On the Use of Deep Learning for Blind Image Quality Assessment(DeepBIQ)

Simone Bianco, Luigi Celona, Paolo Napoletano, Raimondo Schettini University of Milan-Bicocca

Arxiv,2017

2019/4/22

Main Contribution

- Investigate the use of different design choices on IQA problem
 - The choice of pre-trained model
 - The number of sub-regions and pooling strategies
 - Fine-tune of CNN

Datasets

LIVE In the Wild Image Quality Challenge Database

Fig. 1 Examples from the LIVE In the Wild IQ Chall.DB.

- Experiment I: the choice of pre-trained CNNs
 - ImageNet-CNN, trained on 1.2 million images of ImageNet Database
 - Places-CNN, trained on 2.5 million images of the Places Database
 - ImageNet+Places-CNN, trained on 3.5 million images of the mergence of the scene categories from Places Database and the object categories from ImageNet

Places

- Experiment I: the choice of pre-trained CNNs
 - Resize from 500*500 to 256*256, crop out the central 227*227 part
 - Extract feature by CNN, then use SVR to predict the quality score
 - Use 80 percent for training and 20 percent for testing, 10 times

Table 2 Median LCC and SROCC across 10 train-test random splits of the LIVE In the Wild Image Quality Challenge Database considering only the central crop of the subsampled image as input for the pre-trained CNNs considered.

	LCC	SROCC
Imagenet-CNN Places-CNN ImageNet+Places-CNN	0.6782 0.6267 0.7215	0.6381 0.6055 0.7021

- Experiment II: feature and prediction pooling
 - The resize operation could have reduced the effect of some artifacts of each image, such as noise
 - Randomly crops different amounts of sub-regions(227*227), the number of which ranges from 5 to 50
 - Fusion strategies:
 - feature pooling: minimum, average, and maximum
 - feature concatenation: longer feature vector
 - prediction pooling: minimum, average, and maximum

Table 3 Median LCC and SROCC across 10 train-test random splits of the LIVE In the Wild IQ Chall. DB considering randomly selected crops as input for the ImageNet+Places-CNN and three different fusion approaches.

	LCC	SROCC
Feature pooling (avg-pool,@30crops) Feature concatenation (@35crops) Prediction pooling (avg-pool,@20crops)	0.7938 0.7864 0.7873	0.7828 0.7724 0.7685

- Experiment III: fine-tuned CNN
 - Substitute a new fully connected layer initialized with random values
 - During training, classify image sub-regions into five disjoint sets(bad, poor, fair, good, excellent)
 - Use the trained CNN as a feature extractor, and then predict the quality score by SVR
 - Still use the sub-regions strategy

- Experiment III: fine-tuned CNN
 - ImageNet+Places-CNN
 - Average-pooling

Table 4 Median LCC and SROCC across 10 train-test random splits of the LIVE In the Wild Image Quality Challenge Database considering randomly selected crops as input for the fine-tuned CNN and two different fusion approaches.

	LCC	SROCC
Feature pooling (avg-pool,@20crops) Prediction pooling (avg-pool,@25crops)	0.9026 0.9082	0.8851 0.8894

Table 5 Median LCC and median SROCC across 10 traintest random splits of the LIVE In the Wild IQ Chall. DB.

	LCC	SROCC
DIIVINE [34]	0.56	0.51
BRISQUE 31	0.61	0.60
BLIINDS-II 39	0.45	0.40
S3 index 47	0.32	0.31
NIQE 32	0.48	0.42
C-DIIVINE 51	0.66	0.63
FRIQUEE 12,14	0.71	0.68
HOSA 49	-	0.65
DeepBIQ (Exp. I)	0.72	0.70
DeepBIQ (Exp. II)	0.79	0.79
DeepBIQ (Exp. III)	0.91	0.89

Table 6 Median LCC and median SROCC across 100 random splits of the legacy LIVE Image Quality Assessment DB.

Method	LCC	SROCC
DIIVINE [34]	0.93	0.92
BRISQUE 31	0.94	0.94
BLIINDS-II 39	0.92	0.91
NIQE 32	0.92	0.91
C-DIIVINE 51	0.95	0.94
FRIQUEE [12],[14]	0.95	0.93
ShearletIQM 29	0.94	0.93
MGMSD 1	0.97	0.97
Low Level Features [21]	0.95	0.94
Rectifier Neural Network 45	_	0.96
Multi-task CNN 20	0.95	0.95
Shallow CNN 19	0.95	0.96
DLIQA [16]	0.93	0.93
HOSA 49	0.95	0.95
CNN-Prewitt [27]	0.97	0.96
CNN-SVR [26]	0.97	0.96
DeepBIQ	0.98	0.97

Table 7 Median LCC and median SROCC across 100 trainval-test random splits of the CSIQ.

Method	LCC	SROCC
DIIVINE [34]	0.90	0.88
BRISQUE [31] BLIINDS-II [39]	$0.93 \\ 0.93$	$0.91 \\ 0.91$
Low Level Features [21] Multi-task CNN [20]	$0.94 \\ 0.93$	$0.94 \\ 0.94$
HOSA [49]	0.95	0.93
$\mathbf{DeepBIQ}$	0.97	0.96

Table 8 Median LCC and median SROCC across 100 trainval-test random splits of the TID2008.

Method	LCC	SROCC
DIIVINE [34] BRISQUE [31] BLIINDS-II [39] MGMSD [1]	0.90 0.93 0.92 0.88	0.88 0.91 0.90 0.89
Low Level Features [21] Multi-task CNN [20] Shallow CNN [19] DeepBIQ	0.89 0.90 0.90 0.95	0.88 0.91 0.92 0.95

Table 9 Median LCC and median SROCC across 100 trainval-test random splits of the TID2013.

Method	LCC	SROCC
DIIVINE [34] BRISQUE [31] BLIINDS-II [39] Low Level Features [21]	0.89 0.92 0.91 0.89	0.88 0.89 0.88 0.88
HOSA [49] $ DeepBIQ$	$\begin{array}{c} 0.96 \\ 0.96 \end{array}$	0.95 0.96

My own thinking

- The training and settings mentioned in this paper is useful
 - Fine-tune CNN is necessary when data is not so small
 - The choice of pre-trained model may affect the result
 - Sub-images and pooling might help, maybe in natural images
 - Different pooling strategies during convolutional layers may lead to different results

Thanks!