkmark	70.14	1.07	1.81	2.38
$\overline{\text { Squeeze }}{ }^{-}$		69.61	7.41	7.58	10.35
	\checkmark	69.24	2.03	3.06	3.93
	\checkmark	69.44	2.10	2.48	3.42

Experiment

- Just noticeable differences

Table 8: Consistency of perceptual similarity metrics with the sensitivity of human perception to pixel shifts.

Metric	JND mAP\%
SSIM [30]	0.722
LPIPS (Alex) [37]	0.757
LPIPS (Alex)	$\boxed{\xi * \dagger}$
LPIPS (Alex) ours $^{* \dagger}$	0.740
LPIPS (VGG)	0.771
LPIPS (VGG)	§*†
LPIPS (VGG)	0.770
DISTS [6]	0.769
PIM-1 [3]	$\mathbf{0 . 7 7 5}$

(§) Retrained from scratch. (*) Trained on image patches of size 64 using author's (\dagger) setup.

Summary

- a shift-tolerant similarity measure from the perspective of network architecture
- some elegant changes in network architecture
+ a clear writing logic and structure
+ a complete research process (question raising, verification, and solution)
+ intuitive experiment about tolerance of tiny shift
- lack of novelty

