Peking University

The VC-Dimension

Yujia Liu

School of Mathematical Sciences & Department of Computer Science Peking University

December 24, 2020

Ξ

《曰》 《國》 《臣》 《臣》

Peking University

Notations

- \mathcal{X} : a set of instances
- \mathcal{Y} : a set of labels
- \mathcal{H} : a set of hypotheses
- S: a training set $(S \subset \mathcal{X})$
- D: a distribution over $\mathcal{X} \times \mathcal{Y}$

Ξ

≣ ≥

• Loss function $I : \mathcal{H} \times (\mathcal{X} \times \mathcal{Y}) \longrightarrow \mathbb{R}_+$

Empirical risk $L_{S}(h) := \frac{1}{N} \sum_{i=1}^{N} l(h, x_{i}, y_{i}), S = \{(x_{1}, y_{1}), \cdots, (x_{N}, y_{N})\}$ True risk $L_{S}(h) := \mathbb{E}_{(x_{1}, y_{1})} = [l(h \times y_{1})]$

- True risk $L_D(h) := \mathbb{E}_{(x,y) \sim D}[l(h,x,y)]$
- ERM learning $h_{\mathcal{S}} := \arg \min_{h \in \mathcal{H}} L_{\mathcal{S}}(h)$

Image: A test in te

< A > <

Ξ

A hypothesis class \mathcal{H} is agnostic PAC learnable if there exist a function $m_{\mathcal{H}}: (0,1)^2 \longrightarrow \mathbb{N}$ and a learning algorithm with the following property: For every $\epsilon, \delta \in (0,1)$ and for every distribution D over $\mathcal{X} \times \mathcal{Y}$, when running the learning algorithm on $m \ge m_{\mathcal{H}}(\epsilon, \delta)$ i.i.d. examples generated by D, the algorithm returns a hypothesis h such that, with probability of at least $1 - \delta$ over the choice of the m training examples,

$$L_D(h) \leq \min_{h' \in \mathcal{H}} L_D(h') + \epsilon$$

We say that a hypothesis class \mathcal{H} has the *uniform convergence property* (w.r.t.a domain $\mathcal{X} \times \mathcal{Y}$ and a loss function *I*) if there exists a function $m_{\mathcal{H}}^{UC} : (0,1)^2 \longrightarrow \mathbb{N}$ such that for every $\epsilon, \delta \in (0,1)$ and for every probability distribution *D* over $\mathcal{X} \times \mathcal{Y}$, if *S* is a sample of $m \ge m_{\mathcal{H}}^{UC}(\epsilon, \delta)$ examples drawn i.i.d. according to *D*, then, with probability of at least $1 - \delta$, *S* is ϵ -representative.

$$\forall h \in \mathcal{H}, |L_{\mathcal{S}}(h) - L_{\mathcal{D}}(h)| \leq \epsilon$$

Let ${\cal H}$ be a finite hypothesis class. Then, ${\cal H}$ enjoys the uniform convergence property with sample complexity

$$m_{\mathcal{H}}^{\textit{UC}}(\epsilon,\delta) \leq rac{\log(2|\mathcal{H}|/\delta)}{2\epsilon^2}$$

Furthermore, the class is agonostically PAC learnable using the ERM algorithm with sample complexity

$$m_{\mathcal{H}}(\epsilon,\delta) \leq m_{\mathcal{H}}^{UC}(\epsilon/2,\delta) \leq rac{2 log(2|\mathcal{H}|/\delta)}{\epsilon^2}$$

 ${\cal H}$ is finite' is not necessary !

Let ${\cal H}$ be a finite hypothesis class. Then, ${\cal H}$ enjoys the uniform convergence property with sample complexity

$$m_{\mathcal{H}}^{\textit{UC}}(\epsilon,\delta) \leq rac{\log(2|\mathcal{H}|/\delta)}{2\epsilon^2}$$

Furthermore, the class is agonostically PAC learnable using the ERM algorithm with sample complexity

$$m_{\mathcal{H}}(\epsilon, \delta) \leq m_{\mathcal{H}}^{UC}(\epsilon/2, \delta) \leq rac{2log(2|\mathcal{H}|/\delta)}{\epsilon^2}$$

' \mathcal{H} is finite' is not necessary !

Peking University

For any ϵ, δ , we need to find a function $m_{\mathcal{H}}(\epsilon, \delta)$, such that when $m \ge m_{\mathcal{H}}(\epsilon, \delta)$, we have $L_D(h_s) \le \epsilon$ with the probability of at least $1 - \delta$, where h_s =argmin_{$h \in \mathcal{H}$} $L_S(h)$ (ERM Learning)

Ξ

Image: A marked black

Peking University

> Proof: Let a^* be a threshold such that h^* achieves $L_D(h^*) = 0$.

$$\mathbb{P}_{x \sim \mathcal{D}_x}[x \in (a_0, a^*)] = \mathbb{P}_{x \sim \mathcal{D}_x}[x \in (a^*, a_1)] = \epsilon$$

PS.
If
$$\mathbb{P}_{x \sim \mathcal{D}_x}[x \in (-\infty, a^*)] \le \epsilon$$
, we set $a_0 = -\infty$.
If $\mathbb{P}_{x \sim \mathcal{D}_x}[x \in (a^*, +\infty)] \le \epsilon$, we set $a_1 = +\infty$.

E

Peking University

E

- E - F

▲ 同 ト - ▲ 臣 ト

Peking University

토 > 토

< A >

Peking University

E

・ロト ・ 同ト ・ ヨト ・ ヨト ・

Peking University

Э

< E >

Peking University

What is the sufficient condition for learnability?

The VC-Dimension of $\mathcal H$ is finite!

Ξ

《曰》 《國》 《臣》 《臣》

Peking University

What is the sufficient condition for learnability?

The VC-Dimension of \mathcal{H} is finite!

→ < Ξ >

Ξ

Before introducing the VC-dimension, we need to learn some definitions:

• (*Restriction* \mathcal{H} to *C*.) Let \mathcal{H} be a class of functions from \mathcal{X} to $\{0,1\}$ and let $C = \{c_1, c_2, \cdots, c_m\} \subset \mathcal{X}$. The restriction of \mathcal{H} to *C* is the set of functions from *C* to $\{0,1\}$ that can be derived from \mathcal{H} . That is

$$\mathcal{H}_{C} = \{(h(c_1), h(c_2), \cdots, h(c_m)) : h \in \mathcal{H}\}$$

where we represent each function from C to $\{0,1\}$ as a vector in $\{0,1\}^{|C|}.$

Before introducing the VC-dimension, we need to learn some definitions:

• (Shattering.) A hypothesis class \mathcal{H} shatters a finite set $C \subset \mathcal{X}$ if \mathcal{H}_C is the set of all functions from C to $\{0,1\}$. That is, $|\mathcal{H}_C| = 2^{|C|}$.

(VC-Dimension.) The VC-Dimension of a hypothesis class \mathcal{H} , denoted VCdim(\mathcal{H}), is the maximal size of a set $C \subset \mathcal{X}$ that can be shattered by \mathcal{H} . If \mathcal{H} can shatter sets of arbitrarily large size we say that \mathcal{H} has infinite VC-Dimension.

The VC-Dimension is *d*:

- There exists a set of d points that can be shattered
- There is no set of d + 1 points that can be shattered

Some examples for the VC-Dimension

- Threshold Functions
- Intervals
- Axis Aligned Rectangles
- The number of parameters
- Finite Classes

E

=

$\mathcal{H} = \{ x \mapsto sgn(sin(\theta x)) : \theta \in \mathbb{R} \}$

- The number of parameters in ${\mathcal H}$ is 1, but ${\sf VCdim}({\mathcal H}){=}\infty.$
- (Lemma) If $0.x_1x_2x_3\cdots$, is the binary expansion of $x \in (0, 1)$, then for any natural number m, $sgn(sin(2^m\pi x)) = (1 x_m)$.
- For $\forall d \in \mathbb{N}$, we construct a set of d points: (1) the label of c_i is y_i ; (2) $c_i = 2^{-i} (i = 1, 2, \dots, d)$. Set $\theta = \pi (\sum_{i=1}^d (1 - y_i) 2^i)$

$$\mathcal{H} = \{ x \mapsto sgn(sin(\theta x)) : \theta \in \mathbb{R} \}$$

• The number of parameters in \mathcal{H} is 1, but VCdim $(\mathcal{H}) = \infty$.

- (Lemma) If $0.x_1x_2x_3\cdots$, is the binary expansion of $x \in (0, 1)$, then for any natural number m, $sgn(sin(2^m\pi x)) = (1 x_m)$.
- For $\forall d \in \mathbb{N}$, we construct a set of d points: (1) the label of c_i is y_i ; (2) $c_i = 2^{-i} (i = 1, 2, \dots, d)$. Set $\theta = \pi (\sum_{i=1}^d (1 - y_i) 2^i)$

$$\mathcal{H} = \{ x \mapsto sgn(sin(\theta x)) : \theta \in \mathbb{R} \}$$

- The number of parameters in \mathcal{H} is 1, but $VCdim(\mathcal{H}) = \infty$.
- (Lemma) If $0.x_1x_2x_3\cdots$, is the binary expansion of $x \in (0, 1)$, then for any natural number m, $sgn(sin(2^m\pi x)) = (1 x_m)$.
- For $\forall d \in \mathbb{N}$, we construct a set of d points: (1) the label of c_i is y_i ; (2) $c_i = 2^{-i} (i = 1, 2, \dots, d)$. Set $\theta = \pi (\sum_{i=1}^d (1 - y_i) 2^i)$

$$\mathcal{H} = \{ x \mapsto sgn(sin(\theta x)) : \theta \in \mathbb{R} \}$$

- The number of parameters in \mathcal{H} is 1, but $VCdim(\mathcal{H}) = \infty$.
- (Lemma) If $0.x_1x_2x_3\cdots$, is the binary expansion of $x \in (0, 1)$, then for any natural number m, $sgn(sin(2^m\pi x)) = (1 x_m)$.
- For $\forall d \in \mathbb{N}$, we construct a set of d points: (1) the label of c_i is y_i ; (2) $c_i = 2^{-i} (i = 1, 2, \dots, d)$. Set $\theta = \pi (\sum_{i=1}^d (1 - y_i) 2^i)$

- Is 'finite VC-Dimension' is a necessary and sufficient condition for the PAC learnability?
- Why we come to the VC-Dimension?

E >

(No Free Lunch.)

Let \mathcal{H} be a hypothesis class of functions from \mathcal{X} to $\{0,1\}$.

Assume there is a set $C \subset \mathcal{X}$ of size 2m that can be shattered by \mathcal{H} . Let $S \subset C$ of size m be a training set.

Then, for any learning algorithm, A, there exist a distribution D over $\mathcal{X} \times \{0,1\}$ and a predictor $h \in \mathcal{H}$.

Such that $L_D(h) = 0$ but with probability of at least 1/7 over the choice of $S \sim D$, we have that $L_D(A(S)) \ge 1/8$.

Proof. $VCdim(\mathcal{H})$ is infinite $\Rightarrow \mathcal{H}$ is not PAC learnable

Since \mathcal{H} has an infinite VC-Dimension, for any training set size m, there existed a shattered set of 2m, and the claim follows by *No Free Lunch Theorem* (\mathcal{H} is not learnable).

- Step 1: $VCdim(\mathcal{H})$ is finite $\Rightarrow \tau_{\mathcal{H}}(m) \leq \sum_{i=0}^{d} {m \choose i}$
- Step 2: $\tau_{\mathcal{H}}(m) \leq \sum_{i=0}^{d} {m \choose i} \Rightarrow \mathcal{H}$ has the uniform convergence property
- Step 3: \mathcal{H} has the uniform convergence property $\Rightarrow \mathcal{H}$ is PAC learnable

The growth function measures the maximal "effective" size of \mathcal{H} on a set of *m* examples.

• (Growth Function.) Let \mathcal{H} be a hypothesis class. Then the growth function of \mathcal{H} , denoted $\tau_{\mathcal{H}} : \mathbb{N} \to \mathbb{N}$, is defined as:

$$\tau_{\mathcal{H}}(m) = \max_{C \subset \mathcal{X}: |C|=m} |\mathcal{H}_C|$$

Let \mathcal{H} be a hypothesis class with $VCdim(\mathcal{H}) = d < +\infty$. Then, for all $m \ge d$, $\tau_{\mathcal{H}}(m) \le \sum_{i=0}^{d} {m \choose i}$. Furthermore, $\tau_{\mathcal{H}}(m) \le (em/d)^{d}$.

 $|\mathcal{H}_C| = O(|C|^d).$

The size of \mathcal{H}_C grows polynomially rather than exponentially with |C|.

Let \mathcal{H} be a hypothesis class with $VCdim(\mathcal{H}) = d < +\infty$. Then, for all $m \ge d$, $\tau_{\mathcal{H}}(m) \le \sum_{i=0}^{d} {m \choose i}$. Furthermore, $\tau_{\mathcal{H}}(m) \le (em/d)^{d}$.

 $\bullet |\mathcal{H}_C| = O(|C|^d).$

The size of \mathcal{H}_C grows polynomially rather than exponentially with |C|.

Let \mathcal{H} be a hypothesis class with $VCdim(\mathcal{H}) = d < +\infty$. Then, for all $m \ge d$, $\tau_{\mathcal{H}}(m) \le \sum_{i=0}^{d} {m \choose i}$. Furthermore, $\tau_{\mathcal{H}}(m) \le (em/d)^{d}$.

$$|\mathcal{H}_C| = O(|C|^d).$$

• The size of \mathcal{H}_C grows polynomially rather than exponentially with |C|.

A claim: For any $C = \{c_1, c_2, \cdots, c_m\}$, we have

 $\forall \mathcal{H}, |\mathcal{H}_{C}| \leq |B \subset C : \mathcal{H} \text{ shatters } B|$

Proof: (the mathematical induction)

(1) When $m = 1, \checkmark$

(2) Suppose the inequality holds for sets of size k < m

(3) Prove the inequality holds for sets of size m.

Fix \mathcal{H} and $C = \{c_1, c_2, \cdots, c_m\}$. Denote $C' = \{c_2, \cdots, c_m\}$. In addition, define the following two sets:

$$Y_0 = \{(y_2, y_3, \cdots, y_m) : (0, y_2, \cdots, y_m) \in \mathcal{H}_C \lor (1, y_2, \cdots, y_m) \in \mathcal{H}_C\}$$
$$Y_1 = \{(y_2, y_3, \cdots, y_m) : (0, y_2, \cdots, y_m) \in \mathcal{H}_C \land (1, y_2, \cdots, y_m) \in \mathcal{H}_C\}$$

We have:

(1)
$$|\mathcal{H}_C| = |Y_0| + |Y_1|$$

(2) $Y_0 = \mathcal{H}_{C'}$. Moreover,

$$\begin{split} |Y_0| &= |\mathcal{H}_{C'}| \leq |\{B \subset C' : \mathcal{H} \text{ shatters } B\}| \\ &= |\{B \subset C : c_1 \notin B \land \mathcal{H} \text{ shatters } B\} \end{split}$$

< E >

Proof of Sauer's Lemma – Claim (3)

$$C = \{c_1, c_2, \cdots, c_m\} \text{ and } C' = \{c_2, \cdots, c_m\}$$
$$Y_0 = \{(y_2, y_3, \cdots, y_m) : (0, y_2, \cdots, y_m) \in \mathcal{H}_C \lor (1, y_2, \cdots, y_m) \in \mathcal{H}_C\}$$
$$Y_1 = \{(y_2, y_3, \cdots, y_m) : (0, y_2, \cdots, y_m) \in \mathcal{H}_C \land (1, y_2, \cdots, y_m) \in \mathcal{H}_C\}$$
Next, we define $\mathcal{H}' \subset \mathcal{H}$ to be

$$\begin{aligned} \mathcal{H}^{'} = & \{ h \in \mathcal{H} : \exists h^{'} \in \mathcal{H} \text{ s.t.} \\ & (1 - h^{'}(c_{1}), h^{'}(c_{2}), \cdots, h^{'}(c_{m})) = (h(c_{1}), h(c_{2}), \cdots, h(c_{m})) \} \end{aligned}$$

Then, it is obvious that $Y_1 = \mathcal{H}'_{C'}$. Moreover,

$$\begin{aligned} |Y_1| &= |\mathcal{H}_{C^{'}}| \leq |\{B^{'} \subset C^{'} : \mathcal{H}^{'} \text{ shatters } B^{'}\}| = |\{B^{'} \subset C^{'} : \mathcal{H}^{'} \text{ shatters } B^{'} \cup c_1\}| \\ &= |\{B \subset C : c_1 \in B \land \mathcal{H}^{'} \text{ shatters } B\}| \\ &\leq |\{B \subset C : c_1 \in B \land \mathcal{H} \text{ shatters } B\}| \end{aligned}$$

Ξ

《曰》 《國》 《臣》 《臣》

Proof of Sauer's Lemma – Claim (3)

$$C = \{c_1, c_2, \cdots, c_m\} \text{ and } C' = \{c_2, \cdots, c_m\}$$
$$Y_0 = \{(y_2, y_3, \cdots, y_m) : (0, y_2, \cdots, y_m) \in \mathcal{H}_C \lor (1, y_2, \cdots, y_m) \in \mathcal{H}_C\}$$
$$Y_1 = \{(y_2, y_3, \cdots, y_m) : (0, y_2, \cdots, y_m) \in \mathcal{H}_C \land (1, y_2, \cdots, y_m) \in \mathcal{H}_C\}$$
Next, we define $\mathcal{H}' \subset \mathcal{H}$ to be

$$\mathcal{H}^{'} = \{ h \in \mathcal{H} : \exists h^{'} \in \mathcal{H} \text{ s.t.} \\ (1 - h^{'}(c_{1}), h^{'}(c_{2}), \cdots, h^{'}(c_{m})) = (h(c_{1}), h(c_{2}), \cdots, h(c_{m})) \}$$

Then, it is obvious that $Y_1 = \mathcal{H}'_{\mathcal{C}'}$. Moreover,

$$\begin{aligned} |Y_1| &= |\mathcal{H}_{C^{'}}^{'}| \leq |\{B^{'} \subset C^{'} : \mathcal{H}^{'} \text{ shatters } B^{'}\}| = |\{B^{'} \subset C^{'} : \mathcal{H}^{'} \text{ shatters } B^{'} \cup c_1\}| \\ &= |\{B \subset C : c_1 \in B \land \mathcal{H}^{'} \text{ shatters } B\}| \\ &\leq |\{B \subset C : c_1 \in B \land \mathcal{H} \text{ shatters } B\}| \end{aligned}$$

< D > < D > <</p>

E

▶ < 문 ▶ ...</p>

Overall, we have shown that

$$\begin{aligned} \mathcal{H}_{\mathcal{C}}| &= |Y_0| + |Y_1| \\ &\leq |\{B \subset \mathcal{C} : c_1 \notin B \land \mathcal{H} \text{ shatters } B\}| + |\{B \subset \mathcal{C} : c_1 \in B \land \mathcal{H}^{'} \text{ shatters } B\}| \\ &= |\{B \subset \mathcal{C} : \mathcal{H} \text{ shatters } B\}| \end{aligned}$$

If $VCdim(\mathcal{H}) \leq d$, then no set whose size is larger than d can be shattered by \mathcal{H} . Therefore

$$|\{B \subset C : \mathcal{H} \text{ shatters } B\}| \leq \sum_{i=0}^{d} {m \choose i}$$

E

Image: A marked black

Peking University

Theorem (6.11)

Let \mathcal{H} be a class of hypothesis and let $\tau_{\mathcal{H}}$ be its growth function. The loss is 0-1 loss. Then, for every D and every $\delta \in (0,1)$, with probability of at least $1 - \delta$ over the choice of $S \sim D$ we have

$$|L_D(h) - L_S(h)| \leq rac{4 + \sqrt{\log(au_{\mathcal{H}}(2m))}}{\delta\sqrt{2m}}$$

Proof.

(1)
$$\mathbb{E}_{S \sim D}[\sup_{h \in \mathcal{H}} |L_D(h) - L_S(h)|] \le \frac{4 + \sqrt{\log(\tau_{\mathcal{H}}(2m))}}{\sqrt{2m}}$$

(2) Markov's inequality (Section B.1)

Sauer's lemma: when m > d, we have τ_H(2m) ≤ (2em/d)^d
 Theorem 6.11: with probability of at least 1 − δ,

$$|L_D(h) - L_S(h)| \leq rac{4 + \sqrt{\log(au_{\mathcal{H}}(2m))}}{\delta\sqrt{2m}}$$

Combining these two conclusions, we have,

$$|L_D(h) - L_S(h)| \le \frac{4 + \sqrt{d \log(2em/d)}}{\delta \sqrt{2m}}$$

Sauer's lemma: when m > d, we have τ_H(2m) ≤ (2em/d)^d
Theorem 6.11: with probability of at least 1 − δ,

$$|L_D(h) - L_S(h)| \leq rac{4 + \sqrt{\log(au_{\mathcal{H}}(2m))}}{\delta\sqrt{2m}}$$

Combining these two conclusions, we have,

$$|L_D(h) - L_S(h)| \leq rac{4 + \sqrt{d\log(2em/d)}}{\delta\sqrt{2m}}$$

Assume
$$\sqrt{d \log(2em/d)} \ge 4$$
,
 $|L_D(h) - L_S(h)| \le \frac{1}{\delta} \sqrt{\frac{2d \log(2em/d)}{m}}$

$$m \geq rac{2d\log(m)}{(\delta\epsilon)^2} + rac{2d\log(2e/d)}{(\delta\epsilon)^2}$$

- (Lemma A.2 in Appendix A) There exists a function f(ε, δ) which is a sufficient condition for the proceeding to hold
- Finally, we can let $m_{\mathcal{H}}^{UC}(\epsilon, \delta) = f(\epsilon, \delta)$. Then the uniform convergence property of \mathcal{H} is proved

Assume
$$\sqrt{d \log(2em/d)} \ge 4$$
,
 $|L_D(h) - L_S(h)| \le \frac{1}{\delta} \sqrt{\frac{2d \log(2em/d)}{m}}$

$$m \geq rac{2d\log(m)}{(\delta\epsilon)^2} + rac{2d\log(2e/d)}{(\delta\epsilon)^2}$$

- (Lemma A.2 in Appendix A) There exists a function f(ε, δ) which is a sufficient condition for the proceeding to hold
- Finally, we can let $m_{\mathcal{H}}^{UC}(\epsilon, \delta) = f(\epsilon, \delta)$. Then the uniform convergence property of \mathcal{H} is proved

Assume
$$\sqrt{d \log(2em/d)} \ge 4$$
,
 $|L_D(h) - L_S(h)| \le \frac{1}{\delta} \sqrt{\frac{2d \log(2em/d)}{m}}$

$$m \geq rac{2d\log(m)}{(\delta\epsilon)^2} + rac{2d\log(2e/d)}{(\delta\epsilon)^2}$$

- (Lemma A.2 in Appendix A) There exists a function f(ε, δ) which is a sufficient condition for the proceeding to hold
- Finally, we can let $m_{\mathcal{H}}^{UC}(\epsilon, \delta) = f(\epsilon, \delta)$. Then the uniform convergence property of \mathcal{H} is proved

Assume
$$\sqrt{d \log(2em/d)} \ge 4$$
,
 $|L_D(h) - L_S(h)| \le \frac{1}{\delta} \sqrt{\frac{2d \log(2em/d)}{m}}$

$$m \geq rac{2d\log(m)}{(\delta\epsilon)^2} + rac{2d\log(2e/d)}{(\delta\epsilon)^2}$$

- (Lemma A.2 in Appendix A) There exists a function f(ε, δ) which is a sufficient condition for the proceeding to hold
- Finally, we can let $m_{\mathcal{H}}^{UC}(\epsilon, \delta) = f(\epsilon, \delta)$. Then the uniform convergence property of \mathcal{H} is proved

(The Fundamental Theorem of Statistical Learning) Let the loss function be the 0-1 loss.

3

Image: A test in te

(The Fundamental Theorem of Statistical Learning - Quantitative Version) Let the loss function be the 0-1 loss. Assume $VCdim(\mathcal{H}) = d < +\infty$. Then,

	Uniform Convergence	Agnostic PAC Learnable	PAC Learnable
$m_{\mathcal{H}}(\epsilon,\delta)$	$\Theta(\frac{d + \log(1/\delta)}{\epsilon^2})$	$\Theta(\frac{d + \log(1/\delta)}{\epsilon^2})$	$0(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2})$

Ξ

Image: A test in te

Image: A matrix and a matrix